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Abstract: Sarcopenia is a wild chronic disease among elderly people. Although it does not entail a
life-threatening risk, it will increase the adverse risk due to the associated unsteady gait, fall, fractures,
and functional disability. The import factors in diagnosing sarcopenia are muscle mass and strength.
The examination of muscle mass must be carried in the clinic. However, the loss of muscle mass
can be improved by rehabilitation that can be performed in non-medical environments. Electronic
impedance myography (EIM) can measure some parameters of muscles that have the correlations
with muscle mass and strength. The goal of this study is to use machine learning algorithms to
estimate the total mass of thigh muscles (MoTM) with the parameters of EIM and body information.
We explored the seven major muscles of lower limbs. The feature selection methods, including
recursive feature elimination (RFE) and feature combination, were used to select the optimal features
based on the ridge regression (RR) and support vector regression (SVR) models. The optimal features
were the resistance of rectus femoris normalized by the thigh circumference, phase of tibialis anterior
combined with the gender, and body information, height, and weight. There were 96 subjects
involved in this study. The performances of estimating the MoTM used the regression coefficient (r2)
and root-mean-square error (RMSE), which were 0.800 and 0.929, and 1.432 kg and 0.980 kg for RR
and SVR models, respectively. Thus, the proposed method could have the potential to support people
examining their muscle mass in non-medical environments.

Keywords: sarcopenia; electronic impedance myography; mass of thigh muscle; ridge regression;
support vector regression

1. Introduction

The lifespan of the world’s population is increasing and society is gradually aging.
According to the report of the United Nations, the number of elderly people (over 65 years
of age) in the world in 2019 was 703 million, and this is estimated to double to 1.5 billion
by 2050 [1]. In Taiwan, the report of the National Development Council indicated that
the elderly population over 65 years of age will exceed 20% of the national population in
2026 [2]. For healthy adults, aging results in a progressive loss of muscle mass and strength.
According to the study of Kim and Choi, people over forty years would have 8% loss of
muscle mass every decennium. When their ages are over seventy years, the muscle mass
loss would be 15% every decennium [3]. Although the loss of muscle mass and strength is

Sensors 2022, 22, 3087. https://doi.org/10.3390/s22083087 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22083087
https://doi.org/10.3390/s22083087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7938-9033
https://orcid.org/0000-0002-3923-4387
https://doi.org/10.3390/s22083087
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22083087?type=check_update&version=1


Sensors 2022, 22, 3087 2 of 14

interdependent, the loss of muscle strength occurs at least 2–4 times faster than the loss
of muscle mass. Its behavior is also a more important risk factor for predicting adverse
outcomes, such as unsteady gait, fall, fractures, and even the increased risk of disability
and death [4]. Many studies have shown that the decline of lower limb muscles is greater
than that of the upper limb [5–7]. Thus, sarcopenia is currently a hot topic for the aging
society, which is defined as the progressive reduction in muscle mass in elderly people [8],
and serves as the physical functional criteria, such as low muscle strength and low physical
performance [9,10].

There are some diagnostic criteria for sarcopenia provided by the European Working
Group on Sarcopenia in Older People, International Working Group on Sarcopenia and
Asian Working Group for Sarcopenia. The examined items include the muscle mass, mus-
cle strength, and physical performance, which are carried out step by step. The different
working groups advocate the different criteria [11]. There are three main techniques used
to estimate skeletal muscle mass, including computed tomography (CT) [12], magnetic res-
onance imaging (MRI) [13], and dual energy X-ray absorptiometry (DXA) [14,15]. However,
these techniques all require professional operators to perform the examination in clinical
practice. Therefore, how to develop a measurement method used in non-medical place will
be a challenging issue.

Electromyography (EMG) measures the electrical activity in motor neurons and muscle
fibers during muscle contraction, which allows for the early diagnosis of neuromuscular
diseases, including neuropathies, myopathies, and motor neuron diseases [16,17]. Because the
morphology of the EMG signal during the isotonic or isometric contractions represents the size
and shape of muscle fiber territories, the characteristics of the time or frequency domain of
EMG signal are used to evaluate the muscle condition [18–20]. The effect of aging on the EMG
amplitude during dynamic contractions presents a sufficient difference [21]. Tian et al. studied
the performances of EMG and mechanomyography in detecting age-related sarcopenia [22].
Leone et al. used the morphology of EMG signal to evaluate the levels of sarcopenia [23].
However, the EMG measurement requires the performance of muscle contraction via electrical
stimulation or voluntary activity. Thus, patients will feel uncomfortable.

Bioelectrical impedance analysis has been used in many physiological measurements,
and it is a physical measure of the ionic conduction of a specific body segment in contrast
with electrical conduction characteristics [24,25]. Bioimpedance is a complex quantity
composed of the resistance caused by total body water and reactance caused by the ca-
pacitance of the cells [26]. The change of the reactance in the blood is modulated by the
orientation of red cells being changed when the blood flows [27]. Thus, it could be used
to measure the hemodynamic parameters, e.g., blood flow, stroke volume, and thoracic
fluid. Impedance cardiography is the most important application [28]. Liu et al. used
impedance plethysmography (IPG) to perform cuffless blood pressure measurement [29].
Some previous studies used this technique to measure the mass of the interested muscle,
which is called the electrical impedance myography (EIM) [30]. Tanaka et al. used EIM
to measure the skeletal muscle mass in the limb segment in comparison to measure via
the MRI method. There was a standard error of 6.1% [31]. Rutkove et al. used EIM to
evaluate amyotrophic lateral sclerosis (ALS), which had a high relation with the hand-held
dynamometry (correlation coefficient (r) of 0.82) and the ALS Functional Rating Scale
Revised (r of 0.74) [32]. Kortman et al. found that the dependency among phase of EIM,
age, and gender for the skeletal muscle was high [5].

Machine learning (ML) algorithms are considered promising approaches for clinical
prediction and classification problems, which include convolutional neural networks, sup-
port vector machines, random forests, and many others [33,34]. An ML method primarily
includes the feature engineering, appropriate ML algorithm, training and evaluation of
model performance, and using the trained model to predict the unknown data [35,36]. The
feature processing is an important issue that can directly affect the performance of an ML
algorithm. The more accurate the features, the higher the performance of the ML algo-
rithm. Liu et al used a multilayer neural network to estimate cuffless blood pressure [37].
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Mahajan et al. used logistic regression and random forest to evaluate heart failure [38].
Kwon et al. applied the one-dimension convolution neural network to estimate the change
of stroke volume with the blood pressure waveform [39]. Although ML methods have been
popularly used for clinical prediction for some issues, some traditional statistical analysis
methods have also reignited interest in exploiting these fields [40,41].

This study aims to estimate the total mass of thigh muscles (MoTM) by EIM with
ML algorithms. Seven muscles of lower limbs were measured, including rectus femoris,
vastus lateralis, medial femoris, tibialis anterior, semitendinosus, biceps femoris, and gas-
trocnemius. The parameters of EIM were the impedance, resistance, reactance, and phase,
and the body information included age, weight, body mass index (BMI), gender, thigh
circumference, and calf circumference. Thus, the number of total parameters was thirty-
seven. Recursive feature elimination (RFE) was used to select the important parameters
as the features for ML input. Two ML models, namely ridge regression (RR) and support
vector regression (SVR), were used, and their performances were verified by the data from
ninety-six subjects.

2. Materials and Methods

Figure 1 shows the framework of this study. An EIM measurement system was
developed, which includes an impedance measurement module and a data acquisition
board. A graphic user interface (GUI) was also designed to display and record the EIM
signals. According to the guide for the examination of sarcopenia [11], we recruited
96 subjects to evaluate the skeletal muscular mass of their lower limbs. The optimal
parameters were determined by recursive feature elimination. Finally, two ML models
used these parameters to estimate the total MoTM.
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Figure 1. The framework of this study. A measurement system is used to measure the parameters of EIM
for the muscles of lower limb. According to the experiment protocol, we recruited ninety-six subjects.
RFE is used to select the important features to estimate the total MoTM by the ML models.

2.1. EIM Measurement System

An impedance measurement module (BIOPAC EP 100, BIOPAC®System, Goleta, CA,
USA) was used to measure four parameters of the interesting skeletal muscles. A DAQ
board (NI DAQ USB-6361, National Instruments, Austin, TX, USA) was used to acquire the
EIM signals, i.e., phase and impedance.

2.1.1. Calibration of EIM Measurement System

The sampling rate was 500 Hz in the EIM measurement system. The input alternating
current was 50 kHz in frequency and 0.4 mA (root mean square, RMS). The impedance
sensitivity was 100 Ω/voltage, and the phase sensitivity was 9◦/voltage. The cutoff
frequency of low-pass filter was 10 Hz. Figure 2 shows the placement of four electrodes
and the distribution of the electric field. The four electrodes include two current electrodes
(positive and negative terminals, HC and LC) and two voltage electrodes (positive and
negative terminals, HP and LP). The parameters of EIM are resistance (R), reactance (Z),
phase (P), and impedance (I). The relation among R, Z, P, and I is defined below,

I =
√

R2 + Z2 (1)

P = tan−1 Z
R

(2)
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Figure 2. Placements of four electrodes and the distribution of electric field under the EIM measurement.

The output signals of the EP 100 module are impedance I and phase P. According to
Equations (1) and (2), Z and R can be calculated by the measured I and P. We calibrated
the impedance measurement module with a resistor box and a capacitor box, respectively.
Figure 3a shows the calibration of resistance. The dots indicate the measured points, and
the red line is the practical calibrated line (regression line) approximated by the measured
points. The blue line is the designed ideal line. The mean square error was 0.052 Ω, and the
square of the correlation coefficient r2 was 1.00. Equation (3) shows the calibrating function
of the resistor:

y = 0.99x + 1.02, (3)

where x is actual resistance (Ω) and y is the measured resistance (Ω). Figure 3b shows the
calibration of reactance. The red line is the calibrated line, and the blue line is the designed
ideal line. The mean square error was 0.042 Ω, and r2 was 1.00. Equation (4) shows the
calibrating function of the resistor,

y = 0.98x + 0.57, (4)

where x is actual reactance (Ω), and y is the measured reactance (Ω).

2.1.2. Placement of Electrodes

Sanchez et al. suggested that the error of placement of electrodes in the EIM would
affect the reproducibility according to the intraclass correlation coefficient (ICC) [30]. The
larger the ICC, the smaller the error rate of the distance between the two electrodes.
Moreover, the four electrodes must be aligned. In this study, we defined the placement of
four electrodes with two schemes, 5 cm and 7 cm in length, to fit for the larger and smaller
muscles, respectively. We used the translucent tapes to make the markers for electrode
positioning, as shown in Figure 4. The length of the left tape is 5 cm, and that of the right
one is 7 cm.

2.2. Experiment Protocol

The potential subjects underwent the hand-grip strength and walk test before par-
ticipation in the experiment. The participants had to perform 28 kg and 18 kg grips for
the male and female subjects, respectively. Moreover, their walking speeds must be over
0.8 m/second. There were 96 subjects participating in this study, and the number of male
and female subjects was 42 and 54, respectively. The information of subjects is shown in
Table 1, which includes age, height, weight, BMI, as well as thigh and calf circumferences.
The experiment protocol was approved by the Institutional Review Board, National Cheng
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Kung University Hospital (NCKUH). Written informed consent was obtained from each
participant prior to entering the test procedure. (B-ER-108-126)
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Table 1. The information of subjects.

Total (N = 96) Male (N = 42) Female (N = 54)

Age (years) 48.29 ± 17.91 44.31 ± 18.24 51.39 ± 17.18
Height (cm) 162.68 ± 7.51 168.93 ± 5.13 157.82 ± 5.07
Weight (Kg) 64.75 ± 11.64 71.10 ± 10.66 59.81 ± 9.91

BMI (Kg/m2) 24.40 ± 3.64 24.90 ± 3.38 24.01 ± 3.82
Thigh circumference (cm) 50.02 ± 5.34 50.41 ± 5.23 49.71 ± 5.45
Calf circumference (cm) 36.07 ± 3.13 37.07 ± 2.81 35.31 ± 3.16
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According to the previous studies, the masses of lower limb muscles declined easier
than those of upper limb muscles when people have sarcopenia [5,6,42]. Thus, we measured
the tibialis anterior and gastrocnemius in the calf muscles, and vastus lateralis, rectus
femoris, medial famous, biceps femoris, and semitendinosus in the thigh muscles. Table 2
shows the landmarks of each muscle. The vastus lateralis, medial famous, and tibialis
anterior muscles belong to the small muscles, the other muscles belong to the large muscles.

Table 2. The landmarks of seven muscles.

Muscle Start Point End Point

Vastus Lateralis Lateral patella Greater trochanter
Rectus Femoris Midline of patella Anterior superior iliac spine
Medial Femoris Medial patella Medial side of femur

Tibialis Anterior (small) Lateral condyle of tibia Midline of calf
Semitendinosus (small) Posterior medial knee joint Midline of gluteal fold

Biceps Femoris Posterior lateral knee joint and head of fibula Midline of gluteal fold
Gastrocnemius Posterior knee joint Midline of calf

A subject was requested to comfortably lie supine on a table whose face was upward.
We measured the thigh and calf circumferences. Then, the total MoTM was measured by
the InBody S10 (InBody Co. Ltd. Korea) as the reference. Next, the subject was asked to
maintain the same posture. Four BIOPAC EP 100 modules were used synchronously to
measure the masses of vastus lateralis, rectus femoris, medial femoris, and tibialis anterior
at approximately 60 s. Finally, the subject was requested to change their posture with
face downward. Three BIOPAC EP 100 modules were used synchronously to measure the
masses of biceps femoris, semitendinosus, and gastrocnemius.

2.3. Extracting Features

Figure 5 shows the flowchart of extracting features. The RFE is used to search the
optimal parameters [43,44] as the features to estimate the MoTM. The parameters of 85 sub-
jects randomly selected from the 96 subjects are the raw data. In order to reduce the flag
problems, such as overfitting or selection bias, the RFE uses the five-fold cross validation
to evaluate the optimal parameters. Table 3 shows the used parameters of subjects that
not only include the EIM parameters, but also contain the body information of subjects.
Thus, there are 34 parameters. RFE fitted a model to remove the weakest features until the
specified number of features was reached. All features were ranked by r2 of the model,
and by recursively eliminating a feature with the lowest coefficient per loop. The lower the
impact feature, the lower the change of coefficient. Thus, RFE could eliminate the features
with the dependencies and collinearity existing in the model.

2.4. Machine Learning Models

The traditional regression problem usually uses the linear multiple-regression method
that fits the regression curve as close to the training data as possible. This would cause the
testing data to contain an amount of error, which is called the overfitting problem, if the
input variables are highly correlated. Therefore, the training regression curve should not
be too close to the training data, so that the predictions have better results. In this study,
we used two machine learning models with the concept of error margin, RR, and SVR, to
estimate MoTM.
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Table 3. Raw parameters including EIM parameters of seven muscles and body information of
subjects.

Basic Information Data Type EIM Data Data Type

Height
Numerical

Rectus Femoris (RF)

Impedance (I)
Phase (P)

Resistance (R)
Reactance (Z)

Numerical

Weight Vastus Lateralis (VL)
BMI Medial Femoris (MF)

Gender Categorical Tibialis Anterior (TA)
Thigh Circumference (TC)

Numerical
Semitendinosus (ST)

Calf Circumference (CC) Biceps Femoris (BF)
Gastrocnemius (GT)

2.4.1. Ridge Regression

A linear multiple-regression model is written below,

ŷ =
p

∑
j=1

β jxj + ε (5)

where ŷ is the estimated value, xj is the independent variable, βj is the coefficient, p is the
number of independent variables, and ε is residual error. A loss function (L) will be defined
by the regression function, as in Equation (6),

L(y, f (x)) =
1
N

N

∑
i=1

L(yi, f (xi)) (6)

The sum square error (SSE) is usually used as a loss function, and the object is to
minimize the loss function to estimate the βj,

minimize

{
SEE =

N

∑
i
(yi − ŷi)

2

}
(7)

where yi is the observed value and N is the number of observed values. Ridge regres-
sion (RR) adds the penalty parameter to the objective function [45],

minimize

{
SEE + λ

p

∑
j

β j
2

}
(8)

Because this parameter is a second-order penalty for the coefficient, it is also called the
L2 penalty parameter. The value of the L2 penalty parameter can be controlled by λ. When
λ approaches 0, Equation (8) is equal with Equation (7). When λ approaches to the infinite,
all coefficients approach 0. In this study, λ is set to 0.1.

2.4.2. Support Vector Regression

The difference between SVR and linear regression is that an error margin is acceptable
to find an appropriate model to fit the data. In Equation (9), the error term (ε) is instead
handled in the constraints, where the absolute error is less than or equal to a specified
margin, called the maximum error,

|yi − ŷi| ≤ ε (9)

Thus, a loss function (L) is defined by a regression function (f ) and adds the constraint,
a specified margin. However, this margin could not comprise all of the data. Some of the
data still fall outside the margin. Therefore, a slack variable is defined such that any data
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falling outside of ε is denoted its deviation from the margin as ξ. The objective function
can add the slack variable below,

minimize

{
L(y, f (x) + C

N

∑
i=1
|ξi|

}
(10)

The margin is changed as,
|yi − ŷi| ≤ ε + |ξi| (11)

Moreover, SVR can use the different kernel functions, linear or nonlinear functions,
to convert the nonlinear data distribution to the linear distribution [46]. In this study, the
kernel function is a 2nd-order polynomial function, C is set to 0.1, and ξ to 0.3.

3. Results

The results of this study included the optimal features and MoTM estimation. For
the search of optimal features, we not only studied the impact of each parameter, but also
combined the complementary parameters to yield a more significant feature set. Then, the
performances of MoTM estimation by RR and SVR models were compared.

3.1. Optimal Feature Sets

According to the description in Section 2.3, the impact of each feature depends on
the regression models. After the RFE process, we only chose the parameters with positive
weight coefficients. Table 4 shows the ranks and weight coefficients of these parameters
under RR and SVR. There are nine and eight parameters for RR and SVR, respectively. We
used theses parameters as the feature sets to train RR and SVR models, whose regression
coefficient (r2) were 0.812 and 0.831, separately.

Table 4. The ranks and weight coefficients of parameters under the RR and SVR models by the
RFE process.

Rank

Ridge Regression SVR

Parameter Weight Coef. (r2)
Mean ± SD

Parameter Weight Coef. (r2)
Mean ± SD

1 Height 0.139 ± 0.151 Height 0.194 ± 0.189
2 Gender 0.087 ± 0.134 Gender 0.108 ± 0.166
3 TC 0.040 ± 0.033 RF_R 0.044 ± 0.090
4 RF_R 0.023 ± 0.097 TC 0.028 ± 0.051
5 Weight 0.009 ± 0.031 Weight 0.019 ± 0.030
6 CC 0.009 ± 0.015 GT_P 0.012 ± 0.041
7 RF_Z 0.008 ± 0.019 TA_P 0.009 ± 0.038
8 TA_P 0.001 ± 0.092 CC 0.008 ± 0.026
9 VL_Z 0.000 ± 0.036

SD: the abbreviation of standard division.

The gender parameter is the categorical variable, and TC and CC are the geometric
variables which are affected by the bone, tissue, fat, and muscle. Thus, we combined these
parameters with EIM parameters to yield a more substantial feature set. From Table 4,
the major thigh muscles are the rectus femoris and vastus laterals, and the major calf
muscles are the gastrocnemius and tibialis anterior. The new EIM features for the thigh
muscles were the RF_R, RF_Z, and VL_Z parameters normalized by the TC parameter,
which individually added to the original feature vectors to train the RR and SVR models.
Table 5 shows the regression coefficient (r2) for the RR and SVR models. The RF_R/TC has
the best performance for RR and SVR models, whose r2 values increase to 0.816 and 0.840.
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Table 5. Regression coefficient (r2) for the RR and SVR models when adding combined features,
RF_Z/TC, RF_R/TC, and VL_Z/TC, separately.

Features r2 of RR r2 of SVR

RF_Z/TC 0.817 0.832
RF_R/TC 0.816 0.840
VL_Z/TC 0.815 0.831

The new EIM features for the calf muscles were the TA_P and GT_P parameters
combining with the gender parameter, i.e., the means of TA_P and GT_P for the male and
female groups separately multiplying with the TA_P and GT_P in the male and female
groups. These new features were individually added to the original feature vectors to train
the RR and SVR models. Table 6 shows the regression coefficient (r2) for the RR and SVR
models. The TA_P_Gender has the best performance for RR and SVR models, whose r2

values increase to 0.825 and 0.840.

Table 6. The regression coefficient (r2) for the RR and SVR models when adding combined features,
TA_P_Gender and GT_P_Gender, separately.

Features r2 of RR r2 of SVR

TA_P_Gender 0.825 0.840
GT_P_Gender 0.819 0.832

3.2. Performance of Regression Models

In Table 4, the body information are the height, weight, and gender. However, the
gender parameter has been combined with the EIM parameter. Thus, we chose the height
and weight as the features. Moreover, in Tables 5 and 6, the RF_R/TC and TA_P_Gender
features have the best performance. Thus, we also chose these two features. Then, the final
features were height, weight, RF_R/TC, and TA_P_Gender, which were used to train the RR
and SVR models again. The subjects who were not used to train the models were used as the
testing data. The number of testing samples was 11. The regression coefficients (r2) of RR and
SVR models were 0.800 and 0.929, and the RMSEs were 1.432 kg and 0.980 kg, respectively.

4. Discussion

According to the study of Chen et al., the sarcopenia diagnosis not only measures
the skeletal muscle mass and strength, but also tests some physical performances [11].
The measurement of skeletal muscle mass implies significant costs in terms of clinical
practice. Although some commercial apparatus with bioelectrical impedance analysis (BIA)
technology can measure the global muscle mass, its price and size are hard to accept in the
context of homecare. The benefits of EIM are that it can measure the electrical parameters
of single muscle and its operation is much easier than BIA. Thus, when the injured muscle
is improved with rehabilitation, EIM could measure the real change of this muscle [47]. In
this study, an apparatus, InBody S10, with the BIA technology was used to measure the
total MoTM. However, we only measured the RF_R and TA_P parameters with the EIM
method and body information to estimate the MoTM based on the RR and SVR models.
The regression coefficients (r2) between two methods were 0.800 and 0.929, respectively.

According to the study of Janssen et al., the parameters of estimating skeletal muscle
mass were the height, age, gender, and resistance of BIA [48]. The regression coefficients (r2)
approached 0.86. In our study, we proposed 34 parameters, including the body information
of subject (excluding age) and parameters of EIM, as shown in Table 3. Different machine
learning algorithms may perform properly with different feature sets, even if they are using
the same training set [49]. Therefore, we used the RFE method to rank these parameters
for RR and SVR models. In Table 4, the height, weight, gender, and RF_R are the common
parameters for two models. This result was very close to the previous study.
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For the traditional regression estimation, the categorical parameters, such as gender,
country, or race, are difficult to utilize because they are only encoded. Therefore, the regres-
sion functions depend on the different categorical parameters to increase the estimating
accuracy [5,50]. In Table 4, the impact ranking of gender parameter is only second based on
RR and SVR models. Thus, the performance of RR and SVR models built on the different
genders could not be improved. The external direct product in the group theorem is a
general method to process the data of two groups [51]. Thus, we used this method to
reinforce the differences of EIM parameters for the different genders.

Theoretically, more features should result in better discriminating performance, but
the practical experience for the machine learning algorithms shows this doctrine not to
be applicable for many cases [37,52–54]. A regression model with more features would
possibly reduce modeling bias. However, its predicting accuracy would decrease, and
its computational complexity would increase. Hence, we used RFE to select the optimal
feature set. The number of features for RR and SVR models was reduced to 10 and nine.
Moreover, another method with dimensionality reduction, also known as feature extraction,
usually uses the linear combination with the given features to reduce the size of feature
space without losing information of the original feature space [55]. In this study, we tried to
combine the parameters of EIM with the body information, including thigh circumference
and gender. In Tables 5 and 6, RF_R_TC and TA_P_Gender features significantly increase
the performance of RR and SVR models. Thus, we only selected four features, namely
height, weight, RF_R_TC, and TA_P_Gender, to estimate the total MoTM. The SVR model
had the better performance, with a regression coefficient (r2) of 0.929 and RMSE of 0.98 kg.

Aaron et al. [56] and Tarulli [57] found the relation between the phase parameter of
EIM measuring the TA and GT muscles and age and muscle atrophy. In Table 4, the TA_P
and GT_P parameters are the important features for the RR and SVR models. Moreover,
Kortman et al. found that the changes of resistance and reactance parameters of EIM for the
skeletal muscle would be affected by the age and gender of subjects [5]. In Table 4, RF_R
and RF_Z parameters also are the important features.

There are three reasons for the loss of mass, namely a reduction in the number of
muscle fibers, shrinking in the size of muscle fibers, and transformation of muscle fibers into
type I fibers. The different conditions will make the changes of the different parameters of
EIM. For the change of muscle fiber number, the resistance parameter of EIM will increase,
and the phase parameter will decrease. For the change of muscle fiber size, the intracellular
fluid of muscle will decrease, which would cause a drop in the phase parameter of EIM.
In this study, subjects, excluding those have injurious lower limbs and muscle weakness,
generally have one of the three conditions listed above. The proposed method only used
the resistance and phase parameters of EIM to estimate the muscle mass of lower limbs.
Thus, this is considered as the limitation of this study.

Moreover, the BIA method includes the EIM and IPG, which not only measures the
impedance of muscles, but also measures the tissue components including the fat, vessel
wall, skin, etc., and the blood flow. Wróbel et al. proposed a pulse-dynamics analysis to
calibrate these potential error parameters [58]. The pulse signal can be measured by the
IPG [29]. Thus, in the future, the EIM signal could be calibrated by the dynamic pulse
signal measured by IPG to reduce the distortions induced by lipids in the skin of various
thickness for individual patients.

5. Conclusions

Sarcopenia is a prevalent disease for elderly people when their limbs or vertebra
are injured. Moreover, the muscle mass usually decreases with age. Thus, people could
avoid the loss of muscle mass with therapy for physical fitness. The development of a
measurement system used in a non-medical environment could support people with the
hidden risk of sarcopenia to examine their muscle mass condition every day. In this study,
the contribution is to utilize the data mining technique, extracting important features,
such as the resistance and phase parameters of EIM, and body information, and using
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two machine learning algorithms, namely RR and SVR, for estimating the total MoTM.
Their regression coefficient (r2) and RMSE all are better than previous studies. Thus, the
proposed method has the potential for screening skeletal muscle mass in non-medical
environments in the future.
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Abbreviations

EIM electronic impedance myography
RFE recursive feature elimination
RR ridge regression
SVR support vector regression
RMSE root-mean-square-error
CT computed tomography
MRI magnetic resonance imaging
DXA dual energy X-ray absorptiometry
EMG electromyography
IPG impedance plethysmography
EIM impedance myography
ALS amyotrophic lateral sclerosis
ML machine learning
MoTM total mass of thigh muscles
BMI body mass index
REF recursive feature elimination
GUI graphic user interface
RMS root mean square
R resistance
Z reactance
P phase
I impedance
ICC intraclass correlation coefficient
TC thigh circumference
CC calf circumference
RF rectus femoris
VL vastus lateralis
MF medial femoris
TA tibialis anterior
ST semitendinosus
BF biceps femoris
GT gastrocnemius
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SSE sum square error
r2 regression coefficient
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