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ABSTRACT Developing optimal T-cell response assays to severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) is critical for measuring the duration of
immunity to this disease and assessing the efficacy of vaccine candidates. These
assays need to target conserved regions of SARS-CoV-2 global variants and avoid
cross-reactivity to seasonal human coronaviruses. To contribute to this effort, we
employed an in silico immunoinformatics analysis pipeline to identify immunogenic
peptides resulting from conserved and highly networked regions with topological
importance from the SARS-CoV-2 nucleocapsid and spike proteins. A total of 57
highly networked T-cell epitopes that are conserved across geographic viral variants
were identified from these viral proteins, with a binding potential to diverse HLA al-
leles and 80 to 100% global population coverage. Importantly, 18 of these T-cell epi-
tope derived peptides had limited homology to seasonal human coronaviruses mak-
ing them promising candidates for SARS-CoV-2-specific T-cell immunity assays.
Moreover, two of the NC-derived peptides elicited effector/polyfunctional responses
of CD81 T cells derived from SARS-CoV-2 convalescent patients.

IMPORTANCE The development of specific and validated immunologic tools is critical
for understanding the level and duration of the cellular response induced by SARS-
CoV-2 infection and/or vaccines against this novel coronavirus disease. To contribute
to this effort, we employed an immunoinformatics analysis pipeline to define 57
SARS-CoV-2 immunogenic peptides within topologically important regions of the nu-
cleocapsid (NC) and spike (S) proteins that will be effective for detecting cellular
immune responses in 80 to 100% of the global population. Our immunoinformatics
analysis revealed that 18 of these peptides had limited homology to circulating sea-
sonal human coronaviruses and therefore are promising candidates for distinguish-
ing SARS-CoV-2-specific immune responses from pre-existing coronavirus immunity.
Importantly, CD81 T cells derived from SARS-CoV-2 survivors exhibited polyfunctional
effector responses to two novel NC-derived peptides identified as HLA-binders.
These studies provide a proof of concept that our immunoinformatics analysis pipe-
line identifies novel immunogens which can elicit polyfunctional SARS-CoV-2-specific
T-cell responses.
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As of October 2020, there are over 36 million known cases of COVID-19 worldwide,
which is caused by infection with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). In order to combat this pandemic, vaccines are rapidly being developed
to reduce the risk and spread of this infection (1–6). Recently, a clinical trial involving a
vaccine that contains the spike glycoprotein (S) of SARS-CoV-2 showed T-cell responses
were elicited at day 14 and antibodies against the virus at day 28 post-vaccination for
the majority of participants (7). However, the longitudinal assessment of the level and
duration of both T-cell immunity and antibodies elicited by this and other SARS-CoV-2
vaccines is required.

Previously, it has been shown that antibody levels wane with time in SARS-CoV-1
infection, while cellular immunity can last 6 to 11 years (8–13). Similarly, a recent study
of antibody levels revealed that 40% of asymptomatic and 13% of symptomatic
patients infected by SARS-CoV-2 became negative for immunoglobulin G eight weeks
post-recovery (14). Exposing T cells from recovered SARS-CoV-1 patients to peptides
derived from the S protein of this virus revealed that the induction of polyfunctional T
cells (T cells producing multiple effector cytokines) was higher in individuals with
severe SARS-CoV-1 infection than in those with moderate infection, indicating that the
level of T-cell response corresponds with the severity of this infection and time to re-
covery (15). A recent study in recovered COVID-19 patients revealed that even in the
absence of antibodies to SARS-CoV-2, a robust T-cell immune response was measured,
indicating the importance of T-cell immunity in response to COVID-19 (16). In particu-
lar, T-cell activation/exhaustion and lymphopenia were associated with severe disease,
whereas traditional effector functions of CD81 T cells were related to a better progno-
sis (17). Since the cellular responses during COVID-19 are complex, longitudinal assess-
ment of both CD41 and CD81 T-cell responses can inform how SARS-CoV-2 infection
and vaccines for this disease modulate immune functions over time.

DNA vaccines containing the S gene derived from SARS-CoV-1 and Middle East
Respiratory Syndrome (MERS)-CoV have been shown to induce T-cell responses in mice
and humans, respectively (18–20). In addition, SARS-CoV-1 nucleocapsid (NC) protein
has been shown to stimulate strong T-cell responses in monkeys and mice (21–25).
Similarly, specific NC-derived peptides have been shown to induce cellular response
from both CD41 and CD81 T-cell subsets derived from patients recovered from SARS-
CoV-1 and SARS-CoV-2 (16, 26–29). All current SARS-CoV-2 vaccines include the S pro-
tein and a robust T-cell immunity against NC-derived peptides can be detected in con-
valescent COVID-19 patients (1–6, 16, 26, 29). Therefore, identifying T-cell epitope
derived peptides within these two viral proteins will provide effective tools for meas-
uring T-cell responses in COVID-19 patients with different degrees of disease severity
and/or evaluating immunogenicity of vaccine candidates in clinical trials.

There are several challenges when developing immunogen peptides for the assess-
ment of SARS-CoV-2-specific T-cell immunity that can be applied globally. First, the
genetic profile of SARS-CoV-2 can be region specific, complicating the detection of the
T-cell immunity against global viral variants (30, 31). Second, SARS-CoV-2-reactive
CD41 T cells were identified in 40 to 60% of unexposed individuals, suggesting cross-
reactive T-cell recognition between the four circulating human coronaviruses (229E,
HKU1, NL63, and OC43) which cause the common cold and SARS-CoV-2 (32–34). Third,
human leukocyte antigen (HLA) alleles are extremely polymorphic with more than
18,000 HLA class I and 7,000 class II alleles currently reported (35). Keeping these three
points in mind, in order to measure SARS-CoV-2-specific T-cell immune responses, it
will be important to select SARS-CoV-2 peptide antigens for T-cell response tests that
reflect all global viral variants and are not cross-reactive with other human
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coronaviruses, rather than using complete libraries of overlapping peptides. In addi-
tion, selecting peptide antigens that can bind to diverse HLA alleles will be critical.

Importantly, recent research has highlighted the significance of regions within a
viral protein comprised of “highly networked” amino acids (36). These regions have
topological importance to tertiary and quaternary viral protein structure and are not
frequently mutated. In human immunodeficiency virus (HIV)-infected individuals
with diverse HLA class I alleles, targeting epitopes from these highly networked
regions with cytotoxic T cells provided virological control. Therefore, determining im-
munogenic peptides derived from highly networked regions of the SARS-CoV-2 pro-
teins will be a priority to ensure coverage of all emerging strains of SARS-CoV-2. In
addition, a combination of these immunogenic peptides will be superior to using
the whole viral spike protein when measuring T-cell responses in patients recov-
ered from COVID-19 since they will increase the sensitivity of the assay to world-
wide strains and will distinguish SARS-CoV-2-specific responses from cross-reactive
seasonal coronavirus responses. Moreover, the combination of these highly net-
worked T-cell epitope derived peptides has the potential to bind to diverse HLA
alleles.

In the present study, we applied an immunoinformatics analysis pipeline to define
immunodominant epitopes in currently circulating SARS-CoV-2 viral variants. These
epitopes are restricted to HLA class I and II molecules and selected from topologically
important regions of the NC and S proteins with the goal of identifying immunogenic
peptides that can contribute to the development of assays for SARS-CoV-2-specific T-
cell immunity in patients with different disease severity and after vaccination.

RESULTS
HLA class I restricted T-cell epitopes derived from SARS-CoV-2 nucleocapsid

and spike proteins.We defined 9-mer T-cell epitopes restricted to the HLA-A*02:01 al-
lele which are conserved across geographic SARS-CoV-2 variants. HLA-A*02:01 was
selected due to its worldwide prevalence (Fig. 1) (37). These epitopes matched .95%
of circulating SARS-CoV-2 variants globally (The Global Initiative on Sharing All
Influenza Data [GISAID], as of August 2020) (38–40). Employing our immunoinformatic
analysis pipeline, we then identified those epitopes from genetically conserved regions
which were comprised of amino acid residues with topological and spatial importance
within the NC and S proteins of SARS-CoV-2 (Fig. 2).

We computed the network and spatial importance of the T-cell epitopes within N-
terminal RNA binding and C-terminal dimerization domains modeled from the NC con-
sensus protein sequence (Fig. 2) (41, 42). We identified a total of six T-cell epitope
derived peptides (9-mer) from the highly networked and conserved regions of the NC

FIG 1 Global and regional HLA class I allele frequency. The data were curated from The Allele Frequency Net Database (www.allelefrequencies.net).
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protein (four from the N-terminal domain and two from the C-terminal domain;
Table 1 and Fig. 3a and b). Of note, together these six peptides can bind to multiple
HLA class I alleles which cover approximately 90% of the global population (Fig. 4a
and b). We also compared all six peptides from the NC protein with high network
scores and percent bind levels (i.e., a high binding capacity to HLAs) to the SARS-
CoV-2 epitopes identified within recent publications and the Immune Epitope
Database and Analysis Resource (IEDB) (Table 1 and Fig. 5) (16, 26, 29, 43, 44). We
found three unique T-cell epitope derived peptides which did not contain the full
complement of consecutive amino acid residues identified by these recent studies
and the IEDB (16, 26, 29, 43, 44).

For the N-terminal domain, we identified a total of four T-cell epitope derived
peptides that had high network scores above the acceptable threshold (Table 1 and
Fig. 3a). This indicates that these T-cell epitope derived peptides are found within the
core areas of the tertiary structure of the N-terminal domain. Also, these peptides
identified from the N-terminal domain had a binding capacity to the HLA-A*02:01
molecule above the 95th-percentile cutoff (bind levels, 95.2 to 96.6%; Table 1).
Moreover, three of these peptides had strong to moderate binding affinities to HLA

FIG 2 Immunoinformatics analysis pipeline. Immunoinformatics analysis pipeline used to identify highly networked SARS-CoV-2 T-cell epitope derived
peptides for HLA class I- and II-restricted immune responses.
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class I (half-maximal inhibitory concentration [IC50]) of 711 to 1,410 nM (Table 1).
However, only one of these T-cell epitope derived peptides (IIWVATEGA) was consid-
ered a promising immunogenic peptide since it reached our threshold of the top 5%
for the HLA class I antigen processing and presentation parameters (i.e., immunoge-
nicity prediction and peptide:HLA complex stability; Table 1). Of note, this peptide

TABLE 1 Highly networked 9-mer peptides with binding potential to HLA class I molecule (HLA-A*02:01)a

aHighlighted in red are the most promising T-cell epitope derived peptides for HLA class I-mediated immune recognition (i.e., those with top 5% scores for HLA class I
antigen processing and presentation parameters). *, This peptide has a high network score and a percent bind level above the 95th percentile; however, the IC50 is above
the cutoff IC50 for HLA-I binding. †, p:HLA, peptide and HLA-A*02:01 complex; ††, p:HLA t1/2, predicted time required for the dissociation of peptide:HLA complex.
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FIG 3 Genetically conserved 9-mer peptides with highly networked amino acid residues and restricted to HLA-A*02:01 allele. Network scores (blue bars),
predicted percent bind level to the HLA class I molecule (pink bars) and percent genetic variability across SARS-CoV-2 variants (gray bars) within the

(Continued on next page)
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selected by our immunoinformatics algorithm is unique and has not been identified
by recent studies (Fig. 5) (16, 26, 29, 43, 44).

For the C-terminal domain, we identified two T-cell epitope derived peptides
(ILLNKHIDA and RTATKAYNV) that comprised of highly networked amino acid residues
and high binding levels to the HLA class I molecule (Table 1 and Fig. 3b). Also, these
peptides reached our threshold of the top 5% for the predicted HLA class I antigen
processing and presentation parameters (i.e., the stability of the peptide:HLA complex;
Table 1), making them the most promising candidates for T-cell immunity assays from
the C-terminal domain. Taken together, three T-cell epitopes (IIWVATEGA, RTATKAYNV,
and ILLNKHIDA) among the peptide repertoire derived from the NC protein had the
most promising properties for HLA class I-restricted antigen presentation. For these
three highly networked T-cell epitope derived peptides selected from the NC protein,
we then assessed whether they could bind to additional HLA class I alleles other than
HLA-A*02:01 (Fig. 4a). Our analysis predicted that these peptides had binding capacity
for two to six additional HLA-A and HLA-B alleles which are classified into different HLA
class I supertypes (45). The peptides individually can cover approximately 41 to 55% of
the global population (Fig. 4b).

For the S protein, we found only 2.6% of the T-cell epitope derived peptides contain
highly networked amino acid residues with a binding potential to the HLA class I mole-
cule (29 of 1,112 9-mer peptides; Table 1 and Fig. 3c). Importantly, none of these pep-
tides were derived from the regions within the S protein which contain mutations
reported to enhance viral infectivity (Fig. 6) (30). In addition, the peptides had the
potential to bind to 23 additional HLA class I alleles which are classified into 10 super-
types (Fig. 4c) (45). These 29 peptides selected from the topologically important
regions of the S protein can cover up to 96% of the global population when combined
(Fig. 4d). A total of 12 of 29 T-cell epitope derived peptides selected by our immunoin-
formatics analysis pipeline contained consecutive amino acid residues which were
100% identical to the epitopes identified by other groups (Fig. 5) (16, 26, 29, 43, 44).

Of these 29 highly networked T-cell epitope derived peptides determined from the
S protein, we identified 22 peptides which reached the top 5% for the HLA class I anti-
gen processing and presentation parameters (Table 1). This indicates that the protein
regions comprised of these epitopes are the most promising sites for T-cell immune
recognition. However, we found that 10 of these 22 T-cell epitopes have been previ-
ously described by other groups (Table 1 and Fig. 5) (16, 26, 29, 43, 44). This immunoin-
formatics pipeline allowed us to identify 12 unique T-cell epitopes within the S protein
as promising for HLA class I restricted immune response.

Highly networked T-cell epitopes derived from the SARS-CoV-2 nucleocapsid
are correlated with HLA class I antigen processing and presentation parameters.
To compare whether the structural topology of T-cell epitopes correlates to the HLA
class I-related antigen processing and presentation, we determined the association
between the highly networked T-cell epitope derived peptides within the SARS-CoV-2
tertiary structures and the HLA class I-mediated immune restriction (Fig. 7). We found
the network scores for the T-cell epitope derived peptides from the NC, particularly the
N-terminal domain, were positively correlated with HLA class I antigen processing and
presentation parameters (P , 0.0001 to 0.282; Fig. 7a to f). In contrast, the highly net-
worked T-cell epitope derived peptides from the S protein were not associated with
these parameters (P=0.136 to 0.742; Fig. 7g to i). However, our immunoinformatics
analysis pipeline identified a subset of the 9-mer T-cell epitope derived peptides from

FIG 3 Legend (Continued)
peptide repertoires derived from SARS-CoV-2 NC N-terminal RNA binding domain (a), the NC C-terminal dimerization domain (b), and the S protein (c) are
shown. For the S protein, the 9-mers with the network score of at least 100 and the bind level of at least 95% are shown among the repertoire of 1112
peptides. All the network scores presented in this figure are normalized. The thresholds for network scores (blue line) are determined by the lower 95%
confidence of the mean. The cutoffs for the percent bind level (red line) equates to the 95th percentile. The peptides with the network scores and percent
bind level above the cutoffs and those which are conserved (i.e., 0% genetic variability) across the SARS-CoV-2 isolates are highlighted in red.
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the S protein which were promising for HLA class I-restricted immune response (n=22,
Table 1).

HLA class II-restricted T-cell epitopes derived from SARS-CoV-2 nucleocapsid
and spike proteins. To define T-cell epitopes restricted to DRB1*07:01, HLA class II allele,
we used the same immunoinformatics analysis pipeline mentioned above incorporating

FIG 4 Binding prediction of highly networked T-cell epitope derived peptides to additional HLA class I alleles and global population coverage. (a and c)
Binding predictions of highly networked T-cell epitope derived peptides identified from the SARS-CoV-2 NC (a) and S protein (c). The binding predictions
for 9-mer T-cell epitope derived peptides to HLA-A and HLA-B alleles are classified into 10 supertypes (a and c). The peptides with top 5% bind levels to
each of these additional HLA class I alleles are indicated as squares. The supertypes are indicated by different colors, as shown in the figure. (b and d)
Percent global population coverage of highly networked T-cell epitope derived peptides identified from the NC (b) and S protein (d). The most promising
T-cell epitope derived peptides for HLA class I-mediated immune recognition are highlighted in red.

Lee et al. Journal of Virology

March 2021 Volume 95 Issue 6 e02002-20 jvi.asm.org 8

https://jvi.asm.org


HLA class II binding prediction (36, 46, 47). This HLA class II allele was selected due its
worldwide prevalence (Fig. 8) (37). The HLA class II molecules frequently accommodate
peptides between 13 and 17 amino acids in length (48, 49). However, we focused on the
peptide repertoire composed of 12 amino acid residues as this particular length is sub-
stantially associated with high binding affinity to HLA class II molecules (50). Of note, the
T-cell epitope derived peptides that we identified match .95% of circulating SARS-CoV-2
variants globally (GISAID as of August 2020) (38–40).

From a repertoire of 120 peptides derived from T-cell epitopes of the N-terminal do-
main of NC, we found five promising peptides which contained highly networked
amino acid residues (network score range of 26.4 to 41.7, threshold of 24.6; Table 2
and Fig. 9a). These five peptides had high binding potentials to the HLA class II mole-
cule (bind levels of 91 to 95%; and IC50 of 188 to 325 nM). In addition, these peptides
scored within the top 5% bind level to 18 additional HLA class II alleles classified into
two to four HLA-II loci (Fig. 10a) (51). Individually, these five peptides are predicted to
cover approximately 80% of the global population (Fig. 10b). When all of the five pep-
tides were combined, a global population coverage of 95% was predicted. Of these
peptides derived from the highly networked regions of the NC N-terminal domain,
three were found within the same B cell epitope (Table 2). Of note, only two of the five
peptides derived from the NC N-terminal domain contained the full complement of
consecutive amino acid residues identified by other studies (Fig. 11) (16, 26, 29, 43, 44).
In contrast, none of the peptides derived from the C-terminal domain of the NC scored
above the thresholds for both the protein network score and the percent bind level
(Fig. 9b).

Of 1,109 peptides derived from the S protein, we found 27 HLA class II-restricted T-
cell epitope derived peptides with high network scores (Table 2 and Fig. 9c). These
peptides had percent bind levels above the cutoff, as well as predicted IC50 values of
55.3 to 162.6 nM, making these peptides promising candidates for T-cell immunity

FIG 5 Sequence comparison between highly networked T-cell epitope derived peptides identified by immunoinformatics analysis pipeline and other
studies (9-mers). The highly networked T-cell epitope derived peptides (9-mers) were compared to the epitopes identified by Le Bert et al. (26) (gray),
Grifoni et al. (43) (sky blue), Shomuradova et al. (44) (pink), Sekine et al. (16) (orange), and Peng et al. (29) (green). The highly networked T-cell epitopes
which are most promising (i.e., those with top 5% scores for HLA class I-mediated antigen processing and immunogenicity parameters), unique, or both are
indicated by blue rectangles in the figure. Also, the most promising peptides for HLA class I-restricted immune response with ,20% homology to four
seasonal coronaviruses are indicated by blue rectangles.
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assays. Importantly, none of these peptides were derived from the regions within the S
protein which contain mutations that have the potential to enhance viral infectivity
(Fig. 6) (30). Also, we found that these peptides can bind to 24 additional HLA class II
alleles classified into four loci (Fig. 10c) (51). When all peptides are combined, approxi-
mately 100% global population coverage is predicted (Fig. 10d). Of these peptides, six
were found in two B cell epitopes (Table 2). Moreover, we found a total of eight which
were 100% identical to the epitopes identified by other studies (Table 2 and Fig. 11)
(16, 26, 29, 43, 44). This immunoinformatics analysis pipeline allowed us to identify 19
new T-cell epitopes within the S protein as promising immunogenic peptides for the
assays that detect T-cell immunity against SARS-CoV-2.

Identification of highly networked T-cell epitope derived peptides within SARS-
CoV-2 NC and S proteins with low homology to seasonal human coronaviruses. To
identify SARS-CoV-2 peptide antigens that can be used to assess COVID-19-specific T-
cell responses and differentiate from cross-reactive seasonal coronavirus immunity, we
compared the highly networked SARS-CoV-2 T-cell epitope derived peptides to four
seasonal human coronaviruses (229E, HKU1, NL63, and OC43) (32–34).

FIG 6 Comparison between highly networked T-cell epitope derived peptides identified from SARS-CoV-2 S protein and mutation sites that enhance viral
infectivity. The highly networked T-cell epitope derived peptides are mapped to the consensus S protein sequence with 14 mutation sites that enhance
viral infectivity. The mutation sites have been identified by Korber et al. (30).
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For the highly networked T-cell epitope derived peptides identified within the NC
protein, the most promising peptides for HLA class I (9-mers, n=3) and HLA class II
(12-mers, n=5) had 0 to 56% homology to four human coronaviruses (Fig. 12). Of the
three peptides restricted to HLA class I immune response, ILLNKHIDA had no homol-
ogy to any of the seasonal human coronaviruses (Fig. 12a to d). In addition, all of the
highly promising peptides restricted to HLA class II immune response had homology
of,20% compared to two seasonal coronaviruses (HKU1 and OC43; Fig. 12e to h).

The highly networked T-cell epitope derived peptides identified from the S pro-
tein that were most promising for HLA class I (9-mers, n= 22) and class II (12-mers,
n= 27) had 0% to 78% homology to the four seasonal coronaviruses (Fig. 12). Of
note, three of the 9-mer peptides (SIIAYTMSL, VTWFHAIHV, and VTWFHAIHV) and
14 of the 12-mer peptides showed low homology to all four human coronaviruses

FIG 7 Correlation between network scores and predictions for HLA class I-mediated antigen processing and presentation. The correlations between the
normalized network scores and the predictions for proteasomal processing (a, d, and g), TAP binding (b, e, and h), and HLA class I-mediated
immunogenicity (c, f, and i) are shown. The data includes 123 peptides derived from the NC N-terminal domain (a to c), 110 peptides derived from the NC
C-terminal domain (d to f), and 1,112 peptides from the S protein (g to i). The R2 value indicates the degree of the peptide repertoire that follow linear
regression and the coefficient indicates the slope of the regression. The 95% confidence intervals (in square brackets), and the P value for the coefficient
are also presented.
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(Fig. 12). Furthermore, a majority of 9- and 12-mer peptides had ,20% homology
compared to seasonal coronaviruses 229E and NL63.

Although the degree of homology between the highly networked T-cell epitope
derived peptides and the four seasonal human coronaviruses is different, our immu-
noinformatics analysis pipeline allowed us to identify 18 peptides which were highly
specific to SARS-CoV-2 (Fig. 5 and 11). Of these, we identified 11 T-cell epitope derived
peptides that were unique and highly promising for HLA class I- and II-restricted
immune responses that are SARS-CoV-2 specific (16, 26, 29, 43, 44).

Highly networked T-cell epitope derived peptides bind to the HLA-A*02molecules
as predicted. To assess whether our binding prediction is accurate for the highly net-
worked T-cell epitope derived peptides, we selected the two most promising T-cell epi-
tope derived peptides from the NC protein based on their HLA-I binding. In addition,
these peptides were selected based on their predicted scores for the HLA class I antigen
processing and presentation parameters. The peptide from the N-terminal region was
selected for the in vitro binding validation as it had the highest bind level and the lon-
gest predicted time required for the peptide-HLA complex to dissociate (IIWVATEGA;
Table 1). Also, this T-cell epitope derived peptide has not been identified by recent stud-
ies (Fig. 5) (16, 26, 29, 43, 44). The peptide from the C-terminal region was chosen since
it scored the highest values for three of the four HLA class I antigen processing and pre-
sentation parameters (RTATKAYNV; Table 1). The ability of these peptides to bind to
HLA-A*02:01 in vitro was assessed using a human-derived TAP-deficient T2 cell line (T2
cells) expressing HLA-A*02:01 on the cell surface (52, 53).

These highly networked NC-derived peptides were able to bind and stabilize the
HLA-A*02 molecules on the surface of the T2 cells (Fig. 13). The mean fluorescence in-
tensity of the peptide:HLA-A*02 detection exceeded the non-HLA-A*02 binding control
(i.e., negative control) across a series of peptide concentrations. In particular, the bind-
ing of the peptide from the NC N-terminal domain to these HLA-A*02 molecules
(IIWVATEGA) was similar to the positive control EBV peptide across all concentrations
(Fig. 13b).

Effector and polyfunctional response of CD8+ T cells to highly networked T-cell
epitope derived peptides. There is growing evidence for the importance of CD81 T
cells in control of SARS-CoV-2 disease severity (17). Therefore, we focused on testing
the two HLA-A*02 restricted T-cell epitope derived peptides. The immunogenicity of
these highly networked peptides selected from the NC protein (IIWVATEGA and
RTATKAYNV) was tested in peripheral blood mononuclear cells (PBMCs) obtained from
participants 1 to 2months after recovery from SARS-CoV-2 infection (Table 3). When
the PBMCs from two convalescent participants who were HLA-A*02 positive were
stimulated by the peptides, we observed a robust production of interleukin-2 (IL-2),

FIG 8 Global and regional HLA class II allele frequency. The data were curated from The Allele Frequency Net Database (www.allelefrequencies.net).
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interferon gamma (IFN-g), tumor necrosis factor-alpha (TNF-a) and a marker for the
degranulation of CD81 T cells (CD107a/b) (Fig. 14). This effector response was specific
for HLA-A*02 (HLA-A*02:01 and HLA-A*02:06) as no such effector response was
observed in the HLA-A*02-negative donor (HLA-A*24:02) (Table 3, Fig. 4a, and Fig. 14a
and c). Of note, 28 to 62% of the responding CD81 T cells were polyfunctional exhibit-
ing four effector functions simultaneously (Fig. 14b and d).

DISCUSSION

In order to accelerate the development of a diagnostic assay that can measure T-cell
immune responses against global SARS-CoV-2 strains, we identified specific T-cell epi-
topes which are conserved across circulating viral variants from six global regions. In

TABLE 2 Highly networked 12-mer peptides with binding potential to HLA class II molecule (DRB1*07:01)a

aHighlighted in red are most promising T-cell epitope derived peptides for HLA class II-mediated immune recognition (i.e., those with network scores and percent bind
level above the thresholds). *, B cell epitopes predicted by BepiPred Linear Epitope prediction 2.0. The consecutive amino acid residues within the B cell epitopes that are
identical to the T-cell epitope derived peptides (highlighted in red).
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FIG 9 Genetically conserved 12-mer peptides with highly networked amino acid residues and restricted to DRB1*07:01 allele. Network scores (blue bars),
the predicted percent bind level to the HLA class II molecule (pink bars), and the percent genetic variability across SARS-CoV-2 variants (gray bars) within

(Continued on next page)
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particular, these epitopes contained amino acid residues that are highly networked indi-
cating their topological importance within the NC and S proteins of the virus (36, 46, 54).
By performing an immunoinformatics analysis, we defined 57 T-cell epitopes within the
SARS-CoV-2 proteins, of which 11 were unique and non-cross-reactive to seasonal
human coronaviruses, that should be considered for detecting a combined SARS-
CoV-2-specific CD4/CD8 T-cell immune response (16, 26, 29, 43, 44). Importantly,
these highly networked T-cell epitope derived peptides were identified from the
regions that lack mutations reported to enhance viral infectivity (30). In addition,
we assessed key antigen processing and presentation parameters to further delin-
eate the T-cell epitopes which are most likely to induce an HLA class I-mediated
immune response. In conducting this study, we selected the T-cell epitopes restricted to
the HLA-A*02:01 and DRB1*07:01 alleles based on their global frequencies. Furthermore,
we validated in vitro the binding of two HLA-A*02-specific T-cell epitope derived pep-
tides from the highly networked regions of the NC protein to the T2 cell line expressing
HLA-A*02:01 molecules. Also, we assessed the HLA class I mediated CD81 T-cell immune
response to these peptides by using PBMCs obtained from two SARS-CoV-2 patients 1 to
2months postrecovery.

The NC and S structural proteins are highly homologous between the viruses from
the Coronaviridae family due to their importance for viral replication (55–58). A recent
study identified a number of T-cell epitopes that are conserved between SARS-CoV-1
and -2 (43). Among the approximately 600 SARS-CoV-2 protein sequences derived
from six global regions, we identified highly networked T-cell epitopes that matched
more than 95% of the circulating SARS-CoV-2 variants (38–40). This allowed us to select
the T-cell epitopes for further analysis with the potential for a universal tool that can
detect T-cell responses to worldwide strains of SARS-CoV-2. In addition, these T-cell
epitopes are identified from the topologically important sites where molecular interac-
tions between amino acid residues are critical for maintaining the structure and func-
tion of the viral proteins; and therefore, these sites are not frequently mutated (36,
59–61). Since these sites are mostly found in the core of the proteins, the highly net-
worked T-cell epitopes selected from these regions are most likely to be protected
from proteasomal and lysosomal degradation pathways that shape the T-cell epitope
repertoire (62–64).

Currently, a total of 14 mutations have been reported within S protein sequences
(30). These mutations define important SARS-CoV-2 clades currently reported in
GISAID. Some of these have been predicted to enhance viral infectivity of target cells
expressing angiotensin-converting enzyme 2 (ACE2) (30). Most of these mutations are
found within subunit 1 of the spike protein where the receptor binding domain (RBD)
is located. Also, these mutations define region specific SARS-CoV-2 clades. As our
immunoinformatics analysis pipeline selects T-cell epitope derived peptides with high
network scores that avoids these mutations, these peptides will detect T-cell immunity
regardless of SARS-CoV-2 clade.

By applying our immunoinformatics analysis, we found the T-cell epitopes derived
from topologically important regions of the NC (high network scores) correlate with
the HLA class I antigen processing and presentation parameters. This indicates the
peptides from the NC are likely to induce HLA class I restricted CD81 T-cell response
(26, 29, 33). In agreement with this correlation, we observed effector and polyfunc-
tional responses from the CD81 T cells of two SARS-CoV-2 convalescent participants to
two peptides from the NC protein. This suggests that our immunoinformatics analysis
pipeline identifies immunodominant regions within the SARS-CoV-2 NC protein.

FIG 9 Legend (Continued)
the peptide repertoires derived from the SARS-CoV-2 NC N-terminal RNA binding domain (a), the NC C-terminal dimerization domain (b), and the S protein
(c) are shown. For the S protein, the 12-mers with the network score of at least 100, and a bind level of at least 95% are shown among the repertoire of
1,112 peptides. All the network scores presented in this figure are normalized. The thresholds for network scores (blue line) are determined by the lower
95% confidence of the mean. The cutoffs for the percent bind level (red line) equates to the 95th percentile. The peptides with the network scores and
percent bind level above the cutoffs and those which are conserved (i.e., 0% genetic variability) across the SARS-CoV-2 isolates are highlighted in red.
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Recent phase I immunogenicity and safety trials of vaccine candidates encoding for
the S protein have been shown to induce neutralizing antibodies and IFN-g T-cell
response to SARS-CoV-2 (2–4, 6, 65). However, the polyfunctionality of this T-cell
response is unknown. Also, it has been shown that the mRNA vaccine encoding spike-
RBD induces primarily CD41 Th1-type response (2). Whether these SARS-CoV-2 vac-
cines induce polyfunctional CD81 T cells is unclear. This prompted us to identify T-cell
epitopes restricted to the HLA class I and II alleles within the S protein of SARS-CoV-2

FIG 10 Binding prediction of highly networked T-cell epitope derived peptides to additional HLA class II alleles and global population coverage. (a and c)
The binding prediction of highly networked T-cell epitope derived peptides identified from the SARS-CoV-2 NC (a) and S protein (c). The binding prediction
of 12-mer T-cell epitope derived peptides to HLA class II alleles are classified into four loci. The peptides with the top 5% bind levels to each of these
additional HLA class II alleles are indicated as squares. The loci are indicated by different colors, as shown in the figure. (b and d) Percent global
population coverage of highly networked T-cell epitope derived peptides identified from the NC (b) and the S protein (d). The most promising T-cell
epitope derived peptides for HLA class II-mediated immune recognition are highlighted in red.
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that can be used to detect polyfunctional T-cell responses. For the S protein, we found
22 T-cell epitope derived peptides most promising for HLA class I restricted immune
response despite the lack of correlation between network scores and HLA class I anti-
gen processing and presentation parameters. In addition, the 12-mer peptides derived
from the epitopes within the S protein are predicted to bind to HLA class II alleles and
could stimulate CD41 T-cell response (29, 33). In particular, six of these 12-mer pep-
tides were sequestered in two B-cell epitopes, suggesting their importance when
assessing CD41 T-cell response against SARS-CoV-2. In the future, we will validate the
CD4 immune response to these 12-mer peptides using the PBMCs obtained from
SARS-CoV-2 convalescent participants.

A recent study by Moderbacher et al. has shown that COVID-19 disease severity is
associated with delayed and/or limited SARS-CoV-2-specific CD41 and CD81 T-cell
responses during acute infection (66). In contrast, less severe disease is strongly related
to a higher proportion of effector CD81 T cells that can produce IFN-g, an important
antiviral cytokine in mucosal sites (66, 67). However, a longitudinal assessment of
SARS-CoV-2-specific T-cell immunity during both the acute and the chronic phases of
COVID-19 can further delineate the cellular immune response against SARS-CoV-2 and
its association with disease severity. In particular, employing the NC and S protein-
derived immunogenic peptides that have low homology to seasonal human coronaviruses
will allow for the detection of cellular immune responses that are absolutely specific to
SARS-CoV-2. Importantly, the highly networked and conserved SARS-CoV-2-specific immu-
nogenic peptides defined from the NC and S protein sequences derived from global viral
variants can contribute to this longitudinal assessment of T-cell immunity.

The T-cell epitope derived peptides defined by our immunoinformatics analysis
pipeline can also contribute to the development of a “second-generation” vaccine that
aims to stimulate combined CD4/CD8 T-cell immune responses (18, 68). The levels of
SARS-CoV-2 neutralization antibodies alone do not determine protection against the
virus (66). Rather, a coordinated approach that can mount both the virus-specific anti-
bodies and CD4/CD8 immune responses will be effective against SARS-CoV-2 (9, 66, 69,

FIG 11 Sequence comparison between highly networked T-cell epitope derived peptides identified by immunoinformatics analysis pipeline and other
studies (12-mers). The highly networked T-cell epitope derived peptides (12-mers) were compared to the epitopes identified by Le Bert et al. (26) (gray),
Grifoni et al. (43) (sky blue), Shomuradova et al. (44) (pink), Sekine et al. (16) (orange), and Peng et al. (29) (green). The highly networked T-cell epitopes
which are most promising (i.e., those with network scores and percent bind level above the thresholds), unique, or both are indicated by blue rectangles in
the figure. Also, the most promising peptides for an HLA class II-restricted immune response with ,20% homology to four seasonal coronaviruses are
indicated by blue rectangles.
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FIG 12 Sequence homology of highly networked T-cell epitope derived peptides identified from SARS-CoV-2 NC and S proteins to seasonal human
coronaviruses. The homology between the T-cell epitope derived peptides (a to d, 9-mers; e to h, 12-mers) and four seasonal human coronaviruses (229E,
HKU1, NL63, and OC43) is presented as the mean sequence identity (%) and the corresponding 95% confidence intervals. The most promising T-cell
epitope derived peptides for HLA class I- and II-mediated immune recognition are highlighted in red.
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70). Therefore, the immunogenic peptides selected from the highly networked and
conserved T-cell epitopes within the NC and S proteins via our analysis pipeline could
be considered as vaccine candidates to elicit CD4/CD8 T-cell immune responses
against SARS-CoV-2.

There are several limitations to our study. First, our immunoinformatics analysis
pipeline was applied to two specific HLA alleles. However, we identified highly net-
worked T-cell epitopes derived from the NC and S proteins that are predicted to bind
to 18 to 24 additional HLA class I and II alleles classified into multiple HLA supertypes/
loci. Importantly, these can cover approximately 80 to 100% of the global population,
indicating that these peptides can be used internationally for the T-cell immunity
detection assays. Second, the protein homology modeling of the NC N-terminal RNA
binding domain was based on the SARS-CoV (41). However, this SARS-CoV protein do-
main was the best predicted template when performing our analysis (41, 71–73). Third,
even though we only assessed 12-mer peptides for the HLA class II allele, a previous

FIG 13 In vitro validation of SARS-CoV-2 NC peptides binding to HLA-A*02:01 by using T2 cells. T-cell epitope derived peptides
identified from the N- and C-terminal domains of the SARS-CoV-2 NC protein were used to assess the binding capacity
(RTATKAYNV and IIWVATEGA). HLA-A*02:01 expression on the cell surface was measured as gMFI by flow cytometry.
NLVPMAVATV (HLA-A*02 binding) and TPRVTGGGAM (HLA-A*02 nonbinding) peptides from CMV pp65 were used as positive and
negative controls. (a) Histograms from a representative experiment. (b) HLA-A*02:01 expression expressed relative to the no-
peptide control. (n= 2).

TABLE 3 Participant demographics

Participant

HLA class I

Gender
Age
(yr)

Date
diagnosed

COVID-19
severity

Time after
SARS-CoV-2
recovery (mo)

Highly
networked
T-cell epitopea

SARS-CoV-2
protein sourcebSupertype Allele(s)

CVBL06A HLA-A*02
positive

HLA-A*02:06
HLA-A*24:02

Female 60 26 Mar
2020

NA 1 RTATKAYNV NC C-terminal
domain

CVBL10B HLA-A*02
positive

HLA-A*02:01
HLA-A*03:01

Male 61 28 Mar
2020

NA 2 IIWVATEGA NC N-terminal
domain

CVBL05A HLA-A*02
negative

HLA-A*24:02 Female 66 5 Apr 2020 Hospitalized 1 RTATKAYNV NC C-terminal
domain

HLA-A*24:07 IIWVATEGA NC N-terminal
domain

aDerived peptides tested in ex vivo PBMCs.
bFor the highly networked T-cell epitope derived peptides.
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FIG 14 CD81 T-cell polyfunctionality analysis after ex vivo expansion with specific SARS CoV-2 peptides derived
from the SARS-CoV-2 NC. (a and c) Representative dot plots showing effector cytokine production and
degranulation level of CD81 T cells stimulated with RTATKAYNV (a) and IIWVATEGA (c) peptides. The CD81 T
cells were derived from two HLA-A*02-positive SARS-CoV-2 convalescent donors. PBMCs from an HLA-A*02-
negative SARS-CoV-2 convalescent donor were used as a negative control. The clinical samples were obtained
at 1 to 2months after SARS-CoV-2 recovery. (b and d) Bar charts represent the effector profiles of RTATKAYNV
(b)- and IIWVATEGA (d)-specific CD81 T cells. PBMCs expanded with EBV peptides were used as positive
control. Pies depict the distribution of mono-, bi-, tri-, and tetrafunctional cells within specific CD81 T cells.
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study has shown that this length can accurately predict the binding to HLA class II mol-
ecules (50). Of note, longer peptides which are frequently presented by the HLA class II
molecules should include the 12-mer peptides that we identified as being highly net-
worked (51, 74). Lastly, all of the promising T-cell epitope-based peptides identified by
our immunoinformatics analysis pipeline require in vitro and ex vivo assessments to
determine whether they induce T-cell responses during and after SARS-CoV-2 infection
(9, 15). However, our interim in vitro validation showed that our immunoinformatics
analysis pipeline has identified two T-cell epitope derived peptides from the NC pro-
tein that can stably bind to the HLA-A*02 molecules. Furthermore, the CD81 T cells
derived from the SARS-CoV-2 survivors exhibited polyfunctional effector responses to
these peptides, which have not been previously identified as promising epitopes for T-
cell-mediated immune response by recent studies (16, 26, 29, 43, 44). These in vitro
and ex vivo cellular binding and response studies provide proof of concept that our
immunoinformatics analysis pipeline identifies novel T-cell epitopes which can elicit a
SARS-CoV-2-specific T-cell response which was polyfunctional. Our future studies will
assess T-cell-mediated responses to all of the highly networked T-cell epitope derived
peptides identified by our immunoinformatics analysis pipeline. Of note, as the
selected peptides are identified within the core of the viral proteins, a subset of them
have the potential to be hydrophobic which affects peptide-synthesis. This issue can
be overcome by extending the length of the T-cell epitope derived peptides so that
they include hydrophilic amino acid residues.

In conclusion, the application of an immunoinformatics analysis pipeline allowed us
to identify 57 highly networked T-cell epitopes, of which 11 were unique and non-
cross-reactive to seasonal human coronaviruses, from the NC and S proteins which are
promising immunogenic peptides for detecting HLA class I- or II-related immune
response. Of these peptides, two novel T-cell epitopes from the NC can stably bind to
HLA class I molecules and induce polyfunctional effector CD81 T-cell responses. Our
findings indicate that our immunoinformatics analysis pipeline can contribute to the
development of assays that detect polyfunctional and SARS-CoV-2-specific T-cell
responses against diverse SARS-CoV-2 viral strains, distinct from pre-existing seasonal
coronavirus immunity. The T-cell immunity assay using our peptides have the potential
to detect T-cell immune responses elicited by diverse HLA polymorphisms.

MATERIALS ANDMETHODS
Study approval. This study was carried out in accordance with the recommendations of the institu-

tional review board at the Western Sydney Department for the Westmead Institute for Medical research
(WSLH HREC 2020/ETH0084 and 2020/STE01476). The protocol was approved by this committee. All par-
ticipants provided written informed consent prior to inclusion in the study.

Global and regional distribution of HLA class I and II alleles. An understanding of the worldwide
distribution of HLA class I and HLA class II alleles is important when selecting immunodominant epi-
topes for vaccine candidates against the SARS-CoV-2 global pandemic. Currently, there are more than
18,000 HLA class I and 7,000 class II alleles reported (35). Therefore, we determined the five most preva-
lent HLA class I and HLA class II alleles worldwide by data curation from The Allele Frequency Net
Database (www.allelefrequencies.net) (37). This allowed us to select the dominant HLA-I A*02:01 (HLA-
A*02:01) and HLA-II DRB1*07:01 (DRB1*07:01) alleles for inclusion in our immunoinformatics analyses
(Fig. 1 and 8). The global frequencies of these alleles are 20 and 12%, respectively. Since the most
severely affected regions for SARS-CoV-2 infection are found in Europe and the Americas (75), we
applied in silico immunoinformatics analysis to identify T-cell epitopes within the NC and S protein
sequences which are effective for HLA-A*02:01- and DRB1*07:01-mediated antigen restriction (Fig. 2).

Genetic variability of circulating SARS-CoV-2. A universal vaccine targeting different strains of co-
ronavirus is also desirable as new viral strains can emerge from animal-to-human transmission and
region-specific genetic diversification. To identify genetically conserved T-cell epitopes for possible vac-
cine development, we examined the genomic diversity of circulating SARS-CoV-2 isolates from six global
regions. Whole-genome sequences (WGS) from NSW, Australia (n= 15) (76) were combined with local
and global references available from GISAID (https://www.gisaid.org/) (39, 40). As of March 2020, we
obtained a total of 607 SARS-CoV-2 genomic sequences from GISAID and aligned them using MAFFT
(77). These sequences contained representatives from all major lineages (https://github.com/hCoV
-2019/pangolin). The regions encoding the nucleocapsid (NC) and Spike (S) protein sequences were
translated and extracted with ambiguous positions removed. The resulting alignments contained 586
and 567 sequences for the NC and S proteins, respectively. These NC and S protein alignments
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represented data from Asia (n= 178), Europe (n= 238), North America (n=137), South America (n= 10),
Africa (n= 1), and Oceania (n=39).

A sliding window approach was used to identify all possible 9- and 12-mer peptides derived from
the consensus sequences of the N- and C-terminal domains of the NC and the S protein. The percent
identity of each amino acid within these 9- and 12-mer peptides was calculated using the Geneious ver-
sion 8.1.9 (78). From this value the genetic variability of each peptide was then determined (100% iden-
tity). The peptides with 0% genetic variability were selected for further immunoinformatics analysis (Fig.
2, 3, and 9). We also compared our T-cell epitope derived peptides to the sequences of SARS-CoV-2 cir-
culating variants listed in the GISAID as of August 2020 (39, 40).

Protein structure homology modeling of SARS-CoV-2 NC and S proteins. We modeled three-
dimensional structures of the NC and S consensus protein sequences derived from the alignments by
using SWIMSS-MODEL (https://swissmodel.expasy.org/) (Fig. 2) (71–73). Using homology-structure mod-
eling, we predicted the N-terminal RNA binding domain of the NC protein structure by using SARS-CoV
nucleocapsid template (PDB 1SSK, STML ID 1SSK.1.A) as this was the accurate template for this region
(41). For the C-terminal dimerization of the NC protein, the protein structure was modeled by using
SARS-CoV-2 coronavirus as a template (PDB 7C22, STML ID 7C22.1.B) (42). We performed automated
structure homology-modeling on the S consensus protein sequence by using chain A of SARS-CoV-2
spike protein as the template (S protein: PDB 6VSB.1; STML ID 6VSB.1.A) (73). As the part of this protein
modeling, all protein regions were investigated for their genetic identity to SARS coronavirus and other
organisms. We only used the protein regions that were related to SARS coronavirus to define T-cell
epitopes.

Identifying highly networked epitopes within the NC and S proteins. To identify suitable T-cell
epitopes as targets for the T-cell immunity assay, we used an immunoinformatics pipeline that combines
protein structure-based network analysis and sequence-based HLA class I and II binding prediction
within the nonvariable NC and S regions of SAR-CoV-2 (Fig. 2) (36, 46, 47, 54). We used the Network
Analysis of Protein Structures (NAPS) program (http://bioinf.iiit.ac.in/NAPS) (79) to quantify structural
and spatial importance of each amino acid residue within the tertiary structure models of the N- and C-
terminal domains of nucleocapsid and S protein (Fig. 2). We combined networks defined by geometric
center (“atom pair contact”) and center of mass (“centroid”) for each amino acid residue within the
SARS-CoV-2 protein model (79, 80). The “atom pair contact network” describes physicochemical interac-
tions between an atom-pair within an amino acid residue and the “centroid network” defines the con-
nectivity between center of mass of any two amino acid residues within a protein structure (79, 80). We
also calculated the distance from the center of mass of each tertiary protein model to all amino acid resi-
dues presented in the protein structure by using CALCOM (http://bioinformatica.isa.cnr.it/CALCOM/
input.html) (81–83). This allowed us to quantify the spatial location of each amino acid residue with
respect to the center of the tertiary structure of each protein (81–83). We used a total of five parameters
derived from NAPS and CALCOM when calculating a network score for each amino acid residue within
each protein structure. These parameters are as follows: (i) number of direct neighbors of a geometric
center of an amino acid residue (DegreeAtom pair contact network); (ii) number of direct neighbors of a center
of mass of an amino acid residue (DegreeCentroid network); (iii) a ratio of the degree of interconnectivity:
(BetweenessCentroid network) calculated by (number of the shortest pathways between a particular amino
acid residue and its neighbors)/(the total number of the shortest pathways within the protein centroid
network) (Each pathway is weighted based on the distance between two amino acid residues); (iv) a cu-
mulative intermolecular strength of all neighboring amino acid residues connected to a geometric cen-
ter of a particular amino acid residue within the atom pair contact network (StrengthAtom pair contact network);
and (v) a distance from the center of mass to an amino acid residue within a protein structure (Distance).

By modifying the previously published equations (36), we determined a network score for each 9-
and 12-mer peptide derived from the N- and C-terminal domains of the NC and S proteins by using the
following equation below: network score for each amino acid residue = (DegreeAtom pair contact network 1
DegreeCentroid network)/4 1 (BetweenessCentroid network 1 StrengthAtom pair network)/2 – Distance. All proteins are
subjected to proteasomal and lysosomal degradation processes before generating peptide repertoires
for further HLA antigen presentation (62–64). To select the peptides which are protected from these
degradation pathways, our calculation weighted the position of the amino acids within a protein struc-
ture more than the connectivity between amino acid residues. For 9-mer or 12-mer peptides derived
from each viral protein, we summed the network scores for each amino acid residue and divided by the
corresponding length of the peptides. We then normalized the network scores by subtracting the lowest
value. In addition, we calculated the lower 95% confidence interval for mean of the normalized network
scores for each peptide length and tertiary protein model. The peptides with a normalized network
score above this 95% confidence interval were considered highly networked in this study. The peptides
comprised of highly networked amino acid residues within the NC and S proteins were compared across
the SAR-CoV-2 isolates available. The 95% confidence intervals for the mean of the normalized network
scores for each peptide length and tertiary protein model was computed by using STATA 15.1
(StataCorp, 2017; Stata Statistical Software, release 15 [StataCorp LLC, College Station, TX]) (84). The nor-
malized network scores for each peptide are presented in the main figures and tables.

The consensus sequences of NC-N-terminal, NC-C-terminal and S proteins, and peptide sequences (9- and
12-mers) are available on https://github.com/EunokLee/SARS-CoV-2_data_files_and_acknowledgements. Also,
the PDB files from the protein homology modeling can be downloaded from the same github link.

HLA class I or II binding affinity. (i) Percent bind level. Peptides representing the immunodomi-
nant epitopes with the best network scores were screened in silico for their HLA class I or II binding affin-
ity using NetMHCpan-4.0 and NetMHCIIpan-3.2, respectively (Fig. 2) (46, 54). These programs order
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peptides from the strongest binders to those which do not exhibit any binding capacity to an HLA mole-
cule by predicting their binding affinities (half-maximal inhibitory concentration [IC50]) (47). Based on
the IC50, the algorithm ranks the peptides from the strongest binder to weakest binder. For example,
those which are categorized as the top 2 to 10% bind rank are considered binders to HLA class I and II
molecules. For the data presentation in this study, we subtracted this percent rank from 100% and pre-
sented the resulting value as a percent bind level for each peptide. In other words, the binders to HLA
class I and II molecules have a high percent bind level whereas the nonbinders have a low percent bind
level. To standardize our selection method for the peptides with predicted binding capacity to HLA class
I and II molecules, we calculated the percent bind level that equates to the 95th-percentile threshold for
each peptide repertoire. This repertoire consists of 9- or 12-mer peptides derived from the NC N-terminal
domain, the NC C-terminal domain, or the S protein. This percentile method allowed us to select the
peptides with percent bind levels which are categorized into the top 5% bind level. The 95th percentile
was determined by a normal quantile plot (STATA 15.1; StataCorp, 2017) (85).

(ii) IC50 cutoff. The majority of T-cell epitopes have binding affinities lower than an IC50 of 5,000 nM
according to the IEDB MHC-I binding predictions (http://tools.iedb.org/mhci/). Therefore, we used the
IC50 of ,5,000 nM as the cutoff, in addition to our 95th-percentile bind level threshold, to determine the
peptides with binding potential to HLA class I and II molecules.

Additional HLA class I-related antigen processing and presentation prediction. By using IEDB
combined predictor (http://tools.iedb.org/processing/), we scored the 9-mer peptides derived from the
NC and S proteins that were most likely to be processed for HLA class I mediated antigen presentation
(Fig. 2) (86). The IEDB algorithm generates predicted proteasomal cleavage and transporter associated
with antigen processing (TAP) scores for individual peptides. High proteasomal cleavage and TAP scores
indicate efficient antigen presentation (87). Due to the arbitrary grading for these scores, we derived
proteasomal cleavage and TAP scores that equate to the 95th percentile for each 9-mer peptide reper-
toire derived from the NC N-terminal domain, the NC C-terminal domain, or the S protein. This allowed
us to select the peptides with HLA class I-related antigen processing scores which are categorized into
the top 5%.

To further delineate T-cell epitopes from the 9-mer peptide repertoire, we predicted HLA class I-
mediated antigenicity by using an IEDB analysis tool (http://tools.iedb.org/immunogenicity/) (Fig. 2)
(88). This analysis tool scores the immunogenicity by determining the positions and side chain proper-
ties of the amino acid residues within a peptide-HLA complex that binds to a T-cell receptor. We used
the default setting when performing the immunogenicity prediction. The peptides with high immuno-
genicity have high prediction scores. Therefore, we used the immunogenicity score that equates to the
95th percentile as the cutoff to identify the peptides with top 5% scores. In addition, we predicted the
stability of a complex formed by the peptide and HLA class I molecule (p:HLA) by using
NetMHCstabpan-1.0 (89). The predicted stability of p:HLA is reported as the time required for the pep-
tide to dissociate from the HLA class I molecule (p:HLA t1/2). The percentile cutoffs for HLA class I related
antigen processing and immunogenicity were determined by a normal quantile plot (STATA 15.1;
StataCorp, 2017) (85).

Selection of T-cell epitope derived peptides for HLA class I and II immune responses. The T-cell
epitopes selected as promising candidates that can contribute to the development of T-cell immunity
assays specific for SARS-CoV-2 had the following parameters: (i) a peptide genetic variability of 0%; (ii)
peptide network scores above the threshold (i.e., above lower 95% confidence interval); (iii) a percent
bind level to HLA-A*02:01 or DRB1*07:01 above the threshold (i.e., within the top 5%); (iv) IC50 of ,5,000
nM derived from HLA binding prediction algorithms; and (v) for HLA class I epitopes, at least one score
predicted for antigen processing and presentation reaching the top 5%.

Correlation of the network scores to the HLA class I antigen processing and presentation
parameters.We performed a correlation analysis between network scores and predictions for HLA class
I mediated antigen processing and presentation parameters (i.e., proteasomal processing score, TAP
score, and HLA-I immunogenicity). The correlation analysis was performed by using STATA 15.1. This
analysis was applied to peptide repertoires derived from the N- and C-terminal domains of NC and to
the S protein. We investigated the R2 values to determine the proportion of the peptide repertoire that
follows linear regression. Moreover, we determined the association between the network scores and the
HLA class I- related antigen processing and presentation parameters by the slopes of the regression.

Sequence comparison between SARS-CoV-2 T-cell epitope derived peptides and seasonal
human coronaviruses. To determine the homology between T-cell epitope derived peptides (Tables 1
and 2) and four seasonal human coronaviruses (hCoVs; 229E, HKU1, NL63, and OC43), we downloaded
all available nucleocapsid and spike glycoprotein sequences of these hCoVs from UniProt database
(https://www.uniprot.org/). These hCoV sequences (n= 1,353) were compared to the SARS-CoV-2 NC
and S protein sequences containing the highly networked T-cell epitope derived peptides by using
Geneious version 8.1.9. For the protein sequences derived from each hCoV strain and for each region
aligning with the SARS-CoV-2 T-cell epitope derived peptide, a mean percent genetic identity and its
95% confidence intervals were calculated by using STATA 15.1 (78, 85).

Assessing the binding capacity of the T-cell epitope derived peptides to multiple HLA class I
and II alleles and their worldwide population coverage. As we selected highly networked T-cell epi-
tope derived peptides based on the most prevalent HLA class I and II alleles (HLA-A*02:01 and
DRB1*07:01), we assessed whether these peptides can bind to additional HLA class I and II alleles by
using NetMHCpan-4.1 (90) and NetMHCIIpan-4.0 (91). For the 9-mer peptides, we predicted the binding
affinity to additional HLA-A and HLA-B alleles which are known to cover more than 97% of the global
population (92). For the 12-mer peptides, we predicted the binding affinity to additional HLA class II
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alleles which are known to cover more than 99% of the global population (93). For each of the 9- and
12-mer peptide repertoires derived from the NC and S protein sequences, we derived 95th-percentile
threshold of the percent bind level to each of the additional HLA class I and II alleles as described above.
This percentile method allowed us to determine the peptides with the top 5% percent bind levels to
each of these additional HLA alleles. The HLA class I alleles were categorized into 10 supertypes (45),
and the HLA class II alleles were grouped by four loci (51) (Fig. 2 and 6). For the global population cover-
age, we used the IEDB analysis tool called population coverage (http://tools.iedb.org/population/) (94).

B-cell epitope prediction. The consensus SARS-CoV-2 NC and S protein sequences were used to
predict B cell epitopes by applying an IEDB analysis tool (http://tools.iedb.org/bcell/). For this analysis,
BepiPred-2.0, Sequential B-cell epitope predictor that employs the epitopes determined from crystal pro-
tein structures (95). The sequential residues with the scores above the threshold of 0.5 were reported as
the B cell epitopes in this study.

Sequence comparison with other published SARS-CoV-2 T-cell epitopes. We compared the pep-
tides we detected with high network scores and percent bind level to the HLA class I and II molecules to
the T-cell epitopes published by recent studies (16, 26, 29, 43, 44). We aligned these peptide sequences
using Geneious version 8.1.9 to identify highly networked peptides which are 100% identical to those
recently published (78).

In vitro validation of HLA-binding capacity of T-cell epitope derived peptides. (i) Peptides. We
selected RTATKAYNV and IIWVATEGA from the SARS-CoV-2 NC 9-mer peptide repertoires for in vitro valida-
tion of HLA-binding capacity. These peptides were selected based on their network analysis, bind level,
and HLA class I-mediated antigen processing and presentation parameters. For a positive control, we
included an HLA-A*02:01 restricted peptide (NLVPMAVATV) derived from cytomegalovirus (CMV). This pos-
itive control peptide was derived from CMV glycoprotein 64, a virion tegument protein that is the main
component of the enveloped subviral particle (CMV-pp65). As a negative control, we included an HLA-
B*07- restricted peptide, TPRVTGGGAM, selected from the CMV-pp65. All peptides were synthesized from
Mimotopes, Australia, at .95% purity. The peptides were suspended in 10% dimethyl sulfoxide (DMSO)
and 90% water at a concentration of 10mM. The suspended peptides were stored at280°C until use.

(ii) T2 cell line. The HLA class I restriction of these peptides was tested by using nonadherent
human-derived T lymphoblastoid hybrid cell line (T2; 174 X CEM.T2; ATCC CRL-1992) (52, 53). This cell
line is TAP deficient, expressing empty HLA class I A*02 molecules on the cell surface. The cells were cul-
tured in RPMI 1640 (Lonza, BE12-702F) supplemented with 10% fetal bovine serum, referred to as RF10.
The binding capacity of the peptides to the HLA-A*02:01 molecules was tested when the T2 cells were
in the log phase of growth. The T2 cell line was kindly provided by Rajiv Khanna (QIMR Berghofer
Medical Research Institute, Queensland, Australia).

(iii) Hybridoma. Mouse BB7.2 (ATCC HB-82) hybridoma cells were used for producing the primary anti-
human HLA-A*02 antibody and for the staining of the HLA-A*02 molecules expressed on the T2 cell surface.
The hybridoma was maintained and cultured in RF10. For antibody collection, the cells were washed with
phosphate-buffered saline (PBS; Lonza, BE17-516F) and resuspended in AIM-V serum free media (Thermo
Fisher Scientific, catalog no. 12055091) at 106 cells/ml, followed by an incubation at 37°C for 2 days. The super-
natant was collected after the cells were pelleted by centrifugation at 300� g for 5 min and filtered through
0.45-mm syringe filter (Merck Millipore, Darmstadt, Germany). The supernatant was stored at 4°C until use.

(iv) HLA-peptide binding assay. The ability of synthetic peptides to stably bind to HLA-A*02:01
molecules on the cellular surface of the T2 cell line was assessed by flow cytometry as previously
described (96). Briefly, T2 cells (1� 105 cells in 100ml) were incubated for 1 h at 37°C in serum-free AIM-V
medium (Thermo Fisher Scientific, 12055091) in the presence of the peptides at the concentrations of
0mM (no peptide control), 1, 10, and 100mM. The cells were then incubated for 16 h at 26°C and
returned to 37°C for 2 h prior to immunofluorescent staining. The unbound peptides were removed by
using cold PBS. The anti-HLA-A*02-specific monoclonal antibody (i.e., BB7.2 supernatant) was added to
the T2 cells, followed by incubation at 4°C for 30 min. After being washed three times with cold PBS, the
cells were incubated with a goat secondary Alexa Fluor 647-labeled anti-mouse immunoglobulin-spe-
cific antibody (Life Technologies, A21236) at 4°C for 30 min. Finally, the cells were washed and resus-
pended in 200ml of cold PBS. The geometric mean of fluorescence intensity (gMFI) of the T2 cells were
then measured with a BD LSRFortessa flow cytometer (BD Biosciences). In this study, we reported the
gMFI relative to a no-peptide control.

Ex vivo evaluation of effector and polyfunctional CD8+ T-cell responses to the T-cell epitope
derived peptides. (i) Participants and clinical samples. Previously hospitalized SARS-CoV-2 convales-
cent patients were recruited from The Westmead Hospital in Westmead, NSW, Australia. For this study,
we included two HLA-A*02-positive participants and one HLA-A*02-negative participant (Table 3). At 1
to 2months after SARS-CoV-2 recovery, peripheral blood samples were collected from these participants
in citrate anticoagulant tubes and cryopreserved PBMCs were isolated within 1 h of venipuncture. The
PBMCs were isolated by Ficoll density gradient centrifugation. To determine the HLA for each donor,
PBMCs were stained using a phycoerythrin-labeled anti-human HLA-A*02 antibody (clone BB7.2; BD
Bioscience) for 30 min at 4°C, and the immunofluorescence was measured with a BD LSRFortessa flow
cytometer (BD Biosciences). Where possible, the PBMCs derived from the HLA-A*02 negative participant
were included as an experimental control.

(ii) Expansion of peptide-specific T cells. The PBMCs were thawed in RPMI and then rested over-
night in RF10. The rested PBMCs ([3 to 5]� 106 cells) were incubated in the presence of 5 mM of SARS-
CoV-2 peptide pools or Epstein-Barr Virus (EBV) peptide mix (MACS GMP PepTivator EBV select, Miltenyi
Biotec) for 1 h. Two SARS-CoV-2 peptides derived from the NC (RTATKAYNV and IIWVATEGA; 5mM for
each peptide) were used to stimulate PBMCs for 1 h. The EBV peptide mix (resuspended at 100mg/ml in
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DMSO) was used for a positive control (MACS GMP PepTivator EBV Select; Miltenyi Biotec). After the
incubation with these peptides, the cells were washed once with RPMI and costimulated using purified
anti-human CD28 antibody (1 mg/ml) (clone L293; BD Biosciences). The stimulated cells were cultured in
48-well plates at a density of 2� 106 cells/ml in RF10 medium supplemented with 100 U/ml IL-2 (Lonza,
catalog no. 200-02) for 14 days. The medium was replaced every 72 h with freshly prepared RF10 supple-
mented with IL-2. The expanded cells were subsequently studied by flow cytometry.

Detection of effector and polyfunctional CD8+ T cells responses to the T-cell epitope derived
peptides. The effector and polyfunctionality of CD81 T cells were evaluated by using the expanded cells
that were exposed to the peptides for 14 days. Briefly, the expanded cells were restimulated with indi-
vidual SARS-CoV-2 peptides or the EBV peptide pool in the presence of costimulatory antibodies (1mg/
ml of anti-CD28 and anti-CD49d; BD Biosciences), monensin (Golgistop, 0.9ml/ml; BD Biosciences) and
brefeldin A (1ml/ml; BD Biosciences) for 5 h at 37°C. Anti-CD107a/b-FITC antibodies (BD Biosciences)
were also added to identify degranulating cells. For the functionality panel, the cells were stained upon
stimulation with Live/Dead Fixable Near-IR Dead cell stain kit (Thermo Fisher) and the following conju-
gated antibodies: anti-CD3-BUV496 and anti-CD8- PerCP-Cy5.5 (BD Biosciences). The cells were then
fixed and permeabilized (Cytofix/Cytoperm; BD Biosciences). Subsequently, the fixed cells were stained
using anti-IL-2-PerCP-Cy5.5, anti-TNF-a-PE/Cy7, and anti-IFN-g-PE antibodies (BD Biosciences). The data
were analyzed by using FlowJo v10 (Data Analysis Software, LLC). The gating strategy was performed as
follows: (i) the lymphocyte population was selected by using FSC-A versus side scatter (SSC) plot; (ii) the
single cells were selected in a forward scatter area (FSC-A) versus FSC-height plot; (iii) the dead cells
were excluded on the bases of Live/Dead Near-IR fluorescence; and (iv) the CD31 CD81 cells were gated
in CD3 versus CD8 dot plots. To study the polyfunctionality of CD81 T cells, CD8 versus CD107a/b, IFN-g,
IL-2, or TNF-a plots were constructed. After the gates for each cytokine profile of CD81 T cells were cre-
ated, the Boolean gate platform was employed to create all possible cytokine and CD107a/b combina-
tions. For each combination, the resulting data were obtained by subtracting percent cells representing
the background in the mock control and CD28/CD49d stimulation. The values below the background
were set at 0. For the polyfunctionality analysis, SPICE 6.0 software (https://niaid.github.io/spice/) was
used following the technical considerations published by the software developers (97).
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