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Abstract 

Background:  Long noncoding RNAs (lncRNAs) play important roles in various biologi-
cal and pathological processes. Discovery of lncRNA–protein interactions (LPIs) con-
tributes to understand the biological functions and mechanisms of lncRNAs. Although 
wet experiments find a few interactions between lncRNAs and proteins, experimental 
techniques are costly and time-consuming. Therefore, computational methods are 
increasingly exploited to uncover the possible associations. However, existing compu-
tational methods have several limitations. First, majority of them were measured based 
on one simple dataset, which may result in the prediction bias. Second, few of them 
are applied to identify relevant data for new lncRNAs (or proteins). Finally, they failed to 
utilize diverse biological information of lncRNAs and proteins.

Results:  Under the feed-forward deep architecture based on gradient boosting deci-
sion trees (LPI-deepGBDT), this work focuses on classify unobserved LPIs. First, three 
human LPI datasets and two plant LPI datasets are arranged. Second, the biological fea-
tures of lncRNAs and proteins are extracted by Pyfeat and BioProt, respectively. Thirdly, 
the features are dimensionally reduced and concatenated as a vector to represent an 
lncRNA–protein pair. Finally, a deep architecture composed of forward mappings and 
inverse mappings is developed to predict underlying linkages between lncRNAs and 
proteins. LPI-deepGBDT is compared with five classical LPI prediction models (LPI-
BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, and LPI-HNM) under three cross validations on 
lncRNAs, proteins, lncRNA–protein pairs, respectively. It obtains the best average AUC 
and AUPR values under the majority of situations, significantly outperforming other 
five LPI identification methods. That is, AUCs computed by LPI-deepGBDT are 0.8321, 
0.6815, and 0.9073, respectively and AUPRs are 0.8095, 0.6771, and 0.8849, respectively. 
The results demonstrate the powerful classification ability of LPI-deepGBDT. Case study 
analyses show that there may be interactions between GAS5 and Q15717, RAB30-AS1 
and O00425, and LINC-01572 and P35637.

Conclusions:  Integrating ensemble learning and hierarchical distributed represen-
tations and building a multiple-layered deep architecture, this work improves LPI 
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prediction performance as well as effectively probes interaction data for new lncRNAs/
proteins.

Keywords:  lncRNA–protein interaction, Multiple-layer deep architecture, Gradient 
boosting decision tree

Introduction
Long noncoding RNAs (lncRNAs) are a class of important noncoding RNAs with the 
length more than 200 nucleotides. The class of RNAs have been reported to have dense 
associations with multiple biological processes including RNA splicing, transcriptional 
regulation, and cell cycle [1–3]. More importantly, the mutations and dysregulations 
of lncRNAs have important affects on multiple cancers [4, 5], for instance, lung cancer 
[6], colon cancer [7], and prostate cancer [8]. For example, lncRNAs UCA1, PCA3, and 
HOTAIR have been used as possible biomarkers of bladder cancer detection, prostate 
cancer aggressiveness, and hepatocellular carcinoma recurrence, respectively [9–11]. 
Although lncRNAs have been intensively investigated, functions and molecular mecha-
nisms of lncRNAs still largely remain elusive [2, 12]. Recent researches have revealed 
that lncRNAs densely link to the corresponding binding-proteins. Therefore, the identi-
fication of the binding proteins for lncRNAs is urgent for better understanding the bio-
logical functions and molecular mechanisms of lncRNAs [1].

Although wet experiments for lncRNA–protein Interaction (LPI) discovery have been 
designed, computational methods are appealing to infer the relevances between lncR-
NAs and proteins [13]. The computational methods can be roughly divided into two cat-
egories: network-based methods and machine learning-based methods. Network-based 
LPI inference methods integrated various biological data and designed network propa-
gation methods to find potential LPIs in the heterogeneous lncRNA–protein network. 
For example, Li et  al. [14] proposed a random walk with restart-based LPI prediction 
model. Zhou et al. [15] took miRNAs as mediators to predict LPIs in a heterogeneous 
network (LPI-HNM). Yang et al. [16] used the HeteSim algorithm to compute the associ-
ated scores between lncRNAs and proteins. Zhao et al. [17], Ge et al. [18], and Xie et al. 
[19] explored a few bipartite network projection-based recommendation techniques to 
compute the interaction probabilities between lncRNAs and proteins. Zhang et al. [20] 
explored a novel LPI prediction framework combining a linear neighborhood propaga-
tion algorithm. Zhou et al. [21] combined similarity kernel fusion and Laplacian regular-
ized least squares to find unobserved LPIs (LPI-SKF).

Machine learning-based LPI inference methods characterized the biological features 
of lncRNAs and proteins and exploited machine learning algorithms to probe LPI can-
didates [22]. Machine learning-based LPI prediction methods contain matrix factoriza-
tion techniques and ensemble learning techniques [23]. Matrix factorization-based LPI 
prediction approaches used various matrix factorization techniques. Liu et al. [24] iden-
tified new LPIs combing neighborhood regularized logistic matrix factorization. Zhao 
et  al. [25] inferred LPI candidates combining the neighborhood regularized logistic 
matrix factorization model and random walk. Zhang et al. [26] proposed a graph regu-
larized nonnegative matrix factorization method to uncover unobserved LPIs.

Ensemble learning-based LPI inference methods utilized diverse ensemble techniques. 
Zhang et  al. [27] exploited an ensemble learning model to discover the interactions 
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between lncRNAs and proteins. Liu et al. [24] designed three ensemble strategies to pre-
dict LPIs based on support vector machine, random forest and extreme gradient boost-
ing, respectively. Deng et  al. [1] extracted HeteSim features and diffusion features of 
lncRNAs and proteins and constructed a gradient tree boosting-based LPI prediction 
algorithm (PLIPCOM). Fan and Zhang [28] explored a stacked ensemble-based LPI clas-
sification model via logistical regression (LPI-BLS). Deng et al. [29] proposed a gradient 
boosted regression tree for finding possible LPIs. Wekesa et al. [30] designed a categori-
cal boosting-based LPI discovery framework (LPI-CatBoost). In addition, deep learn-
ing (such as deep graph neural network [31]) is increasingly developed to identify LPI 
candidates.

Computational methods effectively identified potential LPIs. However, there are a few 
problems to solve. First, the majority of computational models were evaluated on one 
dataset, which may result in predictive bias. Second, they were not used to infer poten-
tial proteins (or lncRNAs) associated with a new lncRNA (or protein). Finally, their pre-
diction performance need to further improve.

To solve the above problems, in this study, inspired by Gradient Boosting Decision 
Trees (GBDT) provided by Feng et al. [32], we exploit a multiple-layer Deep structure 
with GBDT to predict unobserved LPIs (LPI-deepGBDT). First, five LPI datasets are 
constructed. Second, lncRNA and protein features are extracted by Pyfeat and BioProt, 
respectively. Third, a feature vector is built to represent an lncRNA–protein pair. Finally, 
a multiple-layer deep architecture integrating tree ensembles and hierarchical distrib-
uted representations is developed to classify lncRNA–protein pairs.

The remaining of this manuscript is organized as follows. “Materials and methods” 
section describes data resources and the LPI-deepGBDT framework. “Results” section  
illustrates the results from a series of experiments. “Discussion and further research” 
section discusses the LPI-deepGBDT method and provides directions for further 
research.

Materials and methods
Data preparation

In this manuscript, we collect three human LPI datasets and two plant LPI datasets. 
Dataset 1 provided by Li et al [14] contains 3,487 LPIs from 938 lncRNAs and 59 pro-
teins. 3,479 LPIs between 935 lncRNAs and 59 proteins are finally obtained by removing 
the lncRNAs without sequence information in the NONCODE [33], NPInter [34] and 
UniProt [35] databases.

Dataset 2 build by Zheng et al. [36] contains human 4,467 LPIs between 1,050 lncR-
NAs and 84 proteins. 3,265 LPIs from 885 lncRNAs and 84 proteins are extracted after 
removing the lncRNAs without any sequence information. Dataset 3 constructed by 
Zhang et al. [20] contains 4,158 LPIs between 990 lncRNAs and 27 proteins.

Datasets 4 provides 948 Arabidopsis thaliana LPIs from 109 lncRNAs and 35 proteins. 
Dataset 5 provides 22,133 Zea mays LPIs from 1,704 lncRNAs and 42 proteins. The 
sequence information of two entities is downloaded from the PlncRNADB database [37] 
and LPIs are extracted at http://bis.zju.edu.cn/PlncRNADB/. The details are described in 
Table 1.

We denote an LPI network via a matrix Y:
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Overview of LPI‑deepGBDT

In this study, we develop a feed-forward deep framework to infer new LPIs. Fig-
ure  1 describes the flowchart of LPI-deepGBDT. As shown in Fig.  1, the LPI-deep-
GBDT framework consists of three main processes after LPI datasets are built. (1) 
Feature extraction. Pyfeat [38] and BioProt [39] are used to extract the original fea-
tures for lncRNAs and proteins. (2) Feature selection. The lncRNA and protein fea-
tures are reduced into two d-dimensional vector based on dimensional reduction 
analysis with Principle Component Analysis (PCA). The two vectors are then con-
catenated to depict lncRNA–protein pairs. (3) Classification. A multiple-layer deep 

(1)yij =

{

1, if lncRNAs li interacts with protein pj
0, otherwise

Table 1  The statistics of LPI information

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3479

Dataset 2 885 84 3265

Dataset 3 990 27 4158

Dataset 4 109 35 948

Dataset 5 1704 42 22,133

"pseudo-inverse" mapping

LPIs or non-LPIs oo
Feature matrix

Sequence features

Amino acid composition
Autocorrelation

CTD
Conjoint triad

zCurve
gcContent 

ATGC ratio
Cumulative Skew

Chous Pseudocomposition

...CAACTGGTGTGATCTCGG
CTCACTGCCT...

...GTSGRTIKLQANFFEMDIP
KIDIYHYELDIK...

lncRNA sequence

Protein sequence

Protein structure

lncRNA structure Dimensional reduction

Concatenating

Protein features Protein features

lncRNA features lncRNA features

(1) (2)

Interation E

Layer

Layer

Layer m

"pseudo-inverse" mapping

"pseudo-inverse" mapping

(3)

Fig. 1  The flowchart of the LPI-deepGBDT framework. (1) Feature selection. (2) Dimension reduction. (3) 
Classification
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structure, composed of forward mapping and inverse mapping, is developed to clas-
sify lncRNA–protein pairs.

Feature extraction

Feature extraction of lncRNAs

Pyfeat [38] is widely applied to generate numerical features via sequence information. 
In this study, we use Pyfeat to obtain lncRNA features and represent an lncRNA as a 
3, 051-dimensional vector. The details are shown in Table 2.

Feature extraction of proteins

BioProt [39] utilizes various information to represent a protein. In this study, we use Bio-
Prot to obtain protein features and represent each protein as a 9,890-dimensional vector. 
The details are shown in Table 3.

Dimension reduction

The feature dimensions of lncRNAs and protein are reduced based on PCA, respectively. 
Two d-dimensional feature vectors are obtained and concatenated as a 2d-dimensional 
vector x applied to represent an lncRNA–protein pair.

LPI prediction framework

Problem description

For a given LPI dataset D = (X ,Y ) , where (x, y) represents an lncRNA–protein pair (a 
training example), x ∈ X denotes a 2d-dimensional LPI feature vector and y ∈ Y  denotes 
its label, we aim to classify unknown lncRNA–protein pairs.

For a feed-forward deep architecture with one original input layer, one output layer 
and (m-1) intermediate layers, suppose that oi ( i ∈ {0, 1, 2, · · · ,m} ) denotes the output in 
the i-th layer. For an lncRNA–protein pair (x, y) , we want to learn a mapping Fi based on 
GBDT to minimize the empirical loss L between the desired output y and the final real 
output om on the training data.

Table 2  The lncRNA features by Pyfeat

Feature name Number of 
features

zCurve 3

gcContent 1

ATGC ratio 1

Cumulative Skew 2

Chou’s Pseudocomposition 84

monoMonoKGap 16

monoDiKGap 256

monoTriKGap 64

diMonoKGap 64

diDiKGap 1024

diTriKGap 256

triMonoKGap 256

triDiKGap 1024
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Gradient boosting decision trees

GBDT can generate highly robust, interpretable and competitive classification pro-
cedures, especially for exploiting less than clean data [29, 40, 41]. For an lncRNA–
protein pair (x, y) , an estimator f (x) denotes an approximate function response to 
the label y , the GBDT model iteratively builds K different individual decision tree 
{g(x;α1), . . . , g(x;αK )} using the training data D = (X ,Y ) . And f (x) can be denoted 
as an expansion of individual decision tree g(x;αk) by Eq. (2).

where each tree splits the input space into N disjoint regions {R1k , · · · ,Rjk} and calcu-
lates a constant value γik for the region Rjk where I = 1 if x ∈ Rjk ; I = 0, otherwise . 
fk(x) denotes an addition function combined from the first decision tree to the k-th 
decision tree. The parameters αk denotes the mean values of partition locations and the 
terminal leaf nodes for each partitioning variables in the k-th decision tree. The parame-
ters βk denotes the weights used to determine how to effectively integrate the prediction 
results from individual decision trees when the leaf nodes of each collection are known. 
The two parameters αk and βk can be estimated by minimizing a loss function L(y, f (x)) 
by Eq. (3).

(2)



















f (x) =
K
�

k=1

fk(x) =
K
�

k=1

βkg(x;αk)

g(x;αk) =
J
�

j=1

γik I(x ∈Rik)

Table 3  The protein features by BioProt

Feature group Features Number

Amino acid composition Amino acid composition 20

Dipeptide composition 400

Tripeptide composition 8000

Autocorrelation Normalized Moreau–Broto 240

autocorrelation

Moran autocorrelation 240

Geary autocorrelation 240

CTD Composition 21

Transition 21

Distribution 105

Conjoint triad Conjoint triad features 343

Quasi-sequence order Sequence order coupling 60

number

Quasi-sequence order 100

descriptors

Pseudo amino acid composition Pseudo amino acid 50

composition

Amphiphilic pseudo 50

amino acid composition
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and

To solve the model (3), Friedman [42] proposed a gradient boosting approach. First, the 
parameters αm can be estimated based on least square error:

where ỹim denotes the gradient and is defined by Eq. (6).

The parameters βk can be determined by Eq. (7).

The estimator fk(x) for the k-th regression tree can be updated by Eq. (8)

The final estimator f (x) can be obtained by Eq. (9)

The gradient boosting approach calculates the optimal values of the parameters αm 
via minimizing the least square function defined by Eq. (5). The parameters βm can be 
solved by Eqs. (5) and (7). And the GBDT algorithm is described as Algorithm 1. 

(3)
(αk ,βk ) = arg min

α,β

N
∑

i=1

L(yi , fk−1(xi)+ βg(xi;α))

= arg min
α,β

N
∑

i=1

L(yi , fk−1(xi)+ β
J
∑

j=1

γj I(xi ∈Rj))

(4)fk(x) = fk−1(x)+ βkg(x;αk) = fk−1(x)+ βk

J
∑

j=1

γjk I(x ∈Rjk)

(5)αk = arg min
α,β

N
∑

i=1

[ỹik − βg(xi;α)]
2 = arg min

α,β

N
∑

i=1

[ỹik − β
J
∑

j=1

γjI(xi ∈Rj)]
2

(6)ỹik = −

[

∂L(yi, f (xi))

∂f (xi)

]

f (x)=fk−1(x)

(7)
βk = arg min

β

N
∑

i=1

L(yi, fk−1(xi)+ βg(xi;αk))

= arg min
β

N
∑

i=1

L(yi, fk−1(xi)+ β
J
∑

j=1

γjk I(xi ∈Rjk))

(8)fk(x) = fk−1(x)+ βkg(x,αk)

(9)f (x) =

K
∑

k=1

fk(x)
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The multi‑layered deep architecture with GBDT

We exploited a multi-layered deep architecture with GBDT to classify unknown 
lncRNA–protein pairs. Firstly, m gradient boosting decision trees are initialized. 
Initial forward mapping, inverse mapping, and output are then computed. Second, 
pseudo-label in the m-th layer is obtained based on the initialized output and real 
label. Third, the forward mapping for each regression tree is iteratively updated 
based on the computed pseudo-label at the last iteration. Fourth, the inverse map-
ping is iteratively learned based on the achieved forward mapping at the last iteration. 
Finally, the final label is output after m iterations.

Phase I: Initialize GBDT 
It is very difficult to design a random tree structure based on the distribution from 

all potential tree configurations. Therefore, multiple Gaussian noise data are injected 
to the output in all intermediate layers. Given a deep structure with m layers, the ini-
tial forward mapping F0

i  ( i ∈ {1, 2, ...,m} ) and the inverse mapping G0
i
 ( i ∈ {2, 3, ...,m} ) 

are obtained by a few very tiny trees, where index 0 represents the tree structures 
achieved in the initialization procedure. In addition, the initial output o0 is set as X 
and oi = F0

i (oi−1) ( i ∈ {1, 2, ...,m}).
The iterations are updated based on the learned forward mappings and inverse 

mappings. At each iteration t, we conduct Phases II-IV.
Phase II: Compute the pseudo-label in the m-th layer
The pseudo-label in the m-th layer can be computed based on the final output om 

and the real label y , α is the learning rate by Eq. (10)

Phase III: Forward mapping
At the t-th iteration, during the forward mapping, Ft

i  for each regression tree in a 
GBDT is first initialized by Ft

i = Ft−1
i  and updated based on a pseudo-labels pti−1 with 

pti−1 = Gi(p
t
i ) . The details are described as follows.

For each regression tree in a GBDT, we define a reconstruction loss function as Eq. 
(11).

The pseudo-residuals for each tree can be computed by Eq. (12).

When the pseudo-label in each layer is calculated, each Ft−1
i  can implement a gradient 

ascent towards its pseudo-residual by Eq. (12).
Each regression tree gk is fitted to r forwk  based on the training set ( oi−1, r

forw
k  ) and the for-

ward mapping Ft
i  for each tree can be updated by Eq. (13).

Finally, we obtain the output for each layer by the forward mapping by Eq. (14).

(10)ptm = om − α
∂L(om, y)

∂om

(11)L
forw
i = ||Ft

i (oi−1)− pti ||

(12)r
forw
k = −

∂L
forw
i

∂Ft
i (oi−1)

(13)Ft
i = Ft

i + γ gk
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The forward mapping procedures are described as Algorithm 2. 

In this phase, we use a bottom up update technique, that is, Fi will be updated before Fj 
when i < j . In addition, each Fi can run multiple rounds of additive boosting operations 
towards its current pseudo-label.

Phase IV: Inverse mapping
At the t-th iteration, for each decision tree, given the forward mapping Ft−1

i  learned from 
the (t-2)-th iteration, we intend to achieve an “pseudo-inverse” mapping Gt

i  paired with 
each Ft−1

i  satisfying Gt
i (F

t−1
i (oi−1)) ≈ oi−1 based on the following expected value of the 

reconstructed loss function by Eq. (15):

where Linvi  denotes the reconstructed loss in the i-th layer.
To build a more robust and generative model, random noises σ are injected into the out-

put in all intermediate layers:

For each regression tree gk in a GBDT, the reconstructed error can be computed by Eq. 
(17):

Based on the noise injection, each Gt−1
i  follows a gradient ascent towards the pseudo-

residuals by Eq. (18)

where rinvk  denotes the pseudo-residuals of the k-th regression tree during the inverse 
mapping. For each regression tree gk in GBDT, we fit it to rk via the training set 
(Ft−1

i (onoisej−1 ), rinvk ) and then update Gt
i  by Eq. (19).

(14)oi = Ft
i (oi−1)

(15)Ĝt
i = arg min

Gt
i

Ex[L
inv
i (oi−1,G

t
i (F

t−1
i (oi−1)))]

(16)onoisei−1 = onoisei−1 + ǫ, ǫ ∼ N(0, diag(σ 2))

(17)Linvi = ||Gt
i (F

t−1
i (onoisei−1 ))− (onoisei−1 )||

(18)rinvk = −
∂Linvi

∂Gt
i (F

t−1
i (onoisei−1 ))
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Finally, the pseudo-label in each intermediate layer can be propagated from the final 
layer to the first layer by Eq. (20):

For all intermediate layers and the final output layer ( i ∈ {m,m− 1, ..., 2}) , the inverse 
mapping procedures are described as Algorithm 3. 

We can obtain the inverse mapping Gt
i  for the final output layer and all intermedi-

ate layers and the pseudo-labels pti  for the first layer and all the intermediate layers. 
After finishing the t-th iteration, we continue the (t + 1)-th iteration to update Fi and 
Gi.

During LPI prediction, a linear classifier Y = XW T + b is applied to the forward 
mapping in the m-th layer. There are two main advantages. First, the m-1 layers can 
re-represent the LPI features as linearly separable as possible. Second, the corre-
sponding inverse mapping in the m-th layer does not have to be computed because 
the pseudo-label in the (m-1)-th layer can be obtained based on the gradient of 
global loss related to the output in the (m-2)-th layer.

Results
The experiments is mainly explored to empirically examine if the proposed LPI-deep-
GBDT method can effectively predict new LPIs.

Evaluation metrics

The six measurements are utilized to evaluate the performance of LPI-deepGBDT: 
precision, recall, accuracy, F1-score, AUC and AUPR. For the six evaluation criteria, 
higher values depict better performance [43]. The experiments are repeatedly imple-
mented for 20 times. The average performance for the 20 rounds is taken as the final 
performance. The six measurements are defined by Eqs. (21)–(24).

(19)Gt
i = Gt

i + γ gk

(20)pti−1 = Gt
i (p

t
i )

(21)Precision =
TP

TP + FP
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 where TP, TN, FP, and FN represent true positives, true negatives, false positives, and 
false negatives, respectively. Precision denotes the ratio of correctly predicted positive 
samples among all predicted positive samples. Recall represents the ratio of correctly 
predicted positive samples among all real positive samples. Accuracy denotes the ratio 
of correctly predicted positive and negative samples among all samples. F1-Score is har-
monic mean between precision and recall. Area Under receiver operating Characteris-
tic Curve (AUC) is used to measure the trade-off between TP ratio and FP ratio. Area 
Under Precision-Recall curve (AUPR) is applied to evaluate the trade-off between preci-
sion and recall.

Experimental settings

The parameters in Pyfeat are set as: kgap=5, ktuple=3, optimum=1, pseudo=1, 
zcurve=1, gc=1, skew=1, atgc=1, monoMono=1, monoDi=1, monoTri=1, 
diMono=1, diDi=1, diTri=1, triMono=1, and triDi=1. All parameters in BioProt and 
LPI-SKF are the corresponding values provided by refs. [39] and [21], respectively. 
The deep GBDT architecture we used is (input-16-16-output). The parameters in the 
remaining methods are set the values when the corresponding methods obtain the 
best performance. The details are described in Table 4.

Therefore, we select two 100-dimensional vectors to represent lncRNA and protein, 
respectively. Three 5-fold Cross Validations (CVs) are carried out to evaluate the per-
formance of LPI-deepGBDT.

5-fold CV on lncRNAs (CV1): 80% of lncRNAs are extracted as train set and the 
remaining is test set in each round.

5-fold CV on proteins (CV2): 80% of proteins are extracted as train set and the remain-
ing is test set in each round.

5-fold CV on lncRNA–protein pairs (CV3): 80% of lncRNA–protein pairs are 
extracted as train set and the remaining is test set in each round.

The three CVs refer to potential LPI identification for (1) a new (unknown) lncRNA 
without interaction information, (2) a new protein without interaction information, and 
(3) lncRNA–protein pairs, respectively.

Comparison with five state‑of‑the‑art LPI prediction methods

We compare the proposed LPI-deepGBDT framework with five classical LPI identifi-
cation models to measure the classification performance and robustness of LPI-deepG-
BDT, that is, LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF and LPI-HNM. The number 

(22)Recall =
TP

TP + FN

(23)Accuracy =
TP + TN

TN + FN + TP + FP

(24)F1− Score =
2TP

2TP + FP + FN
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of negative samples is set as the same as positive samples. The best performance is illus-
trated in boldface in each row in Tables 5, 6 and 7.

Table  5 gives the comparative results of the five LPI identification models in terms 
of the six measurements under CV1. It can be observed that LPI-deepGBDT achieves 
better average recall, accuracy, F1-score, AUC and AUPR than LPI-BLS, LPI-CatBoost, 
PLIPCOM, and LPI-HNM on five LPI datasets. For example, LPI-deepGBDT obtains 
the best average F1-score value of 0.7586, 8.99%, 9.83%, 1.61%, 22.70% and 8.37% supe-
rior than LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, and LPI-HNM, respectively. 
More importantly, it calculates the best AUC value of 0.8321, 1.63%, 8.32%, 2.37%, 0.02% 
and 6.26% better than the above five models, respectively. It also achieves the best aver-
age AUPR of 0.8095, 1.85%, 5.53%, 0.77%, 0.02% and 0.24% higher than the five methods, 
respectively.

LPI-BLS, LPI-CatBoost, PLIPCOM and LPI-HNM are four state-of-the-art super-
vised learning-based LPI prediction methods and LPI-deepGBDT computes bet-
ter performance than them. The results suggest the powerful classification ability of 
LPI-deepGBDT under CV1. More importantly, although LPI-deepGBDT computes 
slightly lower precision than LPI-SKF, other five measurements are better than LPI-
SKF. LPI-SKF is one network-based LPI inference algorithm. The type of methods 
have one limitation, that is, they can not be applied to predict possible interaction 
information for an orphan lncRNA. Therefore, LPI-deepGBDT is appropriate to pri-
oritize underlying proteins associated with a new lncRNA.

Table  6 depicts the performance of LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, 
LPI-HNM, and LPI-deepGBDT under CV2. The results show that the performance 
of LPI-deepGBDT is slightly lower than LPI-HNM. Under CV2, 80% proteins are 
extracted as training set and the remaining is test set in each round. That is, there 
will be relatively higher proteins for which association information is masked, thereby 
resulting in the reduction of samples and affecting the performance of LPI-deepG-
BDT. Compared to other five methods, LPI-HNM may be relatively robust to data 
abundant level when predicting possible lncRNAs for a new protein.

More importantly, LPI-deepGBDT computes the best average AUC and AUPR in com-
paring to LPI-BLS, LPI-CatBoost, and PLIPCOM. For example, LPI-deepGBDT obtains 
the best average AUC of 0.6815, 21.97%, 9.24%, and 4.01% superior than LPI-BLS, LPI-
CatBoost, and PLIPCOM, respectively. LPI-deepGBDT achieves the best average AUPR 
of 0.6771, 15.74%, 10.37%, and 6.78% better than the above three methods, respectively. 

Table 4  Parameter settings

Method Parameter setting

LPI-BLS s = 1, c = 10**-10, N1 = 3, N2 = 60, N3 = 900

LPI-CastBoost learning_rate = 0.5, loss_function = ‘Logloss’

logging_level = ’Verbose’

PLIPCOM learning_rate = 0.01, n_estimators = 100

min_samples_split = 2, max_depth = 3

LPI-deepGBDT target_lr = 1.0, epsilon = 0.3, n_rounds=3, d = 100

max_depth = 5, num_boost_round = 5, n_epochs = 15
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AUC and AUPR are two more important evaluation criteria compared to other four 
measurements. LPI-deepGBDT outperforms LPI-BLS, LPI-CatBoost, and PLIPCOM in 
terms of AUC and AUPR. The results suggest that LPI-deepGBDT is one appropriate 
LPI prediction algorithm.

In particular, LPI-BLS is an ensemble learning-based model. LPI-deepGBDT sig-
nificantly outperforms LPI-BLS based on AUC and AUPR. The results illustrate that 
LPI-deepGBDT may obtain better ensemble performance. In addition, LPI-CatBoost 
and PLIPCOM are two categorical boosting techniques. LPI-deepGBDT, integrating 
the idea of deep architecture, obtains better performance than the two methods. It 
shows that deep learning may more effectively learn the relevances between lncRNAs 

Table 5  The performance of five LPI prediction methods on CV1

Metric Dataset LPI-BLS LPI-CatBoost PLIPCOM LPI-SKF LPI-HNM LPI-deepGBDT

Precision Dataset 1 0.8458 ± 0.0014 0.8317 ± 0.0132 0.8428 ± 0.0060 0.8757 ± 0.0086 0.7006 ± 0.0171 0.8457 ± 0.0046

Dataset 2 0.8547 ± 0.0031 0.8220 ± 0.0139 0.8537 ± 0.0065 0.8627 ± 0.0223 0.7009 ± 0.0169 0.8567 ± 0.0038

Dataset 3 0.7110 ± 0.0011 0.6871 ± 0.0060 0.7173 ± 0.0084 0.7298 ± 0.0153 0.7054 ± 0.0169 0.7089 ± 0.0115

Dataset 4 0.5653 ± 0.0088 0.4613 ± 0.0369 0.4894 ± 0.0508 0.6108 ± 0.0249 0.6624 ± 0.0501 0.5870 ± 0.0289

Dataset 5 0.7901 ± 0.0021 0.7713 ± 0.0040 0.7721 ± 0.0021 0.7517 ± 0.0098 0.7959 ± 0.0157 0.8018 ± 0.0189

Ave. 0.7534 0.7147 0.7351 0.7661 0.7130 0.7600

Recall Dataset 1 0.6550 ± 0.0009 0.8331 ± 0.0140 0.9632 ± 0.0028 0.5932 ± 0.0156 0.7134 ± 0.0152 0.9456 ± 0.0070

Dataset 2 0.6738 ± 0.0013 0.8399 ± 0.0201 0.9628 ± 0.0043 0.5212 ± 0.0107 0.6893 ± 0.0146 0.9495 ± 0.0063

Dataset 3 0.6270 ± 0.0006 0.6154 ± 0.0241 0.7618 ± 0.0141 0.6226 ± 0.0058 0.6930 ± 0.0113 0.7649 ± 0.0249

Dataset 4 0.5328 ± 0.0074 0.3539 ± 0.0700 0.3190 ± 0.0668 0.6056 ± 0.0280 0.6342 ± 0.0396 0.3613 ± 0.0453

Dataset 5 0.7063 ± 0.0038 0.7921 ± 0.0135 0.8569 ± 0.0037 0.6727 ± 0.0037 0.6682 ± 0.0077 0.8425 ± 0.0261

Ave. 0.6390 0.6869 0.7727 0.6030 0.6796 0.7728

Accuracy Dataset 1 0.7512 ± 0.0005 0.8310 ± 0.0071 0.8917 ± 0.0039 0.7254 ± 0.0032 0.6571 ± 0.0112 0.8964 ± 0.0032

Dataset 2 0.7620 ± 0.0018 0.8258 ± 0.0064 0.8987 ± 0.0034 0.7065 ± 0.0081 0.6474 ± 0.0088 0.8952 ± 0.0024

Dataset 3 0.6605 ± 0.0012 0.6677 ± 0.0091 0.7298 ± 0.0034 0.6544 ± 0.0092 0.6585 ± 0.0097 0.7236 ± 0.0043

Dataset 4 0.5424 ± 0.0048 0.4801 ± 0.0201 0.4972 ± 0.0306 0.5727 ± 0.0196 0.6100 ± 0.0274 0.5506 ± 0.0167

Dataset 5 0.7337 ± 0.0025 0.7785 ± 0.0067 0.8018 ± 0.0018 0.6726 ± 0.0036 0.7117 ± 0.0053 0.8129 ± 0.0132

Ave. 0.6900 0.7166 0.7638 0.6663 0.6569 0.7757

F1-score Dataset 1 0.7381 ± 0.0012 0.8314 ± 0.0067 0.8989 ± 0.0033 0.6298 ± 0.0070 0.7069 ± 0.0148 0.8927 ± 0.0031

Dataset 2 0.7533 ± 0.0020 0.8282 ± 0.0067 0.9048 ± 0.0027 0.5828 ± 0.0117 0.6949 ± 0.0140 0.9105 ± 0.0024

Dataset 3 0.6663 ± 0.0008 0.6480 ± 0.0148 0.7377 ± 0.0034 0.5950 ± 0.0086 0.6991 ± 0.0119 0.7337 ± 0.0068

Dataset 4 0.5483 ± 0.0081 0.3812 ± 0.0573 0.3783 ± 0.0597 0.5401 ± 0.0232 0.6480 ± 0.0445 0.4397 ± 0.0362

Dataset 5 0.7458 ± 0.0030 0.7812 ± 0.0080 0.8121 ± 0.0018 0.6345 ± 0.0041 0.7264 ± 0.0061 0.8165 ± 0.0134

Ave. 0.6904 0.6940 0.7464 0.5964 0.6951 0.7586

AUC​ Dataset 1 0.9192 ± 0.0005 0.8860 ± 0.0048 0.9313 ± 0.0030 0.9344 ± 0.0073 0.7774 ± 0.0147 0.9346 ± 0.0040

Dataset 2 0.9301 ± 0.0017 0.8909 ± 0.0044 0.9389 ± 0.0034 0.9199 ± 0.0149 0.7677 ± 0.0133 0.9398 ± 0.0028

Dataset 3 0.7849 ± 0.0020 0.7151 ± 0.0112 0.8223 ± 0.0029 0.8117 ± 0.0159 0.7794 ± 0.0126 0.8083 ± 0.0042

Dataset 4 0.5843 ± 0.0094 0.4726 ± 0.0270 0.4891 ± 0.0326 0.6479 ± 0.0379 0.7038 ± 0.0438 0.5790 ± 0.0207

Dataset 5 0.8738 ± 0.0028 0.8498 ± 0.0064 0.8806 ± 0.0019 0.8455 ± 0.0076 0.8718 ± 0.0074 0.8988 ± 0.0126

Ave. 0.8185 0.7629 0.8124 0.8319 0.7800 0.8321

AUPR Dataset 1 0.8851 ± 0.0022 0.8936 ± 0.0049 0.9224 ± 0.0037 0.9196 ± 0.0092 0.8260 ± 0.0180 0.8889 ± 0.0091

Dataset 2 0.8975 ± 0.0032 0.8929 ± 0.0050 0.9266 ± 0.0044 0.8787 ± 0.0260 0.8039 ± 0.0187 0.8991 ± 0.0068

Dataset 3 0.7469 ± 0.0006 0.7024 ± 0.0109 0.8060 ± 0.0044 0.7772 ± 0.0198 0.8039 ± 0.0161 0.7792 ± 0.0070

Dataset 4 0.5851 ± 0.0109 0.5074 ± 0.0254 0.4987 ± 0.0272 0.6348 ± 0.0340 0.7435 ± 0.0689 0.5965 ± 0.0176

Dataset 5 0.8579 ± 0.0036 0.8274 ± 0.0079 0.8626 ± 0.0027 0.8364 ± 0.0170 0.8601 ± 0.0118 0.8837 ± 0.0121

Ave. 0.7945 0.7647 0.8033 0.8093 0.8075 0.8095



Page 14 of 24Zhou et al. BMC Bioinformatics          (2021) 22:479 

and proteins. Although LPI-SKF computes better AUPR than LPI-deepGBDT, LPI-
SKF is a network-based model. Network-based methods can not reveal association 
information for an orphan protein. In summary, LPI-deepGBDT may be applied to 
infer possible interacting lncRNAs for a new protein.

The experimental results under CV3 are shown in Table 7. The comparative results 
demonstrate that LPI-deepGBDT computed the best average precision, recall, accu-
racy, F1-score, AUC, and AUPR over all datasets. For example, LPI-deepGBDT 
obtains the best average F1-score value of 0.8429, 14.83%, 10.77%, 3.10%, 16.73% and 
18.43% superior than LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF and LPI-HNM, 
respectively. More importantly, it calculates the best AUC value of 0.9073, 4.93%, 
11.21%, 3.32%, 0.12% and 14.49%, better than the above five models, respectively. It 

Table 6  The performance of five LPI prediction methods on CV2

Metric Dataset LPI-BLS LPI-CatBoost PLIPCOM LPI-SKF LPI-HNM LPI-deepGBDT

Precision Dataset 1 0.5370 ± 0.0347 0.3405 ± 0.1562 0.3541 ± 0.1209 0.7009 ± 0.1208 0.6836 ± 0.1148 0.4413 ± 0.1452

Dataset 2 0.5769 ± 0.0287 0.3468 ± 0.1536 0.3879 ± 0.1793 0.6138 ± 0.1316 0.6227 ± 0.1840 0.6190 ± 0.0982

Dataset 3 0.4479 ± 0.0234 0.5419 ± 0.0476 0.3772 ± 0.1050 0.6639 ± 0.1119 0.6842 ± 0.0844 0.5312 ± 0.0742

Dataset 4 0.5319 ± 0.0042 0.6023 ± 0.0286 0.7413 ± 0.0151 0.7261 ± 0.0412 0.6635 ± 0.0230 0.7421 ± 0.0133

Dataset 5 0.4164 ± 0.0122 0.7868 ± 0.0085 0.7459 ± 0.0037 0.7264 ± 0.1465 0.7700 ± 0.0505 0.7658 ± 0.0349

Ave. 0.5020 0.5237 0.5213 0.6862 0.6848 0.6199

Recall Dataset 1 0.5264 ± 0.0130 0.2567 ± 0.1423 0.2165 ± 0.0725 0.5415 ± 0.0702 0.7060 ± 0.0876 0.2298 ± 0.1220

Dataset 2 0.5486 ± 0.0204 0.2325 ± 0.1309 0.1744 ± 0.1197 0.4114 ± 0.0551 0.6568 ± 0.1041 0.2067 ± 0.0915

Dataset 3 0.4819 ± 0.0104 0.3637 ± 0.0817 0.3023 ± 0.1209 0.4982 ± 0.0746 0.6651 ± 0.0211 0.3525 ± 0.1286

Dataset 4 0.5479 ± 0.0042 0.5278 ± 0.0600 0.6730 ± 0.0125 0.5402 ± 0.0415 0.6411 ± 0.0329 0.6978 ± 0.0273

Dataset 5 0.7993 ± 0.0470 0.8122 ± 0.0338 0.8473 ± 0.0155 0.5811 ± 0.0589 0.7394 ± 0.0156 0.8684 ± 0.0565

Ave. 0.5808 0.4386 0.4427 0.5145 0.6817 0.4710

Accuracy Dataset 1 0.5382 ± 0.0252 0.5204 ± 0.0694 0.5173 ± 0.0424 0.5867 ± 0.0757 0.6518 ± 0.0350 0.5386 ± 0.0615

Dataset 2 0.5672 ± 0.0181 0.5092 ± 0.0641 0.5298 ± 0.0562 0.5220 ± 0.0482 0.6474 ± 0.0736 0.5609 ± 0.0430

Dataset 3 0.4708 ± 0.0139 0.5361 ± 0.0321 0.4899 ± 0.0349 0.5584 ± 0.0777 0.6347 ± 0.0312 0.5284 ± 0.0409

Dataset 4 0.5135 ± 0.0038 0.5767 ± 0.0126 0.7172 ± 0.0109 0.6202 ± 0.0332 0.6150 ± 0.0286 0.7261 ± 0.0104

Dataset 5 0.5089 ± 0.0004 0.7951 ± 0.0141 0.7785 ± 0.0051 0.6636 ± 0.0644 0.7117 ± 0.0144 0.7985 ± 0.0117

Ave. 0.5197 0.5875 0.6065 0.5902 0.6521 0.6305

F1-score Dataset 1 0.5285 ± 0.0228 0.2567 ± 0.1423 0.2494 ± 0.0853 0.5399 ± 0.0745 0.6818 ± 0.0428 0.2697 ± 0.1242

Dataset 2 0.5617 ± 0.0246 0.2622 ± 0.1347 0.2131 ± 0.1301 0.4092 ± 0.0634 0.6295 ± 0.1274 0.2629 ± 0.1012

Dataset 3 0.4635 ± 0.0172 0.4175 ± 0.0750 0.3144 ± 0.1120 0.4929 ± 0.0804 0.6719 ± 0.0487 0.3791 ± 0.0995

Dataset 4 0.5372 ± 0.0005 0.5389 ± 0.0305 0.7030 ± 0.0103 0.5468 ± 0.0408 0.6521 ± 0.0280 0.7160 ± 0.0142

Dataset 5 0.5467 ± 0.0250 0.7970 ± 0.0184 0.7920 ± 0.0071 0.5908 ± 0.0734 0.7537 ± 0.0290 0.8115 ± 0.0084

Ave. 0.5275 0.4545 0.4544 0.5159 0.6778 0.4878

AUC​ Dataset 1 0.5701 ± 0.0508 0.5659 ± 0.0734 0.5397 ± 0.0855 0.6293 ± 0.1142 0.8013 ± 0.0902 0.5419 ± 0.0863

Dataset 2 0.6227 ± 0.0328 0.5173 ± 0.0987 0.5895 ± 0.0743 0.5235 ± 0.0899 0.7578 ± 0.1278 0.6347 ± 0.0798

Dataset 3 0.4443 ± 0.0269 0.5373 ± 0.0421 0.5084 ± 0.0512 0.5848 ± 0.1577 0.7595 ± 0.0402 0.5625 ± 0.0508

Dataset 4 0.5206 ± 0.0088 0.6004 ± 0.0148 0.7791 ± 0.0124 0.7202 ± 0.0571 0.7134 ± 0.0528 0.7883 ± 0.0115

Dataset 5 0.5013 ± 0.0025 0.8717 ± 0.0133 0.8544 ± 0.0063 0.8000 ± 0.1136 0.8959 ± 0.0212 0.8802 ± 0.0172

Ave. 0.5318 0.6185 0.6542 0.6516 0.7856 0.6815

AUPR Dataset 1 0.5429 ± 0.0415 0.5303 ± 0.0744 0.5099 ± 0.0686 0.7347 ± 0.1155 0.8520 ± 0.0714 0.5539 ± 0.0754

Dataset 2 0.5672 ± 0.0181 0.4973 ± 0.0760 0.5299 ± 0.0719 0.5965 ± 0.1215 0.7137 ± 0.2185 0.6272 ± 0.0669

Dataset 3 0.4600 ± 0.0243 0.5438 ± 0.0333 0.5197 ± 0.0420 0.6556 ± 0.1277 0.7782 ± 0.0554 0.5614 ± 0.0422

Dataset 4 0.5525 ± 0.0034 0.6161 ± 0.0211 0.7778 ± 0.0168 0.7415 ± 0.0543 0.7491 ± 0.0348 0.7788 ± 0.0151

Dataset 5 0.7308 ± 0.0046 0.8471 ± 0.0164 0.8187 ± 0.0119 0.7600 ± 0.1657 0.8836 ± 0.0563 0.8643 ± 0.0253

Ave. 0.5707 0.6069 0.6312 0.6977 0.7953 0.6771



Page 15 of 24Zhou et al. BMC Bioinformatics          (2021) 22:479 	

also achieves the best average AUPR of 0.8849, 5.82%, 8.84%, 2.59%, 2.62% and 9.13% 
higher than the five methods, respectively. The results characterize the superior clas-
sification performance of LPI-deepGBDT. Therefore, LPI-deepGBDT can precisely 
discover the potential relationships between lncRNAs and proteins based on known 
association information.

In addition, we investigate the performance computed by all six LPI prediction meth-
ods under the three different cross validations. The results from Tables 5, 6 and 7 show 
that LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, and LPI-deepGBDT achieve much 
better performance under CV3 than CV1, followed by CV2, regardless of precision, 
recall, accuracy, F1-score, AUC or AUPR. Under CV3, cross validations are conducted 
on all lncRNA–protein pairs and 80% lncRNA–protein pairs are used to train the model 

Table 7  The performance of five LPI prediction methods on CV3

Metric Dataset LPI-BLS LPI-CatBoost PLIPCOM LPI-SKF LPI-HNM LPI-deepGBDT

Precision Dataset 1 0.8539 ± 0.0012 0.8340 ± 0.0170 0.8440 ± 0.0045 0.7979 ± 0.0337 0.7192 ± 0.0076 0.8572 ± 0.0143

Dataset 2 0.8668 ± 0.0018 0.8191 ± 0.0224 0.8478 ± 0.0021 0.7902 ± 0.0059 0.7104 ± 0.0081 0.8638 ± 0.0089

Dataset 3 0.7142 ± 0.0005 0.7349 ± 0.0183 0.7182 ± 0.0138 0.7631 ± 0.0095 0.7052 ± 0.0055 0.7565 ± 0.0313

Dataset 4 0.7012 ± 0.0065 0.6289 ± 0.0277 0.7498 ± 0.0144 0.7948 ± 0.0070 0.6527 ± 0.0124 0.8085 ± 0.0230

Dataset 5 0.7971 ± 0.0031 0.7425 ± 0.0047 0.7761 ± 0.0016 0.8248 ± 0.0011 0.8069 ± 0.0032 0.8578 ± 0.0066

Ave. 0.7866 0.7518 0.7872 0.7942 0.7189 0.8287

Recall Dataset 1 0.6565 ± 0.0083 0.8308 ± 0.0154 0.9652 ± 0.0080 0.9379 ± 0.0283 0.6811 ± 0.0043 0.9684 ± 0.0071

Dataset 2 0.6603 ± 0.0068 0.8451 ± 0.0242 0.9504 ± 0.0012 0.6910 ± 0.0092 0.6485 ± 0.0116 0.9611 ± 0.0137

Dataset 3 0.6313 ± 0.0075 0.6951 ± 0.0336 0.7612 ± 0.0237 0.6745 ± 0.0065 0.6712 ± 0.0062 0.7588 ± 0.0939

Dataset 4 0.6445 ± 0.0046 0.5863 ± 0.0638 0.6988 ± 0.0143 0.7007 ± 0.0052 0.6177 ± 0.0162 0.7903 ± 0.0650

Dataset 5 0.7194 ± 0.0014 0.8691 ± 0.0035 0.8659 ± 0.0030 0.7304 ± 0.0006 0.6787 ± 0.0025 0.9003 ± 0.0151

Ave. 0.6624 0.7652 0.8483 0.7469 0.6594 0.8745

Accuracy Dataset 1 0.7604 ± 0.0027 0.8319 ± 0.0170 0.8933 ± 0.0020 0.8488 ± 0.0136 0.6521 ± 0.0067 0.8877 ± 0.0075

Dataset 2 0.7687 ± 0.0032 0.8264 ± 0.0107 0.8976 ± 0.0018 0.6965 ± 0.0057 0.6439 ± 0.0087 0.9570 ± 0.0125

Dataset 3 0.6635 ± 0.0038 0.7194 ± 0.0061 0.7302 ± 0.0044 0.6745 ± 0.0065 0.6462 ± 0.0048 0.7683 ± 0.0136

Dataset 4 0.6542 ± 0.0044 0.6095 ± 0.0138 0.7322 ± 0.0092 0.7007 ± 0.0052 0.5958 ± 0.0107 0.8047 ± 0.0204

Dataset 5 0.7428 ± 0.0030 0.7837 ± 0.0030 0.8081 ± 0.0010 0.7304 ± 0.0006 0.7193 ± 0.0017 0.9355 ± 0.0028

Ave. 0.7179 0.7542 0.8123 0.7302 0.6515  0.8583

F1-score Dataset 1 0.7421 ± 0.0048 0.8315 ± 0.0082 0.9005 ± 0.0020 0.8614 ± 0.0077 0.6996 ± 0.0055 0.8954 ± 0.0061

Dataset 2 0.7495 ± 0.0051 0.8295 ± 0.0094 0.9044 ± 0.0016 0.6565 ± 0.0071 0.6780 ± 0.0093 0.9200 ± 0.0101

Dataset 3 0.6702 ± 0.0019 0.7110 ± 0.0095 0.7379 ± 0.0043 0.6359 ± 0.0072 0.6878 ± 0.0045 0.8269 ± 0.0297

Dataset 4 0.6716 ± 0.0054 0.5881 ± 0.0264 0.7226 ± 0.0091 0.6636 ± 0.0057 0.6347 ± 0.0142 0.8042 ± 0.0306

Dataset 5 0.7563 ± 0.0022 0.8007 ± 0.0020 0.8186 ± 0.0011 0.6923 ± 0.0007 0.7373 ± 0.0015 0.8784 ± 0.0041

Ave. 0.7179 0.7521 0.8168 0.7019 0.6875 0.8429

AUC​ Dataset 1 0.9247 ± 0.0012 0.8846 ± 0.0060 0.9292 ± 0.0016 0.9293 ± 0.0120 0.7800 ± 0.0108 0.9354 ± 0.0072

Dataset 2 0.9352 ± 0.0011 0.8918 ± 0.0055 0.9389 ± 0.0015 0.8893 ± 0.0136 0.7599 ± 0.0134 0.9423 ± 0.0060

Dataset 3 0.7883 ± 0.6735 0.7940 ± 0.0049 0.8229 ± 0.0025 0.8493 ± 0.0130 0.7693 ± 0.0083 0.8526 ± 0.0116

Dataset 4 0.7823 ± 0.0069 0.6421 ± 0.0122 0.8047 ± 0.0095 0.9024 ± 0.0105 0.6824 ± 0.0236 0.8542 ± 0.0137

Dataset 5 0.8826 ± 0.0031 0.8156 ± 0.0020 0.8903 ± 0.0010 0.9609 ± 0.0013 0.8874 ± 0.0029 0.9523 ± 0.0012

Ave. 0.8626 0.8056 0.8772 0.9062 0.7758 0.9073

AUPR Dataset 1 0.8852 ± 0.0006 0.8904 ± 0.0084 0.9208 ± 0.0028 0.9290 ± 0.0155 0.8297 ± 0.0084 0.9043 ± 0.0162

Dataset 2 0.9013 ± 0.0035 0.8926 ± 0.0049 0.9049 ± 0.0028 0.8956 ± 0.0128 0.7897 ± 0.0120 0.9242 ± 0.0171

Dataset 3 0.7520 ± 0.0006 0.7936 ± 0.0062 0.8081 ± 0.0038 0.8560 ± 0.0162 0.7956 ± 0.0077 0.8016 ± 0.0190

Dataset 4 0.7585 ± 0.0119 0.6629 ± 0.0190 0.8032 ± 0.0104 0.6683 ± 0.0061 0.7261 ± 0.0145 0.8488 ± 0.0175

Dataset 5 0.8698 ± 0.0032 0.7943 ± 0.0019 0.8731 ± 0.0016 0.9596 ± 0.0021 0.8792 ± 0.0031 0.9457 ± 0.0033

Ave. 0.8334 0.8067 0.8620 0.8617 0.8041 0.8849
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and the remaining 20% lncRNA–protein pairs are applied to test the model. However, 
under CV1 or CV2, cross validations are implemented on lncRNAs or proteins, that is, 
80% lncRNAs or proteins are applied to train the model and the remaining 20% lncRNAs 
or proteins are used to test the model. CV3 may provide more LPI information relative 
to CV1 and CV2. The result suggest that abundant data contribute to improve the pre-
diction performance of LPI identification models.

Case study

In this section, we aim to mine possible association data for a new lncRNA/protein or 
based on known LPIs.

Identifying potential proteins for a new lncRNA

RN7SL1 is an endogenous RNA. The lncRNA is usually protected by RNA-binding 
protein SRP9/14. Its increase can alter the stoichiometry with SRP9/14 and thus pro-
duce unshielded RN7SL1 in stromal exosomes. After exosome transfer to breast cancer 
cells, unshielded RN7SL1 can activate breast cancer RIG-I and promote tumor growth, 
metastasis, and therapy resistance [44]. Hepatocellular carcinoma patients with higher 
RN7SL1 concentrations also show lower survival rates. RN7SL1 may enhance hepatocel-
lular carcinoma cell proliferation and clonogenic growth [45].

In this section, we mask all interaction information for RN7SL1 and want to infer pos-
sible proteins interacting with the lncRNA. The experiments are repeated for 10 times 
and the interaction probabilities between RN7SL1 and other proteins are averaged over 
the 10 time results. The predicted top 5 proteins interacting with RN7SL1 on human LPI 
datasets are described in Table 8. In Dataset 1, we can observe that RN7SL1 is predicted 
to interact with Q15465. Q15465 displays a cholesterol transferase and autoproteolysis 
activity in the reticulum endoplasmic. Its N-product is a morphogen required for diverse 
patterning events during development. It induces ventral cell fate in somites and the 
neural tubes. It is required for axon guidance and densely related to the anterior-poste-
rior axis patterning in the developing limb bud [35]. In the dataset, RN7SL1 may associ-
ate with 59 proteins. In other two datasets, there does not exist any associated lncRNAs 
for Q15465. Although the interaction between RN7SL1 and Q15465 hasn’t been vali-
dated, among all possible associated 59 proteins, the protein is ranked as 4, 6, 8, 9, and 
14 by LPI-CatBoost, PLIPCOM, LPI-SKF, LPI-HNM, and LPI-BLS, respectively. There-
fore, the association between RN7SL1 and Q15465 need further validation.

In Dataset 2, we predict that Q13148, P07910, and Q9NZI8 may interact with 
RN7SL1. The interaction between Q9NZI8 and RN7SL1 is known in Dataset 3. 
Q13148 is a RNA-binding protein involved in various procedures in RNA biogenesis 
and processing. The protein controls the splicing in numerous non-coding and pro-
tein-coding RNAs, for example, proteins involved in neuronal survival and mRNAs 
encoding proteins related to neurodegenerative diseases. It plays important roles in 
maintaining mitochondrial homeostasis, mRNA stability and circadian clock perio-
dicity, the normal skeletal muscle formation and regeneration. In Dataset 2, RN7SL1 
may associate with 84 proteins. Among the 84 underlying proteins for RN7SL1, the 
rankings of Q13148 predicted by LPI-deepGBDT LPI-CatBoost, PLIPCOM, LPI-
SKF, LPI-BLS, and LPI-HNM are 2, 3, 1, 3, 2, and 6, respectively. That is, all the six 
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LPI identification models predict that there may be interaction between Q13148 and 
RN7SL1. Therefore, we infer that Q13148 may possibly interact with RN7SL1.

More importantly, in Dataset 2, P07910 binds to pre-mRNA and regulates the sta-
bility and translation level of bound mRNA molecules. The protein is involved in 
the early procedures of spliceosome assembly and pre-mRNA splicing. In other two 
human LPI datasets, there are no any known associated lncRNAs for P07910. Among 
84 potential associated proteins for RN7SL1, P07910 is ranked as 3, 7, 8, 9, 11, and 
9 by LPI-deepGBDT, LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, and LPI-HNM, 
respectively. The ranking are relatively higher. Therefore, we predict that P07910 may 
associate with RN7SL1.

In Dataset 3, we observe that Q9UKV8 and Q9Y6M1 may interact with RN7SL1. 
The interactions between RN7SL1 and the two proteins can be retrieved in Dataset 
1. That is, the predicted top 5 interaction data by LPI-deepGBDT can be validated by 
publications. In summary, the results from case analyses based on association predic-
tion for a new lncRNA suggest that LPI-deepGBDT can be utilized to identify new 
proteins associated with a new lncRNA.

Finding potential lncRNAs interacting with a new protein

Q9UL18 is a protein required by RNA-mediated gene silencing. The protein can repress 
the translation of mRNAs complementary to them by binding to short RNAs or short 
interfering RNAs. It lacks endonuclease activity and thus can cleave target mRNAs. It 
is still required by transcriptional gene silencing of promoter regions complementary to 
bound short antigene RNAs [35]. In this section, we mask the interaction information 
for Q9UL18 and intend to find associated lncRNAs for the protein. The predicted top 5 
lncRNAs on three human LPI dataset are shown in Table 9.

In Datasets 1-3, Q9UL18 may interact with 935, 885, and 990 lncRNAs. It can be seen 
that all the predicted top 5 interactions on each dataset are validated as known LPIs. The 

Table 8  The predicted top 5 proteins interacting with RN7SL1

Dataset Proteins Confirmed LPI-
deepGBDT

LPI-BLS LPI-CatBoost PLIPCOM LPL-SKF LPI-HNM

Dataset 1 O00425 YES 1 2 2 4 7 3

Q9Y6M1 YES 2 8 3 8 6 2

Q15465 NO 3 14 4 6 8 9

Q15717 YES 4 1 1 2 21 4

Q9UKV8 YES 5 4 7 14 1 8

Dataset 2 Q8IUX4 YES 1 6 2 2 8 5

Q13148 NO 2 2 3 1 3 6

P07910 NO 3 7 8 9 11 9

Q9NZI8 NO 4 5 6 3 5 7

Q9HCE1 YES 5 9 4 4 10 4

Dataset 3 Q9UKV8 NO 1 7 5 9 10 7

Q9NUL5 YES 2 1 1 1 1 5

Q9Y6M1 NO 3 4 4 5 6 6

O00425 YES 4 3 3 2 3 1

Q9NZI8 YES 5 6 2 3 2 2
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results suggest that LPI-deepGBDT can be applied to prioritize possible lncRNAs for a 
new protein.

Finding new LPIs based on known LPIs

We further infer new LPIs based on LPI-deepGBDT. We rank all lncRNA–protein pairs 
based on the computed average interaction probabilities. Figures 2, 3, 4, 5 and 6 give the 
predicted 50 LPIs with the highest interaction scores. In the five figures, black dotted 
lines and solid lines represent unknown and known LPIs obtained from LPI-deepGBDT, 
respectively. Gold ovals denote proteins, deep sky blue rounded rectangles denote RNA.

There are 55,165, 74,340, 26,730, 3,815, and 71,568 known and unknown lncRNA–
protein pairs on given five datasets, respectively. We observe that unknown lncRNA–
protein pairs between NONHSAT023366 (RAB30-AS1) and O00425, n378107 
(NONHSAT007673, GAS5) and Q15717, NONHSAT143568 (LINC-01572) and 
P35637, AthlncRNA376 (TCONS_00057930) and O22823, and ZmalncRNA530 
(TCONS_00007931) and C0PLI2, which are predicted to have the highest association 
scores on the five datasets, are ranked as 1, 3, 1, 6, and 113, respectively.

lncRNA GAS5 has close linkages with multiple complex diseases. The lncRNA is a 
repressor of the glucocorticoid receptors associated with growth arrest and starvation 
[46]. It is downregulated in breast cancer [47]. It cam also promote microglial inflamma-
tory response in Parkinson’s disease [48], control apoptosis in non-small-cell lung cancer 
[49] and prostate cancer cell [50]. Its decreased expression indicates a poor prognosis in 
cervical cancer [51] and gastric cancer [52].

Q15717 increases the stability of mRNA and mediates the CDKN2A anti-prolif-
erative activity and regulates p53/TP53 expression. It increases the leptin mRNA’s 
stability and is involved in embryonic stem cells differentiation. In dataset 2, GAS5 
have been validated to interact with P35637, and Q13148. P35637 plays an important 
role in diverse cellular processes including transcription regulation, DNA repair and 
damage response, RNA transport, and RNA splicing. It helps RNA transport, mRNA 

Table 9  The predicted top 5 lncRNAs interacting with Q9UL18

Dataset lncRNAs Confirmed LPI-
deepGBDT

LPI-BLS LPI-CatBoost PLIPCOM LPL-SKF LPI-HNM

Dataset 1 RPI001_1006774 YES 1 439 614 566 29 593

RP11-4O1 YES 2 169 177 204 558 10

LUCAT1 YES 3 110 315 48 930 48

RPI001_685651 YES 4 696 310 94 925 14

RPI001_25361 YES 5 411 819 83 234 94

Dataset 2 RP5-1085F17 YES 1 396 116 11 104 116

RPI001_79181 YES 2 521 276 302 78 15

RPI001_114047 YES 3 687 567 315 45 63

RPI001_81047 YES 4 789 330 125 88 17

RPI001_139850 YES 5 204 360 167 8 65

Dataset 3 RPI001_1036776 YES 1 5 469 3 810 107

RP11-357C3 YES 2 141 344 16 933 133

RPI001_878565 YES 3 148 561 50 221 74

HCG17 YES 4 22 118 4 707 129

AL139819 YES 5 251 533 34 131 111
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Fig. 2  The predicted top 50 LPIs on Dataset 1
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Fig. 4  The predicted top 50 LPIs on Dataset 3
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stability and synaptic homeostasis in neuronal cells. Q13148 plays a crucial role in 
maintaining mitochondrial homeostasis. It participates in the formation and regen-
eration of normal skeletal muscle, negatively regulates the expression of CDK6. The 
three proteins are RNA-binding proteins and have in part similar biological functions. 
Therefore, we infer that Q15717 may be the corresponding protein of GAS5.

Discussion and further research
lncRNAs regulate many important biological processes. They have close relationships 
with multiple human complex diseases. However, most of them are not annotated 
because of the poor evolutionary conservation. Recent researches suggest that lncR-
NAs implement their functions by binding to the corresponding proteins. Therefore, 
it is a significant work to infer potential interactions between lncRNAs and proteins. 
Various computational methods were designed to identify new LPIs. These models 
improved LPI prediction and found many potential linkages between the two entities. 
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Fig. 6  The predicted top 50 LPIs on Dataset 5
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The predicted LPIs with higher rankings are worthy of further biomedical experimen-
tal validation.

In this manuscript, we explore an LPI identification framework (LPI-deepGBDT) 
based on a feed-forward deep architecture with GBDTs. First, three LPI datasets and 
two plant datasets are retrieved. Second, the biological features of lncRNAs and pro-
teins are selected via Pyfeat and BioProt, respectively. Third, the features are reduced 
based on dimensional reduction technique and concatenated to depict an lncRNA–pro-
tein pair. Finally, a multi-layered deep framework is developed to find the potential rela-
tionships between the two entities. We compare LPI-deepGBDT with five classical LPI 
discovery methods, LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF and LPI-HNM, on the 
five datasets under three cross validations. The results demonstrate the superior classifi-
cation ability of LPI-deepGBDT. Case studies are further implemented to conduct inter-
action prediction for new lncRNAs (or proteins) or based on known LPIs.

LPI-deepGBDT computes the best performance on the collected five LPI datasets. 
It may be in large part due to the following features. First, LPI-deepGBDT fuses mul-
tiple biological features. Second, the constructed multi-layered deep framework with 
non-differentiable components helps to distributedly represent the outputs in inter-
mediate layers. Thirdly, the update procedure for each intermediate layer can reduce 
the global loss by updating its pseudo-label and reducing the loss in the previous 
layer. Finally, the random noises added in the loss function can better map the neigh-
bor training samples to right manifold.

In the future, we will collect multiple LPI datasets from different species to bet-
ter mine the relevances between lncRNAs and proteins for different species. More 
importantly, we will develop more effective ensemble learning model to improve the 
performance of LPI prediction.

Abbreviations
LPI-deepGBDT: Feed-forward deep architecture based on gradient boosting decision trees used to discover unobserved 
LPIs; LPI: Long noncoding RNA–protein interaction; GBDT: Gradient boosting decision trees; lncRNAs: Long noncoding 
RNAs; CVs: Cross validations.

Acknowledgements
We would like to thank all authors of the cited references.

Authors’ contributions
Conceptualization: L-HP, ZW and L-QZ; Funding acquisition: L-HP, L-QZ; Investigation: L-HP and ZW; Methodology: L-HP 
and ZW; Project administration: L-HP, L-QZ; Software: ZW; Validation: ZW, X-FT; Writing – original draft: L-HP; Writing – 
review and editing: L-HP and ZW. All authors read and approved the final manuscript.

Funding
This research was funded by the National Natural Science Foundation of China (Grant 61803151, 62072172).

Availability of data and materials
Source codes and datasets are freely available for download at https://​github.​com/​plhhnu/​LPI-​deepG​BDT.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://github.com/plhhnu/LPI-deepGBDT


Page 23 of 24Zhou et al. BMC Bioinformatics          (2021) 22:479 	

Author details
1 School of Computer Science, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, 
China. 2 College of Life Sciences and Chemistry, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan 
District, Zhuzhou, China. 

Received: 29 April 2021   Accepted: 14 July 2021

References
	1.	 Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncrna interactions by diffusion and hetesim 

features across heterogeneous network. BMC Bioinform. 2018;19(1):1–11.
	2.	 Liu Z-P. Predicting lncrna-protein interactions by machine learning methods: a review. Curr Bioinform. 2020;15(8):831–40.
	3.	 Chen X, Sun Y-Z, Guan N-N, Qu J, Huang Z-A, Zhu Z-X, Li J-Q. Computational models for lncrna function prediction and 

functional similarity calculation. Brief Funct Genom. 2019;18(1):58–82.
	4.	 Chen X, Yan CC, Zhang X, You Z-H. Long non-coding rnas and complex diseases: from experimental results to computa-

tional models. Brief Bioinform. 2017;18(4):558–76.
	5.	 Wang, W., Dai, Q., Li, F., Xiong, Y., Wei, D.-Q.: Mlcdforest: multi-label classification with deep forest in disease prediction for 

long non-coding rnas. Brief. Bioinform. (2020)
	6.	 Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A. A pituitary-derived meg3 isoform functions 

as a growth suppressor in tumor cells. J Clin Endocrinol Metabol. 2003;88(11):5119–26.
	7.	 Pibouin L, Villaudy J, Ferbus D, Muleris M, Prospéri M-T, Remvikos Y, Goubin G. Cloning of the mrna of overexpres-

sion in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet. 
2002;133(1):55–60.

	8.	 Cui, Z., Ren, S., Lu, J., Wang, F., Xu, W., Sun, Y., Wei, M., Chen, J., Gao, X., Xu, C., et al.: The prostate cancer-up-regulated long 
noncoding rna plncrna-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. In: 
Urologic Oncology: Seminars and Original Investigations, vol. 31, pp. 1117–1123. Elsevier (2013)

	9.	 Chen X, Yan G-Y. Novel human lncrna-disease association inference based on lncrna expression profiles. Bioinformatics. 
2013;29(20):2617–24.

	10.	 van Poppel H, Haese A, Graefen M, de la Taille A, Irani J, de Reijke T, Remzi M, Marberger M. The relationship between 
prostate cancer gene 3 (pca3) and prostate cancer significance. BJU Int. 2012;109(3):360–6.

	11.	 Yang Z, Zhou L, Wu L-M, Lai M-C, Xie H-Y, Zhang F, Zheng S-S. Overexpression of long non-coding rna hotair pre-
dicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 
2011;18(5):1243–50.

	12.	 Wang, W., Guan, X., Khan, M.T., Xiong, Y., Wei, D.-Q.: Lmi-dforest: a deep forest model towards the prediction of lncrna-
mirna interactions. Comput. Biol. Chem. 107406 (2020)

	13.	 Li Y, Sun H, Feng S, Zhang Q, Han S, Du W. Capsule-lpi: a lncrna-protein interaction predicting tool based on a capsule 
network. BMC Bioinform. 2021;22(1):1–19.

	14.	 Li, A., Ge, M., Zhang, Y., Peng, C., Wang, M.: Predicting long noncoding rna and protein interactions using heterogeneous 
network model. Biomed. Res. Int. 2015 (2015)

	15.	 Zhou Y-K, Shen Z-A, Yu H, Luo T, Gao Y, Du P-F. Predicting lncrna-protein interactions with mirnas as mediators in a 
heterogeneous network model. Front Genet. 2020;10:1341.

	16.	 Yang J, Li A, Ge M, Wang M. Relevance search for predicting lncrna-protein interactions based on heterogeneous net-
work. Neurocomputing. 2016;206(19):81–8.

	17.	 Zhao Q, Yu H, Ming Z, Hu H, Ren G, Liu H. The bipartite network projection-recommended algorithm for predicting long 
non-coding rna-protein interactions. Mol Therapy-Nucleic Acids. 2018;13:464–71.

	18.	 Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding rna-protein interactions. 
Genom Proteom Bioinform. 2016;14(1):62–71.

	19.	 Xie G, Wu C, Sun Y, Fan Z, Liu J. Lpi-ibnra: long non-coding rna-protein interaction prediction based on improved bipar-
tite network recommender algorithm. Front Genet. 2019;10:343.

	20.	 Zhang W, Qu Q, Zhang Y, Wang W. The linear neighborhood propagation method for predicting long non-coding rna-
protein interactions. Neurocomputing. 2018;273:526–34.

	21.	 Zhou Y-K, Hu J, Shen Z-A, Zhang W-Y, Du P-F. Lpi-skf: predicting lncrna-protein interactions using similarity kernel fusions. 
Front Genet. 2020;11:1554.

	22.	 Chen Y, Fu X, Li Z, Peng L, Zhuo L. Prediction of lncrna-protein interactions via the multiple information integration. Front 
Bioeng Biotechnol. 2021;9:60.

	23.	 Peng L, Liu F, Yang J, Liu X, Meng Y, Deng X, Peng C, Tian G, Zhou L. Probing lncrna-protein interactions: data repositories, 
models, and algorithms. Front Genet. 2020;10:1346.

	24.	 Liu H, Ren G, Hu H, Zhang L, Ai H, Zhang W, Zhao Q. Lpi-nrlmf: lncrna-protein interaction prediction by neighborhood 
regularized logistic matrix factorization. Oncotarget. 2017;8(61):103975.

	25.	 Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H. Irwnrlpi: integrating random walk and neighborhood regularized logistic 
matrix factorization for lncrna-protein interaction prediction. Front Genet. 2018;9:239.

	26.	 Zhang T, Wang M, Xi J, Li A. Lpgnmf: predicting long non-coding rna and protein interaction using graph regularized 
nonnegative matrix factorization. IEEE/ACM Trans Comput Biol Bioinf. 2018;17(1):189–97.

	27.	 Zhang W, Yue X, Tang G, Wu W, Huang F, Zhang X. Sfpel-lpi: sequence-based feature projection ensemble learning for 
predicting lncrna-protein interactions. PLoS Comput Biol. 2018;14(12):1006616.

	28.	 Fan X-N, Zhang S-W. Lpi-bls: predicting lncrna-protein interactions with a broad learning system-based stacked ensem-
ble classifier. Neurocomputing. 2019;370:88–93.

	29.	 Deng L, Yang W, Liu H. Predprba: prediction of protein-rna binding affinity using gradient boosted regression trees. Front 
Genet. 2019;10:637.



Page 24 of 24Zhou et al. BMC Bioinformatics          (2021) 22:479 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	30.	 Wekesa JS, Meng J, Luan Y. Multi-feature fusion for deep learning to predict plant lncrna-protein interaction. Genomics. 
2020;112(5):2928–36.

	31.	 Shen, Z.-A., Luo, T., Zhou, Y.-K., Yu, H., Du, P.-F.: Npi-gnn: predicting ncrna-protein interactions with deep graph neural 
networks. Brief. Bioinform. (2021)

	32.	 Feng, J., Yang, Y., Zhou, Z.H.: Multi-layered gradient boosting decision trees (2018)
	33.	 Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. Noncodev4: exploring the world of long non-coding 

rna genes. Nucleic Acids Res. 2014;42(D1):98–103.
	34.	 Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. Npinter v2. 0: an updated database of ncrna interactions. Nucleic Acids Res. 

2014;42(D1):104–8.
	35.	 Consortium, U.: Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):506–15.
	36.	 Zheng X, Wang Y, Tian K, Zhou J, Guan J, Luo L, Zhou S. Fusing multiple protein–protein similarity networks to effectively 

predict lncrna-protein interactions. BMC Bioinform. 2017;18(12):11–8.
	37.	 Bai Y, Dai X, Ye T, Zhang P, Yan X, Gong X, Liang S, Chen M. Plncrnadb: a repository of plant lncrnas and lncrna-rbp protein 

interactions. Curr Bioinform. 2019;14(7):621–7.
	38.	 Muhammod R, Ahmed S, Md Farid D, Shatabda S, Sharma A, Dehzangi A. Pyfeat: a python-based effective feature 

generation tool for dna, rna and protein sequences. Bioinformatics. 2019;35(19):3831–3.
	39.	 Márquez, B., Amaya, J.C.: Bioprot contenedor autónomo de residuos biológicos. Revista colombiana de tecnologias de 

avanzada 1(33) (2019)
	40.	 Ding C, Wang D, Ma X, Li H. Predicting short-term subway ridership and prioritizing its influential factors using gradient 

boosting decision trees. Sustainability. 2016;8(11):1100.
	41.	 Shi Z, Chu Y, Zhang Y, Wang Y, Wei D-Q. Prediction of blood–brain barrier permeability of compounds by fusing resam-

pling strategies and extreme gradient boosting. IEEE Access. 2020;9:9557–66.
	42.	 Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)
	43.	 Jiao Y, Du P. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. 

Quant Biol. 2016;4(4):320–30.
	44.	 Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J, et al. Exosome rna 

unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 2017;170(2):352–66.
	45.	 Tan C, Cao J, Chen L, Xi X, Wang S, Zhu Y, Yang L, Ma L, Wang D, Yin J, et al. Noncoding rnas serve as diagnosis and prog-

nosis biomarkers for hepatocellular carcinoma. Clin Chem. 2019;65(7):905–15.
	46.	 Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding rna gas5 is a growth arrest-and starvation-associated repres-

sor of the glucocorticoid receptor. Sci Signal. 2010;3(107):8–8.
	47.	 Mourtada-Maarabouni M, Pickard M, Hedge V, Farzaneh F, Williams G. Gas5, a non-protein-coding rna, controls apoptosis 

and is downregulated in breast cancer. Oncogene. 2009;28(2):195–208.
	48.	 Xu W, Zhang L, Geng Y, Liu Y, Zhang N. Long noncoding rna gas5 promotes microglial inflammatory response in parkin-

sons disease by regulating nlrp3 pathway through sponging mir-223-3p. Int Immunopharmacol. 2020;85:106614.
	49.	 Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F, Song Y. A critical role for the long non-coding rna gas5 in proliferation and 

apoptosis in non-small-cell lung cancer. Mol Carcinog. 2015;54(S1):1–12.
	50.	 Pickard M, Mourtada-Maarabouni M, Williams G. Long non-coding rna gas5 regulates apoptosis in prostate cancer cell 

lines. Biochimica et Biophysica Acta. 2013;1832(10):1613–23.
	51.	 Cao S, Liu W, Li F, Zhao W, Qin C. Decreased expression of lncrna gas5 predicts a poor prognosis in cervical cancer. Int J 

Clin Exp Pathol. 2014;7(10):6776.
	52.	 Sun M, Jin F-Y, Xia R, Kong R, Li J-H, Xu T-P, Liu Y-W, Zhang E-B, Liu X-H, De W. Decreased expression of long noncoding 

rna gas5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 2014;14(1):1–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	LPI-deepGBDT: a multiple-layer deep framework based on gradient boosting decision trees for lncRNA–protein interaction identification
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Data preparation
	Overview of LPI-deepGBDT
	Feature extraction
	Feature extraction of lncRNAs
	Feature extraction of proteins

	Dimension reduction
	LPI prediction framework
	Problem description
	Gradient boosting decision trees
	The multi-layered deep architecture with GBDT


	Results
	Evaluation metrics
	Experimental settings
	Comparison with five state-of-the-art LPI prediction methods
	Case study
	Identifying potential proteins for a new lncRNA
	Finding potential lncRNAs interacting with a new protein
	Finding new LPIs based on known LPIs


	Discussion and further research
	Acknowledgements
	References


