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Sex hormones, intestinal
inflammation, and the gut
microbiome: Major influencers
of the sexual dimorphisms
in obesity
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Obesity is defined as the excessive accumulation of body fat and is associated

with an increased risk of developing major health problems such as

cardiovascular disease, diabetes and stroke. There are clear sexual

dimorphisms in the epidemiology, pathophysiology and sequelae of obesity

and its accompanying metabolic disorders, with females often better protected

compared to males. This protection has predominantly been attributed to the

female sex hormone estrogen and differences in fat distribution. More recently,

the sexual dimorphisms of obesity have also been attributed to the differences

in the composition and function of the gut microbiota, and the intestinal

immune system. This review will comprehensively summarize the pre-clinical

and clinical evidence for these sexual dimorphisms and discuss the interplay

between sex hormones, intestinal inflammation and the gut microbiome in

obesity. Major gaps and limitations of this rapidly growing area of research will

also be highlighted in this review.
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Introduction

Obesity is a globally increasing pandemic affecting all ages, ethnicities, sexes, and

socio-economic groups. The prevalence of obesity has tripled in the last forty years now

affecting ~30% of adults worldwide (1). Obesity is the excessive accumulation of body fat

and is associated with an increased risk of developing major health problems such as
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cardiovascular disease, diabetes and stroke (2). The most used

standard in identifying overweight and obesity is a body mass

index (BMI; body weight (kg)/height (m) 2) > 25 kg/m2 classified

as overweight and > 30 as obese (3). It is important to note, that

while these are the most widely reported BMI cutoffs, they are

only relevant to Caucasians. The BMI cutoffs for obesity for

other racial and ethnic categories vary to these values (4). For

example, the cutoffs for South Asian populations are slightly

lower with a BMI > 23 are classified as overweight and > 25 as

obese (3). Concomitant metabolic disturbances of obesity

include low-grade chronic inflammation, metabolic

endotoxemia, hypertension, dyslipidemia, hyperglycemia, and

insulin resistance (5). Interestingly, there are clear sexual

dimorphisms in the epidemiology and pathophysiology of

obesity and its accompanying metabolic disorders. Generally,

females are better protected compared to males – this

phenomenon will be discussed in much more detail

throughout this review (6). Protection in females has been

attributed to various biological processes, that will be the focus

of this review, such as the influence of adipose distribution, sex

hormones, sex chromosomes, the gut microbiota and the

intestinal immune system (7–10).
Adipose tissue biology in obesity

Obesity is instigated by a chronic imbalance of increased

energy intake and/or reduced energy expenditure (1). This

increases adiposity, a key driver in the development of obesity

and the consequential inflammatory state (11). Adipocytes are the

predominant cell type in adipose tissue. However, a variety of

other cell types also reside in fat beds including leukocytes,

endothelial cells and fibroblasts (12). Adipose is a major source

of both inflammatory and hormonal signals, and thus is becoming

recognized as an endocrine organ in its own right (12). Adipocytes

are traditionally classified as either white or brown (12). White

adipocytes are particularly important in the storage of energy,

whereas brown adipocytes are primarily involved in

thermoregulation (via non-shivering thermogenesis) (12). In

obesity, where there is a persistent excess of energy, white

adipocytes undergo hypertrophy and proliferate to adapt to the

accumulation of triglycerides (13). As a result, white adipocytes

promote a chronic inflammatory response by secreting pro-

inflammatory cytokines such as tumor necrosis factor alpha

(TNF-a), interleukin-6 (IL-6), and interleukin-1 beta (IL-1b)
(14). This pro-inflammatory phenotype is further compounded

by a reduction in the release of anti-inflammatory molecules by

obesogenic adipose (15). Ultimately, these changes aid the

infiltration of pro-inflammatory immune cells into the adipose

tissue and surrounding organs (16). Unsurprisingly, in obesity,

white adipose tissue provokes dyslipidemia, insulin resistance and

hyperglycemia further exacerbating the dysregulation of whole-
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body energy homeostasis (16) (Figure 1). Importantly, the

changes in adipocyte biology and the subsequent downstream

metabolic processes in obesity significantly differ between the

sexes and therefore, serve as a major source for the sexual

dimorphism of obesity (17).
Sexual dimorphisms in adipose
tissue distribution, sex hormones
and sex chromosomes

Historically, females have been grossly underrepresented in

clinical trials and pre-clinical research. Part of this sex bias in

research is the result of an early misconception that men and

women are the same. We now know that men and women are

unique on a cellular level, and in the setting of obesity there are

major sexual dimorphisms. Obesity is slightly more common in

females. However, compared to males, females are protected from

many of the metabolic disturbances and sequalae that are associated

with disease progression in obesity (18, 19). These sexual

dimorphisms are also reflected in experimental animal models of

diet-induced obesity (19). Male rodents experience an earlier onset

and greater degree of obesity, as well as more prevalent concomitant

risk factors compared to their female counterparts (such as

hyperglycemia, hyperinsulinemia and hypertension) (20, 21).

Interestingly, older female animals, or those which model a post-

menopause stage (i.e., ovariectomized) are less protected than

young females with intact ovaries (22). This correlates with

human epidemiology of obesity, whereby men and post-

menopausal women are at the greatest risk of developing

complications of obesity (23). Collectively, this supports the

notion that sex hormones in pre-menopausal women are

protective in the setting of obesity. Indeed, sex hormones, such as

estrogen, testosterone and androgens are related to the regulation of

energy metabolism, food intake and body weight in humans (22,

24). Estrogen is of particular importance and well-established to be

protective against cardiometabolic disorders such as obesity,

hypertension, and diabetes (25).

The correlation between adipose tissue distribution, sex

hormones and the concomitant metabolic disturbances of

obesity are well defined (Figure 2), and visceral adiposity is a

known driver in the progression of disease in obesity (26). The

distribution of adipose tissue throughout the body differs

between men and women (27–29). Women have a greater

degree of subcutaneous fat (‘gynoid’ pattern), primarily in the

gluteofemoral region. Whereas adipose tissue in men is

predominantly seen in the abdominal area (‘android’ pattern)

as visceral fat (30, 31). The sexual bias of these effects has been

reported in both rodent models of obesity and in a clinical

setting. Male mice on a high fat diet are at a higher risk of

developing a pro-inflammatory profile (visceral inflammation,
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FIGURE 1

Adipocyte biology in obesity. A chronic imbalance of increased energy intake and or reduced energy expenditure increases adiposity, via
hypertrophy and proliferation of white adipocytes. This promotes the secretion of pro-inflammatory cytokines (i.e., tumor necrosis factor alpha
(TNF-a), interleukin 6 (IL-6), IL-1b, and IL-10) to aid the infiltration of pro-inflammatory immune cells into the adipose tissue and surrounding
organs (16). This process promotes dyslipidemia, insulin resistance and hyperglycemia further exacerbating the dysregulation of whole-body
energy homeostasis. Created with BioRender.com.
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glucose intolerance, insulin resistance and hyperinsulinemia)

when compared to their female counterparts (32, 33). Increased

visceral adiposity in men exacerbates the secretion of pro-

inflammatory molecules into systemic circulation which

produces a knock-on effect whereby the risk of cardiovascular

events is markedly increased. This was observed in the European

Health Examination Survey in Luxembourg (34). Interestingly,

the Netherlands Epidemiology of Obesity Study reported that

visceral adipose tissue distribution was more strongly associated

with cardiometabolic risk factors in obese females than in obese

males (35). The differences observed in these two studies may be

due to the Netherlands study including only obese participants,

whereas in the Luxembourg study the BMI of participants

ranged from <20 to >35 kg/m2.

Pre- and post-menopausal studies in women emphasize the

role of estrogen in the distribution of adipose tissue by which

intra-abdominal visceral fat is increased in post-menopausal

women (25, 36–38). With this shift in fat distribution, post-

menopausal women undergo metabolic alterations. Lipoprotein

lipase activity increases and lipolysis decreases with the fall of

estrogen and increased androgenicity is induced during the

transition to menopause (36). Ovariectomy in rodents is

commonly used as a model of estrogen depletion that occurs

in humans. White adipose inflammation is increased and

comparable to a male-like phenotype of inflammatory gene

expression in ovariectomized mice (39). Despite this pro-

inflammatory profile, there were no differences in adipocyte

size and total adiposity between ovariectomized and sham mice.

This suggests that ovarian hormones are not important in the

expansion or apoptosis of adipocytes (39).
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In addition to the detrimental effects of visceral adipose, studies

also report striking protective effects of gluteofemoral subcutaneous

adipose tissue (40). Specifically, increased gluteofemoral mass is

associated with lower arterial calcification, arterial stiffness,

improved blood lipid levels and atherosclerotic protection (41).

While the precise protective mechanisms remain unclear,

gluteofemoral adipose has an active role in fatty acid uptake and

release by ‘trapping’ excessive fatty acids, preventing lipid

accumulation and lipotoxicity (41–43). Lipolysis relative to energy

expenditure is therefore higher in women. Other studies link the

protective effects of gluteofemoral adipose with the secretion of anti-

inflammatory molecules such as adipokines (41).

Sex chromosomes are another crucial contributing factor to the

sexual dimorphisms of adipose tissue distribution and the

subsequent metabolic complications of obesity. Female gonads

typically occur in individuals with XX chromosomes and male

gonads in those with XY chromosomes (44). In a unique mouse

model, gonadectomized male and female mice carrying XX

chromosome complements developed worse obesity disease

outcomes than gonadectomized mice carrying the XY

chromosome complements (i.e. increased adiposity, increased

satiety, and elevated lipid and insulin levels) (45). Gonadectomized

mice carrying XO and XXY chromosome complements revealed that

the differences between the XX and XY mice due to the additional X

chromosome (or “X chromosome dosage”) rather than the lack of a

Y chromosome. Indeed, several genes that escape X chromosome

inactivation are highly expressed in adipose and liver tissues – both of

which are key regulators of metabolism. Thus, the X chromosome

may be an important factor in addition to gonads/sex hormones that

causes sex differences in obesity and metabolism (45).
FIGURE 2

Adipose tissue distribution, sex hormones and metabolic disturbances of obesity. Males and post-menopausal females have increased cardiovascular
risk, abdominal/visceral obesity and reduced insulin subcutaneous adipose distribution compared to pre-menopausal females. The adipose tissue within
males and post-menopausal females is more pro-inflammatory than that of pre-menopausal females. Created with BioRender.com.
frontiersin.org
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Human sex chromosome anomalies also exist such as

Klinefelter syndrome (XXY) and Turner syndrome (XO) (46). In

Klinefelter syndrome, the most common sex chromosome disorder

in men, patients typically present with hypergonadotropic

hypogonadism and infertility, with a 5-fold higher incidence in

metabolic syndrome, stemming from hypogonadism and low

testosterone levels, affecting adiposity and different metabolic

traits (47). Turner syndrome patients (the most common sex

disorder observed in females, whereby one of the X chromosomes

are partially or completely missing) have dramatically reduced

gonadal hormone levels. These patients also lack protection

against abdominal obesity and have a 4-fold increase in risk for

type 2 diabetes (48). Notably, the presence of XX and XY

chromosomes influence the developmental path between sexes

and gonadal hormones. This ultimately affects the gene

expression that may underpin the differences in obesity and

metabolism observed between males and females. Although

largely attributed to sex hormones and sex chromosomes, the

sexual dimorphism of obesity has also been partially credited to

sex differences in the microflora residing in our intestines.
The gut microbiota: A key player in
health and disease

The gut microbiota is made up of trillions of complex and

dynamic microorganisms living within the intestines and

working symbiotically with their host for essential metabolic

functions (49). Dietary carbohydrates are fermented by the gut

microbiota generating short chain fatty acids (SCFA) as by-

products, primarily acetate, butyrate and propionate (50). A

higher abundance of SCFA, particularly butyrate, is associated

with reduced intestinal inflammation and offers protection

against the development of insulin resistance and obesity (51,

52). Additionally, there are certain beneficial, anti-inflammatory

bacterial species that respond well to fiber rich diets such as

Akkermansia muciniphila, Bifidobacterium spp., Prevotella spp.,

and Veillonella spp. forming a favored environment in terms of

functionality and immunity (53). Other by-products of the gut

microbiota include energy metabolites including pyruvic, citric,

fumaric and malic acid (54, 55). These organic acids aid in

digestion, immunity, and specifically in preventing the growth of

pathogenic bacteria and thus, offer further protection for their

host (56, 57).

In addition to aiding in the digestion of foods to produce

favorable by-products, the gut microbiota also has an important

role in stimulating and regulating hormone production (58).

Previous studies show significant correlations between sex

steroid levels (i.e., estrogen, progesterone, and testosterone)

and gut microbiota composition (7, 59–61). These studies of
Frontiers in Immunology 05
the interactions between sex hormones and the gut microbiota

revealed sexual dimorphisms in the composition of the gut

microbiota which will be discussed later. Another crucial

function of the gut microbiota is the maintenance of the

intestinal immune system response and its tolerance to the

bacterial community (62). Due to their close proximity, it is

essential that the gut microbiota and intestinal immune system

tolerate one another (62). The interaction between the immune

system and gut microbiota is a recognized key player in the

development of cardiometabolic diseases and will be discussed in

detail later in this review. The next section of the review will

focus on the role of the gut microbiota in regulating metabolic

functions, particularly in the context of diseases such as obesity

and other cardiometabolic diseases (63).

The gut microbiota clearly influences the health of its host

and various disease states are associated with “dysbiosis” of the

gut microbiota (i.e. an altered composition or functionality).

However, dysbiosis is often disease-specific and not consistent

between different studies. This is likely due to environmental

factors such as diet, lifestyle and drugs being major determinants

of gut microbiome composition. Consequently, the gut

microbiome is highly individualized which makes it difficult to

define what constitutes a healthy microbiome (64). Thus, both

clinical and experimental studies should be replicated in

independent locations to maximize reproducibility and

translatability of findings (65). Moreover, it is largely unclear if

gut dysbiosis is a cause or the consequence of disease,

highlighting the need for further studies defining the

molecular mechanisms by which altered microbiomes cause

disease. A recent study built a machine learning model that

included both human variables and gut microbiota to try to infer

gut microbiota and disease associations more accurately (66).

Despite the striking variations in findings between studies, one

of the most consistent findings of intestinal dysbiosis in the setting

of disease is the loss of microbiota diversity (67, 68). A highly

diverse microbiota is thought to be crucial to good gut health as it

is more resilient against pathogens, has a greater functionally

complex community and builds a stronger and more stable

immune system (69–71). Therefore, reduced gut microbiome

diversity is most likely detrimental in disease due to a

subsequent loss of microbial community function. Many studies

have highlighted that microbial community composition is less

important than microbial community function. Therefore,

increased microbial diversity can be both beneficial or

detrimental, more context is often required for accurate

interpretation. For example, germ-free mice lacking a

microbiome (and thus lack microbiome diversity), but are

protected diet-induced obesity, compared to mice with a gut

microbiota (72). Ultimately, making conclusions based on

microbiota diversity alone has limited value, and should

be avoided.
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Major shifts in gut microbiota
in obesity

Dysbiosis is a particularly common consequence of a poor

diet – a common factor in obesity (73). Diets have a marked

influence on the gut microbiota, for example, diets low in fiber

and rich in bad fats can modify the bacterial population in as

little as 24 hours (74, 75). Diet-induced obesity in animal models

is often used to mimic metabolic disturbances and the

concomitant gut dysbiosis seen in humans (76, 77). Typically,

obesogenic diets include high fat and/or high sugar contents

with variations in the types of fat and sugar as well as differences

in the duration of diet regimes (77, 78). Importantly, the gut

microbiome also influences the concomitant metabolic

disturbances of obesity. Oral antibiotic treatment (ampicillin)

improves glucose tolerance in high fat diet-fed obese mice. These

‘protective’ effects of antibiotics in obesity are only effective in

early life, suggesting that the plasticity of the gut microbiome

reduces with age (79, 80).

Gut microbiota dysbiosis describes the imbalance of

microorganisms within the gut resulting in metabolic

disturbances in the body and contributing to the development

of obesity (81, 82). Overall, dysbiosis can be identified by the loss

of beneficial bacteria, the increased abundance of harmful

bacteria and a loss of compositional and functional diversity

(83). Notably, an emphasis has been placed on the status of the

Firmicutes: Bacteroidetes ratio, two dominant phyla in the gut

microbiota, and how these phyla alter with disease (84). Many

studies conclude that disease states such as obesity are associated

with an increase in the abundance of the Firmicutes phyla and a

decrease in the abundance of the Bacteroidetes phyla (85–87).

Moreover, this phenomenon has proven to be reversible with

weight loss (88). While the majority of studies report increased

Firmicutes : Bacteroidetes ratios in obesity, it is important to

highlight that this is not always the case, and contrasting findings

have become more common in recent years. For example, in a

recent small cohort study of Beijing volunteers the ratio of

Firmicutes/Bacteroidetes decreased significantly in people with

obesity (89). Larger studies have also reported similar findings

(90). Unfortunately, the Firmicutes: Bacteroidetes ratio is not a

robust marker of obesity-related microbiome dysbiosis and

many of the studies interpreting changes to the Firmicutes:

Bacteroidetes ratio are drastically underpowered (91).

A more accurate approach may be to detect obesity-related

changes to the genus, family and species levels within the gut

microbiome (54). Beneficial bacteria such as Akkermansia

muciniphila and members of the Bifidobacterium genus have a

negative correlation in the development of obesity (92, 93). The

beneficial effects of A. muciniphila on the intestinal epithelial

barrier have long been reported, as it a highly effective mucin-

degrading bacterium, with the ability to use various enzyme

combinations to hydrolyze up to 85% of mucin structures within
Frontiers in Immunology 06
the gut (94). A reduction in A. muciniphila is associated with

increased intestinal permeability or a “leaky gut” – a hallmark of

gut dysbiosis in obesity (95). Intestinal permeability allows

leakage of water, proteins and other endotoxic molecules such

as lipopolysaccharide (LPS) into systemic circulation with the

ability to reach other organs and tissues (96). High circulating

levels of LPS, termed metabolic endotoxemia, promotes further

inflammation, weight gain and diabetes in experimental animals

and humans (97). Recent studies have explored the possibility of

using A. muciniphila-associated therapies as a next-generation

treatment for obesity (98). Opposingly, harmful bacteria such as

the those from the Desulfovibrio, Fusobacterium and Bilophila

genera are positively correlated with obesity (92, 93, 99).
The metabolic and hormonal
consequences of gut dysbiosis
in obesity

Harmful bacteria within the gut have specified mechanisms

that can be destructive to the host. For example, members of the

Desulfovibrio genus and other sulphate-reducing bacteria induce

apoptosis of cells on the intestinal epithelial barrier allowing

barrier degradation (100). Additionally, the abundance of gram-

negative bacteria increases, with endotoxic lipopolysaccharide

(LPS) in their outer membrane (101). LPS then gains access into

systemic circulation due to the increased permeability of the

epithelial barrier (102). The combination of an increase in

harmful bacteria, the decrease in beneficial bacteria, and an

increased concentration of pro-inflammatory cytokines within

the intestines causes degradation of tight junction proteins

between cells allowing LPS and other molecules into

underlying tissues and thus, increasing intestinal inflammation

(100, 103, 104). Some studies have explored the therapeutic

potential of targeting this increase in harmful bacteria in obesity.

Alteration of the gut microbiota via antibiotics in mice with diet-

induced obesity inhibits weight gain, increases lipid oxidation,

thermogenesis, and adiponectin gene expression in epididymal

adipose tissue. Increases in these molecular pathways likely

inhibit fat synthesis and promote a “leaner” phenotype (105).

Advances in metagenomics and metabolomics revealed new

associations between microbial-derived metabolites (i.e. LPS,

short chain fatty acids (SCFAs), ethanol, trimethylamine

(TMA), and bile acids) and obesity.

Bile acids are a class of amphipathic steroids synthesized in

the liver from cholesterol and metabolized by the gut microbiota.

Bile acids facilitate intestinal fat absorption but also modulate

glucose, lipid and energy metabolism, intestinal integrity and

immunity (106). While there are some discrepancies between

studies, circulating bile acid levels are generally positively

correlated with obesity. Importantly, microbiome-derived bile

acid species have different signaling functions to liver-derived
frontiersin.org
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species. There is a growing body of evidence suggesting a link

between the microbiome – an important player in bile acid

metabolism – and bile acid levels/composition in obesity (106).

Fecal microbiota transplantation (FMT; from a single lean

donor) in obese, metabolically uncompromised patients had

sustained shifts in microbiomes and bile acid levels toward

those of the donor (107). Like much of the microbiome

research to date, further studies are still needed to establish

whether there is causality, as these “beneficial” changes were not

associated with weight loss or changes to glucose metabolism.

To date, numerous studies suggest that gut microbiomes

influence eating behavior in humans and animals. Appetite-

related hormones such leptin (inhibits appetite) and ghrelin

(promotes appetite) are produced by peripheral organs,

including gut and adipose tissue. Changes to specific microbial

compositions have reported effects on these hormones, and vice

versa. For example, in obese and non-obese humans, higher

circulating leptin concentrations are associated with reduced gut

microbiome diversity (108). Moreover, in vivo and in vitro

studies showed that the translocation of living gut microbiota

to adipose tissues in obese patients with increased intestinal

permeability inhibits leptin signaling (109). Alternatively, the

gut microbiota may modulate appetite via grehlin. In another

study, treatment with SCFAs, lactate, or bacterial supernatants to

promote gut microbiome health attenuated ghrelin-mediated

signaling (110).

Clearly, whilst gut dysbiosis has been consistently reported in

obesity, the severity, and subsequent consequences of dysbiosis

vary among obese individuals depend on many factors, which

likely explains inconsistent findings between studies (111, 112).

One such factor that has more recently been recognized to

influence the gut microbiota is an individual’s sex.
Sexual dimorphisms and
gut microbiota

The impact of the gut microbiota and its influence on the

development of obesity has been well documented. However,

one aspect that was overlooked in earlier research is the effect of

sex. Many studies have investigated the impact of the gut

microbiota by altering variables such as diet, lifestyle, and

drugs but it is important to recognize that the gut microbiota

is different for males and females prior to any manipulations

(113). Sequencing the microbial community of prepubescent

male and female mice does not show any separation between

sexes indicating that sex differences are influenced by gonadal-

derived sex hormones and puberty (59, 114). Typically, in mice,

the female gut microbiota more closely resembles that of

prepubescent males, or castrated males, rather than age-

matched males (59, 115). Furthermore, the diversity differs

between sexes, with males having a lower species richness and
Frontiers in Immunology 07
evenness compared to females of the same age in mice models

(116). As well as differences in diversity, both animal and human

studies show clear variance in the abundance of specific bacteria

being higher in one sex compared to the other (113, 117–119).

The distinct differences in the male and female gut microbiota,

for both animal and human models, inevitably generate

differences in metabolic processes and therefore, differences in

dysbiosis and the protection or susceptibility to metabolic

diseases including obesity (56, 115, 120).

It is well-established that sex steroid hormones are the major

drivers of sexual dimorphisms in males and females however,

whether there is the strong interaction between sex hormones

and gut microbiota is still unclear (59). An observational study

that compared the microbiota of men and women with higher

serum hormone levels to those with low hormone levels suggests

that sex hormones do indeed influence the gut microbiota (121).

Higher levels of hormones were associated with a greater

diversity in the gut community compared to those with lower

hormone levels in both sexes. Moreover, bacteria such as those

from the Acinetobacter, Ruminococcus and Megamonas genus

were significantly associated with testosterone levels in men and

Slackia and Butyricimonas were significantly associated with

estradiol levels in women (121). Gut microbial transplants to

the opposite sex have also been used to determine the hormonal

association (10). In these studies females receiving male donor

gut microbiota, not only showed higher levels of gut

inflammation (a common sign of obesity and cardiometabolic

disease) but also resulted in raised testosterone levels (10, 115).

The gut microbiota has also been shown to directly influence

sex hormone levels in animal studies using microbial transplants

between germ-free mice and mice of opposite sex (7, 10, 122).

Colonizing germ-free mice with gut microbiota increases the

levels of circulating androgens and begins the development of

immune and protective pathways (7, 59). However, there is also

evidence that sex hormones can also influence the gut

microbiome. Inoculating germ-free mice with human male

donor gut microbiota results in males and females harboring

these microorganisms differently (122). In female mice, the gut

microbiota significantly differed from the matched males and

donor, with a higher bacterial diversity (122). Collectively, these

studies indicate that there is likely a two-way communication

between systemic sex hormones and the gut microbiome,

whereby both factors impact one another.

The interactions between sex hormones and gut microbiota

have also been studied in animal models using hormone and

gonadectomy treatments (61, 101). Estradiol, the most common

form of estrogen, is used in hormone treatments to remedy the

loss of ovarian estrogen typically seen in menopausal women

(123). High fat diet-fed female mice treated with estradiol are

protected from cardiometabolic disease (reduced weight gain,

improved glucose tolerance and insulin sensitivity) when

compared to untreated high fat diet-fed female mice (61).

Moreover, estradiol alters the gut microbiota by slowing the
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increase in Firmicutes: Bacteroidetes ratio that is usually seen in

high fat diet-fed mice (61). Interestingly, sequencing of the gut

microbiome of these mice revealed that bacteria from the S24-7

and Ruminococcaceae families, known to generate beneficial

SCFA, were in higher abundance in estradiol-treated mice,

compared to untreated mice (61). The benefits of estradiol

treatment are not limited to just females. Male mice treated

with estradiol have a reduced susceptibility to gut epithelial

permeability, inflammation and weight gain compared to

untreated males (101, 124).
Sexual dimorphisms of the gut
microbiota in obesity

As previously discussed, the female sex is also protected from

the development of metabolic disturbances in obesity, and the gut

microbiota responds differently to diet based on sex (summarized in

Table 1). This was demonstrated in overweight and obese adults

undergoing either a high protein or low-fat weight loss intervention

diet (125). Changes in the gut microbiota occurred not only in diet-

specific manner but also differed based on sex (125). Additionally,

in animal models of obesity, high fat/high sugar diet-fed mice,

demonstrated that females respond slower to the biological adverse

effects of the diet as well as differentiating in the composition of the

gut microbiota, compared to males (126). The increased Firmicutes:

Bacteroidetes ratio typically seen in the development of obesity and
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metabolic disease is significantly slower in female mice (127).

Moreover, differences in the abundance of specific genera are also

observed in metabolic syndrome patients. Higher abundances of

Veillonella, Methanobrevibacter, Acidaminococcus, Clostridium,

Roseburia and Faecalibacterium genera in males, whereas genera

such as Bilophila, Ruminococcus and Bacteroides were greater in

females (68, 82). In the male gut microbiota for example,Veillonella

genera are found in higher abundance in children with type 1

diabetes however, Roseburia genera is found to improve metabolic

alterations brought on by high fat diets (128, 129). Likewise, for

females, Bilophila genera aggravates metabolic dysfunction

however, Bacteroides genera has numerous metabolic benefits on

the host (130, 131). These findings suggest that it is not simply the

abundance of specific bacteria in the gut microbiota that determine

health and disease within the host.

In addition to the sexual dimorphism in response to poor

“Western-style” diets, the sex-specific response to beneficial diet

supplementations have also been studied (132, 133). Beneficial fiber

compounds, including pre- and probiotics, can attenuate the

unfavorable effects of the diet by shaping the gut microbiota (93).

The addition of prebiotic fibers, such as oligofructose, significantly

increases beneficial gut bacteria in healthy and gnotobiotic female,

but not male mice, such as Bacteroides and Bifidobacterium genera

and A. muciniphila (122, 134). Furthermore, probiotic treatments

also adjust the gut microbiota differently for males and females

(135). Administration of Lactobacillus reuteri increased the

abundance of the Bacteroidetes phylum and decreased Firmicutes
TABLE 1 Summary of human and mouse studies investigating the sexual dimorphisms of intestinal microbiota in obesity.

Model Age Physiological effects Main findings Ref

4-months of either moderately high-
protein or LFD in patients with BMI >
25kg/m2

N/A Weight loss: ↓ BMI, total & visceral fat, BP, total
glucose, LDL cholesterol, leptin, and insulin
regardless of diet or sex.

Weight loss-related changes to the intestinal microbiota
occurred in a sex- and diet-specific manner.

(125)

Men & post-menopausal women, split
based on BMI, following either a
Mediterranean or low-fat diet.

♂:
61.2
±1.3y
♀:
60.3
±1.4y

N/A: study did not compare physiological
parameters between sexes or groups.

Obesity influenced sex differences in gut microbiota.
♂: ↓ Bacteroides abundance with ↑ BMI; ↑
Methanobrevibacter abundance (vs. ♀) regardless of BMI.
♀: ↔ Bacteroides abundance with ↑ BMI; ↑ Bilophila
abundance (vs. ♂) regardless of BMI.

(82)

C57BL/6 mice fed either a NCD or HFD
(60% fat) for 20 weeks.

8
weeks
old

♂: ↑ weight gain for the first 7 weeks on HFD vs.
♀.
No sex differences following this timepoint.

Sex differences existed in diversity and structure of the
gut microbiota at baseline.
Gender-specific changes to gut microbiota occurred
following HFD.

(113)

C57BL/6 mice fed either a LFLS (10% total
fat) or HFHS (45% total fat) for 14 weeks.

8
weeks
old

♂: HFHS ↑ weight gain and plasma leptin vs. ♀
HFHS mice.

Significant differences in gut microbiota between males
and females in both LFLS and HFHS groups.
Diet-induced changes to Firmicutes differed between
males and females for certain genera.

(126)

C57BL/6 mice fed either a LFD (10% total
fat) or HFD (60% total fat) for 20 weeks.

6
weeks
old

HFD increased body weight in males and
females however, males developed obesity much
earlier than female mice.

♂: HFD ↓ Bacteroidetes, Proteobacteria & Tenericutes; ↑
Firmicutes. LFD ↓ Proteobacteria & Tenericutes; ↑
Bacteroidetes; ↔ Firmicutes.
♀: HFD ↓ Firmicutes & Tenericutes; ↑ “others”; ↔
Bacteroidetes. LFD ↓ Firmicutes & Tenericutes; ↑
Bacteroidetes & “others”.

(127)
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in healthy female mice, but showed opposite effects in healthy male

mice (135). Given the differences at the phylum level, this also

incurred significant differences at the genus level. Females had a

significantly greater abundance of Bacteroides, Prevotella and

Lactobacillus, but males had a higher abundance of Clostridium

(135). These findings not only illustrate that the female gut

microbiota has a stronger protection against the adversities of

poor diet, but also that the male and female gut microbiota

respond differently to the effect of beneficial supplements and

how they harbor their microbial communities. The explanation

for the sexual dimorphisms in gut microbial composition and

function, in both healthy and metabolically disturbed subjects,

comes full circle and back to differences in sex steroid hormones

and inflammatory responses.

Gonadectomy surgery can be used to eliminate sex steroid

hormones and therefore, also be used to study the interactions

between sex hormones and the gut microbiota in obesity. In

ovariectomized obese female mice, the Firmicutes phyla

dominated the gut microbiota community which is commonly

seen in obese and high fat diet-fed mice and the sequenced gut

community of ovariectomized female mice more closely

resembles that of male mice (101, 136). Furthermore, when

treating ovariectomized female mice and male mice with

estrogen the microbial composition resembles that of non-

ovariectomized female mice (101). Similar to ovariectomized

mice and the reduction in estrogen, is the changes occurring to

the gut microbiota with menopause (137). Studies have shown

that the gut microbiota of post-menopausal women reveal

higher abundances of Firmicutes compared to both pre-

menopausal women and age-matched males (137). These

findings reveal that sex and sex hormones, specifically in the

presence of obesity, strongly guide the shape of the gut

microbiota. In addition to the sexual dimorphism existing

within the gut microbiota and obesity, research has revealed

that sex-based differences of obesity are also associated with the

immune system specifically within the gut (Figure 3).
Sexual dimorphism of
intestinal inflammation

Obesity is commonly accompanied with low-grade systemic

inflammation which is a key driver of the subsequent

comorbidities of obesity due to higher concentrations of

endotoxic molecules (i.e., LPS from bacteria) and in

circulation increased adiposity increasing cytokines such as

TNF-a, IL-1, and IL-6 (138, 139). Many studies in obesity

have concentrated on visceral adipose tissue as the driving

force of inflammation however, inflammation within the

intestinal tract precedes both adipose tissue inflammation and

obese characteristics such as weight gain (138). This finding is of

particular importance as a significant proportion of the systemic
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innate and adaptive immune cells within the body (70%) reside

within the intestinal tract (140). To our knowledge, the sexual

dimorphisms of the intestinal immune system in the setting of

obesity has not been researched in a preclinical setting. However,

studies have identified sex differences in healthy individuals

(141, 142). For example, in the lamina propria layer of the

intestines female have higher immune activation and higher

CD4+ and CD8+ T cell counts in compared to males (141).

Another crucial mediator of the sexual dimorphisms in

intestinal immunity is the gut microbiota. Due to their close

proximity, the interplay between the gut microbiota and

intestinal immune system is well-established as shaping and

developing one another (143). This is highlighted in studies

using germ-free mice, which lack a gut microbiota. The

consequence of this is poorly developed intestinal lymphatic

tissue (Peyer’s patches) and immune cell populations (144).

Moreover, the sex differences of intestinal immunity in

autoimmune disease settings are abolished in germ-free mice,

suggesting that the sex bias in immunity is driven by sex

differences in the microbiome rather than sex hormones

(59, 115).

As mentioned previously, females have a stronger intestinal

immune response compared to males and this influence of the

gut microbiota on this must also be considered (145). Therefore,

the sexual dimorphisms of the gut microbiota and in particular,

the difference in biomarkers of obesity such as the Firmicutes:

Bacteroidetes phyla and taxa abundance difference likely drive

the discrepancies in the intestinal immune system of males and

females (127). For example, the Firmicutes phyla are the

predominant producers of butyrate, a known anti-

inflammatory molecular metabolite (146). Therefore, the

increased Firmicutes abundance typical of obese males

(compared to obese females), elevates butyrate production,

which could suppress the intestinal immune response in

males. Alternatively, the Bacteroidetes phyla, generally seen in

higher abundance in obese females compared to obese males, are

gram-negative bacteria (147). Gram-negative bacteria contain

LPS in their outer membrane thus, an increased abundance of

these taxa, and subsequent increased circulating LPS, correlates

with a stronger intestinal immune response (147).

Although a stronger immune response is associated with an

increased inflammatory profile, this may be beneficial in the context

of obesity and intestinal inflammation. For example, females are

superior in eliminating pathogenic and opportunistic bacteria

(possibly obesity-related bacteria) present in the gut, which might

be a by-product of their enhanced immune response. The enhanced

immune response in females may very well be the factor that

protects or delays the development of obesity-related metabolic

disturbances in females (148). In the opposing manner, the

intestinal immune response is relatively smaller in males, thus

allowing the manifestation of deleterious microorganisms and

thus, possibly exacerbating the disease development of obesity.
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Conclusion

The sexual dimorphisms in the epidemiology and

pathophysiology of obesity put males and post-menopausal

women at the greatest risk of metabolic disturbances and end-

organ damage. Although several factors such as sex hormones,

sex chromosomes and fat distribution serve as a basis for these

sexual dimorphisms, they can also be attributed to differences in

the composition and function of the gut microbiota and the

intestinal immune response. Both the gut microbiota and

immune system are well-documented influencers of the

development of obesity however, the important role that sex

plays in this relationship is often overlooked. The “give-and-
Frontiers in Immunology 10
take” relationship each of these three factors have on one

another is an important consideration for future studies

(Figure 4). Moreover, the vast majority of studies to date are

purely associative. More studies that assess causality are needed

to unequivocally identify which harmful gut bacteria and or

specific gut microbiome imbalances cause obesity. Importantly,

it is crucial that these causal studies firstly consider the sex

differences in the gut microbiota prior to commencing the study;

and secondly, assess the role that sex plays throughout the

treatment that will influence the study outcomes. In addition

to this, the sex differences in the intestinal immune response in

obesity must also be considered in future studies. Very few

studies examine both the microbiome and intestinal immune
FIGURE 3

Microbial diversity, sex hormones and chromosomes in obesity. Differences in sex-based characteristics are modulated by a variety of factors.
Women have a greater degree of subcutaneous fat, whereas males predominantly accumulate visceral fat. In obesity, the shift in the Firmicutes:
Bacteroidetes determines disease severity. Obese males have less species richness, and testosterone was found to be associated with increased
Firmicutes, thus more anti-inflammatory butyrate release. Obese females, on the other hand, despite having greater microbial diversity, have an
increase estradiol and Bacteroidetes, resulting in greater LPS release, thus eliciting a greater immune response. Created with BioRender.com.
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response. Finally, due to the sexual dimorphisms that exist in

both the gut microbiota and intestinal immune response, it is

crucial that females – both pre- and post-menopausal – are

represented in research studies to the same extent as males for

findings and future treatments to be valid in both sexes.
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