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ABSTRACT 
 

The complexity of breast cancer includes many interacting biological processes that make it difficult to find 
appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is 
urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family 
members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. 
However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. 
Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer 
patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, 
Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, 
PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal 
tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of  
breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway 
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INTRODUCTION 
 

According to statistical data of cancer incidence and 

mortality, breast cancer (BRCA) accounts for 30% of 

newly diagnosed cases of cancer among American 

women [1, 2]. The currently used stratification system is 

still undergoing changes due to the heterogeneity of this 

disease, which can be observed at both the molecular 

and histological levels. Based on the presence or 

absence of prevalent listed biomarkers, including: the 

estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor (HER)-2, and 

some other markers. Stratifying BRCA not only helps in 

selecting treatment options but also assists in 

approximating treatment responses and predicting 

prognostic statuses. 

 

Many different treatment strategies besides surgery are 

available for patients with BRCA. Treatment options 

are personalized and often based on a multi-modality 

approach, depending on several factors, including the 

stage and biology of the tumor (hormone receptor and 

nodal status); genomic markers (Oncotype DX™ or 

MammaPrint™) [3, 4]; patient age, physical condition, 

menopausal status, and the presence of inherited genetic 

mutations (such as BRCA1 or BRCA2); and a patient’s 

acceptance and tolerance of treatment regimens. Some 

treatments are standard, such as surgical therapy, 

radiotherapy, systemic therapy (endocrine therapy, 

chemotherapy, and targeted therapy), and immuno-

therapy, while others are undergoing clinical trials. As 

one of the potential approaches, targeted therapies are 

selective inhibitors which only affect altered cancer 

cells [5, 6]. They precisely identify and attack specific 

molecules to block cancer growth, progression, and 

metastasis. Most targeted therapies are either 

monoclonal antibodies (mAbs) or small-molecule drugs 

(tyrosine kinase inhibitors, cyclin-dependent kinase 

inhibitors, poly (ADP-ribose) polymerase (PARP) 

inhibitors) and mammalian target of rapamycin (mTOR) 

inhibitors [7–9]. Nevertheless, drugs resistance which 

may develop soon after onset of this therapy is the  

main challenge to current research. Meanwhile, 

immunotherapeutic strategies, which are drugs designed 

to strengthen the body's natural defenses to fight cancer, 

have appreciably raised our expectations of successfully 

treating various cancer types [10–15]. In general, 

immunotherapies are further categorized into various 

subtypes, such as mAbs, immune checkpoint blockade 

(anti-cytotoxic T-lymphocyte-associated (CTLA)-4, 

anti-programmed death (PD)-1, anti-PD-ligand 1 (L1)), 

cytokine therapy, T-cell transfer therapy (including 

tumor-infiltrating lymphocytes (or TIL) therapy and 

chimeric antigen receptor (CAR) T Cell Therapy), and 

therapeutic vaccines. For instance, the immune 

checkpoint inhibitors that target the PD-1 pathway 

(pembrolizumab, atezolizumab, dostarlimab) are 

approved by the US Food and Drug Administration 

(FDA) for patients with metastatic TNBC [16–21]. 

According to recent literature, the abovementioned 

treatments for early BRCA determined by sub-

classification have significantly improved the prognosis 

of BRCA patients with a 5-year survival rate of more 

than 85%. Therefore, it is crucial for us to understand 

the occurrence and development of breast cancer and to 

find biomarkers that indicates the sensitivity of current 

therapies and long-term outcomes in the early stage of 

the disease [22–28]. 

 

The ubiquitin-proteasome system is an indispensable 

mechanism of highly regulated intracellular protein 

degradation and turn over, thus dominates human 

antigen processing, signal transduction and cell-cycle 

regulation. The 26S proteasome is composed of one 

proteolytically active cylinder-shaped particle (the 20S 

proteasome), and one or two ATPase-containing 

complexes (known as the 19S cap complexes). The 20S 

core is constructed from inner α-rings and outer β-rings, 

which are both divided into 7 structurally similar 

subunits: proteasome 20S subunit α (PSMA1~7) and β 

(PSMB1~7), respectively. The 19S cap complexes is 

composed of a base and a lid subcomplex, further 

categorized into ATPase subunits (PSMC1~6) and non-

ATPase subunits (PSMD1~14) [29–33]. In recent 

studies, dysfunction of the ubiquitin-proteasome 

system, which manifests as up- and/or downregulation 

of the aforementioned genes, has been described in 

various oncogenic situations. Hence, extensive research 

need to be conducted to fully assess the oncogenic 

potential of this family genes. 

 

The PSMD family, which is comprised of 14 members in 

total, was proven to be partially involved in the formation 

of the regulatory complex. Both components occupy  

an important place in modulating the proteasome that 

performs several essential functions, such as catalyzing 

the unfolding and translocation of substrates into the 20S 

proteasome. Recent studies showed that PSMD1 and 

analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, 
immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family 
members are potential prognostic biomarkers for breast cancer progression and possible promising clinical 
therapeutic targets. 
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PSMD3 act as oncogenes in chronic myeloid leukemia 

by stabilizing nuclear factor (NF)-κB [34]. In gastric 

cancer, interactions between PSMD2 and asporin 

induced cell proliferation [35]. PSMD4 influenced cell 

malignancy of esophageal cancer via suppressing 

endoplasmic reticular (ER) stress [36]. PSMD5 

inactivation promoted 26S proteasome assembly during 

colorectal tumor progression [37]. PSMD6, PSMD9, 

PSMD11, and PSMD14 expressions were significantly 

related to decreased survival chances in pancreatic 

ductal adenocarcinoma [38]. High-throughput 

technologies are widely used as systematic approaches 

to explore differences in expressions of thousands of 

genes in both biological and genomics systems [39–41]. 

Abnormal gene expressions are generally related to 

oncogenes and tumor-suppressor genes which regulate 

tumor maturation [42–47]. 

 

However, no studies have yet been conducted to develop 

data of how messenger (m)RNA levels of each PSMD 

family gene change in BRCA development. Therefore, 

this study aimed to make relevant comparisons of gene 

expressions in BRCA and normal tissues, by extracting 

information from public datasets, including numerous 

RNA-sequencing (RNA-Seq) and microarrays data of 

BRCA patients. 

 

Moreover, we also explored the interactive cooperation 

or gene regulatory networks in which the targeted family 

genes were involved to identify completely novel 

biomarkers [48–53]. By adopting a meta-analytical 

approach, downstream molecules associated with PSMD 

genes were effectively screened. The study findings 

revealed that these PSMD family members and their 

regulated gene counterparts are worth considering as 

novel therapeutic targets for BRCA patients. 

 

RESULTS 
 

PSMD family members are involved in important 

processes in the developmental stages of BRCA 

 

Prior studies discovered PSMD family members in 

human and significant roles in cancer progression of 

some of them. To provide further identification of PSMD 

family gene signatures related to breast neoplasms, a 

meta-analysis was carried out. As reported by an 

Oncomine analysis of mRNA expressions among PSMD 

family members, including PSMD1, PSMD2, PSMD3, 

PSMD5, PSMD10, PSMD12, and PSMD14 are highly 

upregulated in BRCA tissues. It was suggested that their 

overexpression promotes tumor growth. Therefore, we 

decided to perform further bioinformatics analyses on 

BRCA (Figure 1). Since the Kaplan-Meier curves are 

univariate analysis, the univariate and multivariate Cox 

proportional hazards regression analysis, which works for 

both quantitative predictor variables and for categorical 

variables, was subsequently verified by TCGA-based 

breast cancer samples. Results was presented in 

Supplementary Table 1. 

 

 
 

Figure 1. Systemic analysis of 26S proteasome delta subunit, non-ATPase (PSMD) family genes in 20 common types of cancer 
(Oncomine platform). Dysregulation of each PSMD individual gene in targeted cancer tissues as measured by the mRNA expression level 
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was compared to their normal counterparts using Students’ t-test. The cutoff parameters were set as follows: p<0.05; multiple of change >2; 
and gene rank in the top 10%. The quantity of datasets which met those thresholds was represented as a number inside the table cells, while 
colors (red or blue) indicate the trend of gene expressions (up- or downregulation, respectively) and the intensity of colors indicates the 
degree of abnormal expression. 

 

Associations of PSMD family gene interpretations in 

neoplastic cell lines with clinicopathological 

parameters of BRCA patients 

 

After properly examining differences in PSMD family 

gene expressions between neoplastic and normal 

tissues using GEPIA2 datasets, we found that all 

mRNA levels of the former were upregulated 

compared to the latter, with the q-value cutoff set to 

<<0.001 (Figure 2). In addition, analysis performed on 

a Cancer Cell Line Encyclopedia (CCLE) dataset 

(https://www.broadinstitute.org/ccle) also indicated 

that PSMD mRNA levels were overexpressed in 

BRCA tissues (Figure 3). 

 

Analysis of genes related to BRCA co-expressed with 

PSMD family genes 

 

By leveraging the Oncomine online platform to perform 

a thorough analysis of the co-expression network of 

 

 
 

Figure 2. Transcriptional expression of 26S proteasome delta subunit, non-ATPase (PSMD) family members in breast cancer 
(BRCA) patients. (A–N) Transcriptome alterations observed in PSMD1~14. Boxplot of PSMD mRNA expression levels measured in BRCA 
specimens (red) compared to their normal counterparts (blue) obtained from the UALCAN database. Statistical analysis was performed using 
Student’s t-test, and p<0.05 was considered statistically significant. 

https://www.broadinstitute.org/ccle
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PSMD1, we found that PSMD1 was positively 

correlated with AGFG1, GPR107, PTH2R, TFPI, 

GUCY1A3, SLCO2Al, EIF5B, PAQR3, and ROD1. As 

for genes which are supposedly co-expressed with 

PSMD2, we concluded that its expression was 

positively correlated with EIF2S2, NUPL2, GLRX3, 

LSM5, CBX3, PAKIIP1, CCT6A, MRPS17, CHCHD2, 

PSMA2, SEC61G, NUDT1, POLD2, FSTL1, EIF3B, 

CYCS, and AIMP2. As for genes co-expressed with 

PSMD3, there were positive correlations with CASC3, 

MED24, MSL1, THRA, RAPGEFL1, RARA, WIPF2, 
SLC16A6, ACACA, PDESB, CST4, ABHD2, FRY, and 

POLG. Similarly, genes co-expressed with PSMD4 

included UBE2Q1, MRPL9, POGZ, SETDB1, P14KB, 

VPS72, SCNM1, P14KB, PRUNE, ADAR, APH1A, 

TDRKH, CLK2, PRPF3, UBAPZL, and DAP3. 

Moreover, positive correlations with PSMD5 were 

determined for MEX3D, CATSPERB, SULT1E1, 

CEACAM7, CES1, MARCH6, GPD2, ATIC, GTF2H2, 
P4HAL, C2ORF54, GGCT, GUCY1A2, PPAP2B, 

MAP3K5, SMPDL3A, and SWAP70. Similar to  

previous cases, PSMD6 was found to be positively 

correlated with GOLGA4, PDCD6IP, ARL8B, GHITM, 

NGLY1, OXSM, CYP51P2, CYP51A1, CLU, APOOL, 
MRS2, SLC25A46, RNF14, VDACIP3, CLINT1, and 

SEC24A. We found that genes co-expressed with 

PSMD7 included NAE1, USP10, AP1G1, SETD6, 
NUP93, CBFB, BRD7, NFATC3, CNOTI, HNRNPD, 

CHMP1A, CFDP1, TAFIC, ZCCHC14, HSBP1, GOT2, 

CTCF, GPR56, and TMEM208. Genes co-expressed 

with PSMD8 included PSMC4, MRPS12, EIF3K, 

EIF3K, RPS16, COX6B1, DGUOK, TPRKB, RNF7, 
COX7A2, METTL5, ATP5J, ATP50, TOR3A, SDHB, 

MBD2, and ATP5G3. As for genes co-expressed with 

PSMD9, there were positive correlations with ARPC3, 

GNS, POP5, WSB2, RFC5, NTAN1, EPB41L3, 

EPB41L3, GCA, HMGN3, ASNAI, ICAM3, RAB8A, 
UPF1, PPPICA, OTUBI, JARIDZ, and PGD. Genes 

co-expressed with PSMD10 included UBEZN, 

C12orf29, TBC1D15, CCNT2, MAP4K3, MTX2, 
KDM6A, RNF13, C4orf43, UBE2K, PDS5A, CLIP1, 

CHD9, KIAA1033, PPPIR1ZA, and PPP1R12A. 

 

 
 

Figure 3. Expressions of 26S proteasome delta subunit, non-ATPase (PSMD) genes measured in common types of breast 
cancer (BRCA) cell lines. A CCLE database-built heatmap plot presents patterns of changes in expression levels of PSMD family genes 

among different BRCA cell lines. Shades of colors vary from red (overexpressed sample) to white (no change in gene expressions) and blue 
(under-expressed sample). The darker the colors are, the higher the gene expressions that were recorded. 
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Moreover, PSMD11 was positively correlated with 

SUMOZ, PSMD12, KPNA2, HN1, HSPH1, INTS8, 

LSM6, ANAPC10, ABCE1, ABCE1, SMARCA5, 
GRHL2, TUG1, EPB41L4B, RPRD1A, and HSPD1. 

PSMD12 was found to be positively correlated with 

HELZ, LOC220594, FASTKD3, PHB, CCDC47, 
TEX2, TEX14, RAD51C, BCAS3, SLC4A8, BPTF, 

AMZ2, NOL11, BPTF, SMARCD2, PSMC5, FTSJ3, 

and TACOI. Genes co-expressed with PSMD13 

included PSMC3, MRPL17, SPCS2, C7orf44,  
EWSR1, POLD3, ZNF84, ZNF140, ZNF268, NFYB, 

ZNF195, ANKLE2, GOLGA3, CHFR, NEK3, ELF1, 
ZC3H13, PHF11, and RCBTB1. Finally, genes co-

expressed with PSMD14 were ATP2C1, ATP2C1, 

HSPE1, PDE6D, CISD1, COQ2, ZMYND11, 
NUDT21, PKM2, HPS5, SLBP, EIF3J, ETF1, SMN1, 

GNAI3, MAPRE1, CLCC1, PSMA5, C2orf47, and 

NDUFS1 (Figure 4). 

 

 
 

Figure 4. Heatmap co-expression profiles of 26S proteasome delta subunit, non -ATPase (PSMD) family members in breast 
cancer (BRCA). Genes co-expressed with each of the PSMD family members in term of BRCA patients are presented in a heatmap format 

(data extracted from the Oncomine database). 
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Relationships between disease prognostication and 

PSMD gene expression levels measured in tumor 

specimens 

 

The Kaplan-Meier (KM) plotter database also indicated 

that most PSMD family members were associated with 

poor recurrence-free survival (RFS), except for PSMD9 

and PSMD11. Higher expression levels of PSMD9  

and PSMD11 were significantly associated with  

better survival rates of patients (Figure 5). We also 

validated these data from the NCBI GEO database 

(GSE21653) [54], and also obtained consistent data 

 

 
 

Figure 5. Significant correlations between mRNA levels of 26S proteasome delta subunit, non-ATPase (PSMD) family 
members and recurrence-free survival curve (RFS) of patients diagnosed with breast cancer (BRCA). The two survival curves 

respectively illustrate survival outcomes (including survival percentages and survival times) of BRCA patients with high (red) or low (black) 
expression levels of PSMD family members. Increased mRNA levels of target genes resulted in poor prognoses, while increasing levels of 
PSMD9 and PSMD11 were associated with favorable outcomes (p<0.05 was considered statistically significant). 



 

www.aging-us.com 24889 AGING 

(Supplementary Figure 1). In addition, high expression 

levels of PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, 

PSMD12, and PSMD14 were linked with poor distant 

metastasis-free survival (DMFS), whereas others were 

not (Figure 6). The RFS and DMFS data implied that 

these genes have oncogenic roles in BRCA progression. 

Therefore, we chose PSMD1, PSMD2, PSMD3, PSMD7, 

PSMD10, PSMD12, and PSMD14 as objectives for 

further bioinformatics analyses. Due to the fact that 

samples from BRCA patients displayed distinctly 

different expressions of PSMD family genes, we 

continued to explore how these target genes participate in 

particular metabolic pathways prior to investigating their 

clinical relevance. Therefore, the intensities of antibodies 

represented in clinical BRCA specimens were extracted 

from the Human Protein Atlas (HPA) for further 

 

 
 

Figure 6. Significant correlations between mRNA levels of 26S proteasome delta subunit, non-ATPase (PSMD) family 
members, and distant metastasis-free survival (DMFS) curve of patients diagnosed with breast cancer (BRCA). The two survival 
curves respectively illustrate survival outcomes (including survival percentages and survival times) of BRCA patients with high (red) and low 
(black) expression levels of PSMD family members. Increased mRNA levels of target genes resulted in poor prognoses, except for PSMD4, 
PSMD5, PSMD6, PSMD8, PSMD9, PSMD11, and PSMD13 (p<0.05 was considered statistically significant). 
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analysis. Immunohistochemical (IHC) images revealed 

dense distributions of PSMD2 and PSMD4, while the 

other PSMDs, including PSMD1, PSMD2, PSMD3, 

PSMD7, PSMD12, and PSMD14, were moderately 

distributed in breast tumor samples (Figure 7).  

In addition, when we performed the required analysis 

using the Tumor Immune Estimation Resource (TIMER) 

database (available at: http://timer.cistrome.org/), PSMD 

member genes also showed relevance to immune 

infiltration profiles of BRCA, and the expression of 

 

 
 

Figure 7. Immunohistochemical staining of 26S proteasome delta subunit, non-ATPase (PSMD) family members in normal 
tissues and breast cancer (BRCA) tissues represented in IHC staining images and bar chart. The images illustrate intensities of 
antibodies in both BRCA and adjacent normal tissues while the bar charts of IHC staining show intensities of PSMD family members in BRCA. 

http://timer.cistrome.org/
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each individual was related to tumor purity and markers 

of six tumor-infiltrating immune cell types which 

belonged to two separate groups: a lymphoid lineage  

(B cells, cluster of differentiation 4-positive (CD4+) T 

cells, and cluster of differentiation 8-positivie (CD8+) T 

cells) and myeloid lineage (neutrophils, macrophages, 

and dendritic cells) (Figure 8). 

Pathway and network analysis of PSMD family genes 

 

Since some potential information for refining the full 

picture of regulated pathways available to PSMD family 

genes is still missing, GeneGo Metacore software was 

launched to extensively explore downstream networks 

linked to the aforementioned co-expression patterns of 

 

 
 

Figure 8. Correlations between expressions of 26S proteasome delta subunit, non-ATPase (PSMD) family members and 
immune infiltration profiles of breast cancer via the TIMER database. The figure shows correlations between each abnormally 
expressed gene of the PSMD family and levels of several tumor-infiltrating immune cell markers, such as B cells, cluster of differentiation 8-
positive (CD8+) T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. 
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PSMD family genes. We obtained PSMD1 coexpression 

profiles of BRCA from available datasets from both 

METABRIC and TCGA. As a result, annotations of 

biological processes obtained from GeneGo Metacore 

showed that genes co-expressed with PSMD1 

participated in several networks and cell cycle-related 

pathways such as “Cell cycle_Role of APC in cell cycle 

regulation”, “Cell cycle_The metaphase checkpoint”, 

“Cell cycle_Spindle assembly and chromosome 

separation”, “DNA damage_Intra S-phase checkpoint”, 

and “Cell cycle_Start of DNA replication in early S 

phase” (Figure 9 and Supplementary Table 2). PSMD2 

was associated with “Cell cycle_Cell cycle (generic 

schema) Cell cycle_Start of DNA replication in early S 

phase”, “Cell cycle_Chromosome condensation in 

prometaphase”, “DNA damage_Intra S-phase 

checkpoint”, “Cell cycle_Role of SCF complex in cell 

cycle regulation”, and “Reproduction_Progesterone-

mediated oocyte maturation” (Figure 10 and 

Supplementary Table 3). PSMD3 was involved in “Cell 

cycle_Role of Nek in cell cycle regulation”, 

“Transcription_Negative regulation of HIF1A  

function”, “DNA damage_Intra S-phase checkpoint”, 

“DNA damage_ATM/ATR regulation of G2/M 

checkpoint: cytoplasmic signaling”, “Cytoskeleton 

remodeling_Keratin filaments”, and “Regulation of 

degradation of deltaF508-CFTR in CF” (Figure 11 and 

Supplementary Table 4). PSMD7 was involved in “Cell 

cycle_ESR1 regulation of G1/S transition”, “The role of 

aberrations in CDKN2 locus and CDK4 in familial 

melanoma”, “Putative role of estrogen receptor and 

androgen receptor signaling in the progression of lung 

cancer”, “Signal transduction_Adenosine A3 receptor 

signaling pathway”, and “Transport_RAN regulation 

pathway” (Figure 12 and Supplementary Table 5). 

PSMD10 was involved in “DNA damage_Nucleotide 

excision repair”, “CFTR folding and maturation (normal 

and CF)”, “Immune response_Antigen presentation by 

MHC class II”, “Regulation of degradation of deltaF508-

CFTR in CF”, “Cell cycle_Role of SCF complex in cell 

cycle regulation”, and “Immune response_BAFF-induced 

non-canonical NF-kB signaling” (Figure 13 and 

Supplementary Table 6). PSMD12 was involved in “DNA 

damage_ATM/ATR regulation of G2/M checkpoint: 

nuclear signaling”, “Cell cycle_Initiation of mitosis”, 

“Cell cycle_ESR1 regulation of G1/S transition”, “Cell 

cycle_Nucleocytoplasmic transport of CDK/cyclins”, and 

“Mitogenic action of estradiol/ESR1 (nuclear) in breast 

 

 
 

Figure 9. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 1 (PSMD1) family gene 
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_Role of APC in 

cell cycle regulation" were correlated with BRCA development. 
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Figure 10. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 2 (PSMD2) family gene 
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_The metaphase 
checkpoint" were significantly associated with BRCA development. 

 

 

 

Figure 11. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 3 (PSMD3) family gene 
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_Spindle 
assembly and chromosome separation" were significantly associated with BRCA development. 
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Figure 12. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 7 (PSMD7) family gene 
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_ESR1 regulation 

of G1S transition" were significantly associated with BRCA development. 
 

 
 

Figure 13. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 10 (PSMD10) family 
gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Immune 

response_Antigen presentation by MHC class II" were significantly associated with BRCA development. 
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cancer” (Figure 14 and Supplementary Table 7). 

PSMD14 was involved in “Cell cycle_The metaphase 

checkpoint”, “Regulation of degradation of deltaF508-

CFTR in CF”, “Cell cycle_Sister chromatid cohesion”, 

“Oxidative stress_Role of ASK1 under oxidative 

stress”, and “Transport_RAN regulation pathway” 

(Figure 15 and Supplementary Table 8). Meanwhile, we 

obtained similar results from the cBioPortal and the 

Cytoscape and METABRIC databases, which revealed 

that these PSMD members were correlated with 

metabolic pathways and the cancer development-related 

genes (Supplementary Figure 2). 

 

DISCUSSION 
 

Recent epidemiologic studies indicated that BRCA  

has been displaced lung cancer in term of the most 

frequently diagnosed cases among women globally. 

Despite some improvements having been made  

in medical and surgical treatments of BRCA, a  

shortage of detection methods for early screening or 

diagnosis, accompanied by high risks of metastasis, 

chemoresistance, endocrine-resistance, and recurrence 

has resulted in a top ranking in overall mortality for this 

disease, which still needs to be fully investigated. 

Therefore, identifying specific key molecular pathways 

and highly sensitive, reliable biomarkers is urgently 

needed [48–53]. In recent times, the rapid growth of 

microarray and high-throughput sequencing data  

has provided convenient and comprehensive online 

platforms to elucidate the pathogenesis of tumors, which 

has allowed us to properly monitor tumor progression 

and prognoses [22–26]. 

 

Based on the results of this study, it suggested that most 

of the PSMD family are generally dysregulated in 

hundreds of distinctive types of cancers. On the other 

hand, expression profiles indicated that this family's 

genes not only accompany tumor multi-stage 

progression but are also involved in other tumor-related 

issues. For instance, upregulation of the PSMD1 gene 

was mainly enriched alongside a rise in tamoxifen 

resistance displayed by BRCA cells [55]. The 

autophagic degradation of 19S proteasomal subunits of 

both PSMD1 and PSMD2 were mediated by ATG16 

[56]. PSMD3 is believed to be involved in stabilizing 

HER2, a growth-promoting protein on the exterior of all 

breast cells, from degradation [57]. Upregulation of the 

PSMD4 gene by hypoxic conditions in prostate cancer 

cells suggests a novel therapy for treatment [58]. 

PSMD7 was significantly linked to earlier stimulation 

of prostate cancer [59]. PSMD10 overexpression was 

 

 
 

Figure 14. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 12 (PSMD12) family 
gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "DNA damage_Intra 
S-phase checkpoint" were significantly associated with BRCA development. 
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supposed to substantially contribute to the onset of 

tumors as observed in various cancer types [60]. 

PSMD11 is a novel biomarker of pancreatic cancer 

progression [61]. High levels of PSMD12 enhanced both 

the proliferation and invasion of BRCA and gliomas, 

one of the fastest-growing and most aggressive brain 

neoplasms, by upregulating nuclear factor erythroid 2-

related factor 2 (Nrf2) [62]. In the case of proteasomal 

degradation, consistently high levels of PSMD14, which 

regulates the de-ubiquitination substrate, may lead to a 

worse prognosis of lung adenocarcinomas [63]. The 

recent literature indicated that PSMDs play important 

roles in various cancers, and may represent possible 

biomarkers for predicting clinical out-comes and precise 

diagnoses, which provides promising molecular targets 

for the research and development of drugs and targeted 

therapies. 

 

Despite extensive efforts having been made to properly 

understand the roles of each PSMD family member in 

various clinical diseases and cancer development, there 

is still limited evidence regarding relationships between 

all PSMD family genes and BRCA. We therefore 

conducted this study using available public databases to 

analyze possible biological regulation of PSMD family 

genes along with the occurrence and the development of 

BRCA. The data revealed that higher mRNA and 

protein levels of PSMD1, PSMD2, PSMD3, PSMD7, 

PSMD10, PSMD12, and PSMD14 lead to worse 

prognoses in terms of both DMFS and RFS. Therefore, 

we chose these PSMD family genes for further 

bioinformatics analyses. Moreover, the coexpression and 

pathway analysis also revealed the involvement of these 

family genes together with cell metabolism, immune 

responses, cyclin-dependent kinases (CDKs), and other 

cell-cycle pathways and signaling networks. The current 

study was consistent with the previous literature; these 

results credibly suggest that some specific genes of the 

PSMD family act as oncogenes, whose differential 

expressions may serve as potential molecular 

biomarkers in terms of diagnosis, classification, and 

prognosis for developing BRCA treatments. 

 

 
 

Figure 15. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 14 (PSMD14) family 
gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "DNA 
damage_ATMATR regulation of G2M checkpoint cytoplasmic signaling" were significantly associated with BRCA development. 
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Based on our knowledge, this is the first ever report on 

PSMD family genes expression in relation to patient 

survival prediction in BRCA. Most of all, since various 

types of high-throughput databases were integrated and 

some underlying biological mechanism were revealed 

that PSMD genes show prognostic and predictive value 

in BRCA, hence they may possibly serve as novel 

biomarkers in malignancy screening and/or potential 

prognosticators in assessing BRCA severity and 

prognosis. 

 

MATERIALS AND METHODS 
 

Oncomine and UALCAN analysis 

 

Oncomine, available at (https://www.oncomine.org), is 

generally recognized as a bioinformatics analytical tool 

for gene expression microarrays among PSMD family 

members [64]. Differences in expression between 

normal tissues and 20 types of cancer counterparts  

were comprehensively evaluated, under conditions that 

thresholds of three parameters were adjusted to a 

multiple of change >2; p<0.0001; and gene ranked in the 

top 10%; with data type as “all”. Numbers of significant 

unique analyses that met the selection criteria in BRCA 

are presented as digits, while overexpressed and under-

expressed genes are displayed in red and blue gradients, 

respectively, in descending order of the gene rank 

percentile. In the subsequent stage, the ggpubr package 

in R environment was run to obtain plots of BRCA 

subtypes as we previously described [65–68]. 

 

Transcriptomic expressions of PSMD family members 

were analyzed in BRCA sample using the UALCAN 

(http://ualcan.path.uab.edu/) platform. UALCAN 

collected TCGA level 3 RNA-Seq and clinical data 

from different cancer types. With genes of interest, 

UALCAN allows users to perform biomarkers 

identification to verify gene expressions with multiple 

clinical factors. A boxplot was drawn of PSMD mRNA 

expression levels measured in BRCA specimens (red) 

compared to their normal counterparts (blue) obtained 

from the UALCAN database. Statistical analysis was 

performed using Student’s t-test, and p<0.05 was 

considered statistically significant [69]. 

 

Evaluation of differential PSMD expressions in 

cancer cell lines by a cancer cell line encyclopedia 

(CCLE) analysis 

 

To further search for individual expression levels of 

PSMD family genes on a larger scale, the CCLE project 

(available at https://portals.broadinstitute.org/ccle) was 

launched [70]. 1000 This web-based tool offers public 

access to both genetic and pharmacologic 

characterizations of numerous human cancer models, 

including over human cancer cell lines and over 130,000 

unique datasets. Moreover, the integrated RNA-Seq 

Aligned Reads tool was applied to 60 independent BRCA 

cell lines prior to plotting expressions of PSMD family 

members one at a time [71–73]. 

 

Kaplan-Meier (KM) overall survival analysis 

 

The KM database (https://kmplot.com/), an integrated 

online database well-known for assessing target genes of 

survivors among 21 cancer types, was subsequently 

leveraged to further expand some prognosis-related 

issues. By concurrently integrating mRNA expression 

levels and clinical data obtained from target genes, the 

independent prognostic values of PSMD target genes on 

patients diagnosed with BRCA, including both distant 

metastasis-free survival (DMFS) and relapse-free 

survival (RFS), were represented as KM survival plots of 

two distinct groups of patients. Comparisons of the two 

patient cohorts were performed with 95% confidence 

intervals of hazard ratios (HRs) and fixed log-rank  

p values [74].  

 

Analysis of protein expressions in clinical human 

specimens 

 

The Human Protein Atlas (HPA, https://www. 

proteinatlas.org) provides a wealth of information on 

sequences, pathology, expressions, and distributions in 

various cancer tissues. The first version of this database 

contained more than 400,000 high-resolution images 

corresponding to more than 700 antibodies to human 

proteins [75]. This study analyzed the differential status 

of protein expressions and the localization of select 

PSMD family protein expression in breast tissue. 

 

Functional enrichment analysis of PSMD target genes 

 

To visualize genomics datasets on a large scale, 

particularly TCGA and METABRIC databases 

(available at the cBioPortal platform), the InteractiVenn 

tool (http://www.interactivenn.net/) was chosen to  

draw a one-way Venn diagram which illustrates the 

overlap and numbers of genes associated with 

expressions of PSMD target genes across the two given 

datasets [76]. The intersection between the two sets was 

subsequently analyzed for related pathways and 

involved networks using the online MetaCore platform 

(https://portal.genego.com/), with p-value of <0.05, as 

we previously described [77–82]. 

 

Tumor immune estimation resource (TIMER) 

database analysis 

 

TIMER vers. 2.0 (available at http://timer.comp-

genomics.org/) is generally known as a trustworthy 

https://www.oncomine.org/
http://ualcan.path.uab.edu/
https://portals.broadinstitute.org/ccle
https://kmplot.com/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.interactivenn.net/
https://portal.genego.com/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/


 

www.aging-us.com 24898 AGING 

resource for systematic analysis of host immune 

infiltrates across multiple cancer types and related 

diseases. In other words, this webserver can help 

estimate abundances of six given immune cell types 

which belong to two separate groups: the lymphoid 

lineage (B cells, cluster of differentiation 4-positivie 

(CD4+) T cells, and cluster of differentiation 8-positivie 

(CD8+) T cells) and myeloid lineage (neutrophils, 

macrophages, and dendritic cells) in the tumor 

microenvironment, under the DiffExp module with 

default parameters. Finally, correlations were illustrated 

as a scatterplot, while PSMD gene expression levels 

were represented on the x-axis and related tumor-

infiltrating immune cell markers were represented on 

the y-axis [83, 84]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Prognostic values of 26S proteasome delta subunit, non-ATPase (PSDM) family genes in breast 
cancer (BRCA) patients (GSE21653 database). A recurrence metastasis-free sur-vival (RFS) dataset was used for the analysis. An auto-

cutoff strategy was set in this analysis to differentiate patients into two groups based on the value of PSMDs mRNAs. The two survival curves 
respectively illustrate survival outcomes (including survival per-centages and survival times) of BRCA patients with high (red) or low (black) 
expression levels of PSMD family members. Increased mRNA levels of most PSMD family genes resulted in poor prognoses, while an 
increasing level of PSMD9 was associated with favorable outcomes (p<0.05 was considered statistically significant). 
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Supplementary Figure 2. Correlations among different 26S proteasome delta subunit, non-ATPase (PSMD) family members 
in breast cancer (BRCA). (A) Correlations between PSMD family members and cell-cycle-related genes in BRCA patients from the 

METABRIC database, and in-significant correlations are marked by crosses. (B) Through a Cytoscape analysis, high correlations between 
PSMD members and cancer development-related pathways were observed. 
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Supplementary Tables 
 

Supplementary Table 1. Univariate and multivariate Cox proportional hazards regression analysis of breast 
cancer (BRCA) overall survival (OS) outcomes. 

Variables  
Patient 

number 

Univariate Multivariate 

HR (95% CI) p value  HR (95% CI) p value 

Age (year) 

   < 60 

   > 60 

533 

461 

reference 

1.97 (1.40 – 2.77) 
0.0001 

reference 

1.966 (1.383 – 2.795) 
0.000165 *** 

Gender 

   Male 

   Female 

11 

983 

reference 

0.945 

 (0.132 – 6.78) 

0.956   

Tumor stage 

   Stage I/II 

   Stage III/IV 

   Stage X 

740 

236 

18 

reference 

2.791 (1.96 – 3.97) 

2.56 (1.17 – 5.6) 

1.2e-08 *** 

0.0189 * 

reference 

3.4 (1.825 – 6.34) 

3.503 (0.97 – 12.61) 

0.000116 *** 

0.055078 

T  

   T1/T2 

   T3/T4 

   TX 

841 

150 

3 

reference 

1.85 (1.25 – 2.73) 

0.527 (0.072 – 3.84) 

0.0019* 

0.527 

reference 

0.834 (0.494 – 1.4) 

0.098 (0.01 – 0.89) 

0.496934 

0.039511 *  

N 

   N0/N1 

   N2/N3 

   NX 

799 

176 

19 

reference 

2.32 (1.547 – 3.484) 

3.97 (2.06 – 7.65) 

4.75e-05 *** 

3.73e-05 *** 

reference 

0.784 (0.44 – 1.39) 

2.79 (1.154 – 6.76) 

0.407585 

0.022777 *  

M 

   M0 

   M1 

   MX 

834 

20 

140 

reference 

5.296 (3.09 – 9.05) 

1.396 (0.778 – 2.5) 

1.08e-09 *** 

0.262 

reference 

1.2 (0.5 – 2.6) 
0.62 

PSMD1 expression 

   Low 

   High 

497 

497 

reference 

1.4 (0.98 – 2) 
0.064   

PSMD2 expression 

   Low 

   High 

497 

497 

reference 

1.137 (0.81 – 1.59) 
0.457   

PSMD3 expression 

   Low 

   High 

497 

497 

reference 

1.149 (0.81 – 1.61) 
0.421   

PSMD7 expression 

   Low 

   High 

497 

497 

reference 

1.178 (0.84 – 1.7) 
0.343   

PSMD10 expression 

   Low 

   High 

497 

497 

reference 

 1.68 (1.188 – 2.396) 
0.0035 ** 

reference 

1.798 (1.251 – 2.585) 
0.001508 **  

PSMD12 expression 

   Low 

   High 

497 

497 

reference 

 1.27 (0.9 – 1.792) 
0.168   

PSMD14 expression 

   Low 

   High 

497 

497 

reference 

 1.3 (0.93 – 1.836) 
0.127   

Factors showing significant relationships with OS from a univariate analysis were then used for a multi-variate analysis. HR, 
hazard ratio; CI, confidence interval; * p<0.05. 
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Supplementary Table 2. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 1 (PSMD1) from public breast cancer (BRCA) databases using the MetaCore platform (with p<0.01 set as 
the cutoff value). 

No. Map p-Value Network objects from active data 

1 
Cell cycle_Role of APC in cell cycle 

regulation 
4.58E-16 

BUB1, CDC18L (CDC6), Tome-1, Geminin, Emi1, Cyclin A, Aurora-A, PLK1, 

Aurora-B, CDC20, Cyclin B, MAD2a, Securin, ORC1L, CKS1 

2 Cell cycle_The metaphase checkpoint 1.10E-13 
BUB1, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, CDC20, HZwint-

1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14 

3 
Cell cycle_Spindle assembly and chromosome 

separation 
6.96E-13 

Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B, 

HEC, CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin 

4 
Cell cycle_Start of DNA replication in early S 

phase 
1.10E-11 

CDC18L (CDC6), Geminin, DP1, MCM4, MCM3, Cyclin E, MCM10, ORC6L, 

MCM4/6/7 complex, MCM2, ORC1L, CDC45L 

5 DNA damage_Intra S-phase checkpoint 8.17E-10 

PCNA, CDC18L (CDC6), BLM, FANCD2, DTL (hCdt2), Histone H2AX, 

MCM4, MCM3, Cyclin A, Chk1, MCM7, MCM10, MCM2, Histone H3, 

CDC45L 

6 
Cell cycle_Chromosome condensation in 

prometaphase 
1.08E-09 

CAP-C, Cyclin A, CAP-G/G2, Aurora-A, Aurora-B, CAP-E, Cyclin B, TOP2, 

Histone H3 

7 
Regulation of degradation of deltaF508-CFTR 

in CF 
3.98E-08 Csp, HSP70, RNF4, UFD1, SUMO-2, Derlin1, UCHL1, Hdj-2, SUMO-3, HSC70 

8 

Cigarette smoke-mediated regulation of 

NRF2-antioxidant pathway in airway epithelial 

cells 

5.08E-07 PRDX1, TXNRD1, NRF2, SRX1, GCL reg, ME1, TALDO, DJ-1 

9 Cell cycle_Initiation of mitosis 3.22E-06 Nucleolin, PLK1, KNSL1, Cyclin B2, FOXM1, Kinase MYT1, Histone H3 

10 
Cell cycle_Transition and termination of DNA 

replication 
3.22E-06 TOP2 alpha, PCNA, Bard1, Cyclin A, MCM2, TOP2, FEN1 

11 
DNA damage_ATM/ATR regulation of G2/M 

checkpoint: cytoplasmic signaling 
5.62E-06 UBE2C, JAB1, Chk1, Aurora-A, PLK1, Aurora-B, DCK, Histone H3, 14-3-3 

12 
Cell cycle_Role of SCF complex in cell cycle 

regulation 
7.15E-06 Emi1, Cyclin E, Chk1, PLK1, RING-box protein 1, NEDD8, CKS1 

13 Abnormalities in cell cycle in SCLC 7.15E-06 PCNA, Cyclin A, Cyclin E, Aurora-B, Histone H3, Cyclin E2, CKS1 

14 Cell cycle_Role of Nek in cell cycle regulation 1.44E-05 TPX2, Aurora-A, PI3K cat class IA, HEC, Tubulin alpha, MAD2a, Histone H3 

15 IGF signaling in lung cancer 1.49E-05 
4E-BP1, Histone H2AX, PI3K cat class IA, SOS, RHEB2, Survivin, mTOR, 

GRB2 

16 
DNA damage_ATM/ATR regulation of G2/M 

checkpoint: nuclear signaling 
1.78E-05 

CDC18L (CDC6), Histone H2AX, Cyclin A, Chk1, PLK1, Cyclin B, Cyclin B2, 

TTK 

17 
Immune response_Antigen presentation by 

MHC class I, classical pathway 
7.00E-05 PSMB5, HSP70, TAP1 (PSF1), IDE, Nardilysin, TAP, PSMB2, TAP2 (PSF2) 

18 NRF2 regulation of oxidative stress response 7.00E-05 
Thioredoxin, PRDX1, TXNRD1, NRF2, GCL reg, PI3K cat class IA, SOD1, DJ-

1 

19 
Oxidative stress_Role of ASK1 under 

oxidative stress 
7.00E-05 

HPK38, UNRIP, Thioredoxin, PRDX1, MT-TRX, 14-3-3 zeta/delta, SOD1, 14-3-

3 

20 

Growth factors in regulation of 

oligodendrocyte precursor cells survival in 

multiple sclerosis 

9.25E-05 
4E-BP1, 14-3-3 beta/alpha, CD80, PI3K cat class IA, 14-3-3 zeta/delta, Caspase-

3, mTOR 

21 
Development_Growth hormone signaling via 

PI3K/AKT and MAPK cascades 
9.25E-05 4E-BP1, ATF-2, Elk-4, SOS, RHEB2, mTOR, GRB2 

22 
DNA damage_Role of Brca1 and Brca2 in 

DNA repair 
1.03E-04 PCNA, FANCD2, Histone H2AX, Rad51, MSH6, Bard1 

23 
Immune response_IFN-alpha/beta signaling 

via PI3K and NF-κB pathways 
1.60E-04 

PCNA, 4E-BP1, Cyclin A, Cyclin E, GBP1, p19, PI3K cat class IA, DHFR, 

RSAD2, ISG15 

24 Cell cycle_Cell cycle (generic schema) 1.66E-04 E2F5, DP1, Cyclin A, Cyclin E, Cyclin B 

25 Signal transduction_PTEN pathway 1.68E-04 PCNA, PI3K cat class IA, SOS, Caspase-3, RHEB2, mTOR, GRB2 
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Supplementary Table 3. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 2 (PSMD2) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the 
cutoff value). 

No. Map p-Value Network objects from active data 

1 Cell cycle_Role of APC in cell cycle 

regulation 

5.61E-20 Nek2A, BUB1, MAD2b, CDC18L (CDC6), Tome-1, Emi1, Cyclin A, Aurora-A, PLK1, 

Aurora-B, CDC25A, CDC20, SKP2, Cyclin B, MAD2a, Securin, ORC1L, CDK2, CKS1 

2 Cell cycle_The metaphase 

checkpoint 

9.51E-16 Nek2A, BUB1, MAD2b, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, CDCA1, 

CDC20, HZwint-1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14 

3 Cell cycle_Spindle assembly and 

chromosome separation 

9.84E-14 Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B, HEC, 

CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin, Tubulin (in microtubules) 

4 Cell cycle_Cell cycle (generic 

schema) 

8.83E-13 CDC25C, CDK4, DP1, p107, Cyclin A, Cyclin E, CDC25A, Cyclin B, E2F2, CDC25B, E2F4, 

CDK2 

5 Cell cycle_Chromosome 

condensation in prometaphase 

8.83E-13 CAP-H/H2, Condensin, CAP-C, Cyclin A, CNAP1, CAP-G/G2, Aurora-A, CAP-D2/D3, 

Aurora-B, CAP-E, Cyclin B, TOP2 

6 DNA damage_Intra S-phase 

checkpoint 

1.45E-12 TOPBP1, CDC18L (CDC6), BLM, FANCD2, DTL (hCdt2), Chk2, MCM4, MCM3, Cyclin A, 

Chk1, FANCI (KIAA1794), PP1-cat, CDC25A, MCM7, MCM10, PP1-cat alpha, CDC7, 

MCM2, CDK2, CDC45L 

7 Cell cycle_Start of DNA replication 

in early S phase 

2.63E-11 CDC18L (CDC6), DP1, MCM4, MCM3, Cyclin E, MCM10, ORC6L, MCM4/6/7 complex, 

CDC7, MCM2, ORC1L, CDK2, CDC45L 

8 Cell cycle_Role of SCF complex in 

cell cycle regulation 

1.2E-10 Cullin 1, CDK4, Emi1, Cyclin E, Skp2/TrCP/FBXW, Chk1, PLK1, CDC25A, SKP2, NEDD8, 

CDK2, CKS1 

9 Reproduction_Progesterone-

mediated oocyte maturation 

6.99E-10 CDC25C, BUB1, MEK1(MAP2K1), Cyclin B1, Aurora-A, PLK1, c-Raf-1, GSK3 beta, 

Adenylate cyclase, CDC20, SOS, CDC25B, Kinase MYT1 

10 Cell cycle_ESR1 regulation of G1/S 

transition 

1.58E-09 Cullin 1, CDK4, Cyclin A2, E2F4/DP1 complex, Cyclin A, Cyclin E, Skp2/TrCP/FBXW, 

CDC25A, SKP2, E2F4, CDK2, CKS1 

11 DNA damage_ATM/ATR regulation 

of G2/M checkpoint: nuclear 

signaling 

3.6E-09 CDC25C, CDC18L (CDC6), Cyclin B1, Chk2, Cyclin A, DNMT1, Chk1, PLK1, GTSE1, 

Cyclin B, Cyclin B2, TTK, CDK2 

12 Cell cycle_Role of Nek in cell cycle 

regulation 

7.47E-09 Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A, PI3K cat class IA, HEC, 

Tubulin alpha, MAD2a, Tubulin (in microtubules) 

13 DNA damage_ATM/ATR regulation 

of G2/M checkpoint: cytoplasmic 

signaling 

1.93E-08 CDC25C, UBE2C, Cyclin B1, Chk2, PP2A regulatory, Chk1, Aurora-A, PLK1, PP1-cat, 

Aurora-B, CDC25A, CDC25B, 14-3-3 

14 Cell cycle_Regulation of G1/S 

transition (part 2) 

2.39E-08 CDK4, Cyclin A2, E2F4/DP1 complex, DP1, p107, Cyclin A, Cyclin E, GSK3 beta, E2F4, 

CDK2 

15 Abnormalities in cell cycle in SCLC 3.53E-08 CDK4, Cyclin B1, Cyclin A, Cyclin E, Aurora-B, SKP2, E2F2, Cyclin E2, CDK2, CKS1 

16 Cell cycle_Initiation of mitosis 1.68E-07 CDC25C, Lamin B, Cyclin B1, PLK1, KNSL1, Cyclin B2, CDC25B, FOXM1, Kinase MYT1 

17 Cell cycle_Nucleocytoplasmic 

transport of CDK/Cyclins 

2.04E-07 CDK4, Importin (karyopherin)-alpha, Cyclin B1, Cyclin A, Cyclin E, GSK3 beta, CDK2 

18 Immune response_IFN-alpha/beta 

signaling via PI3K and NF-κB 

pathways 

2.07E-07 CDK4, I-κB, MEK1/2, I-TAC, p107, Cyclin A, p70 S6 kinases, Cyclin E, PI3K cat class IA, c-

Raf-1, GSK3 beta, p107/E2F4, CDC25A, eIF4G1/3, E2F4, CDK2 

19 Translation_Regulation of EIF2 

activity 

6.24E-07 GSK3 alpha/beta, Casein kinase II, beta chain (Phosvitin), MEK1/2, Casein kinase I, PP1-cat, 

PI3K cat class IA, c-Raf-1, SOS, PP1-cat alpha, eIF2B5 

20 Regulation of degradation of 

deltaF508-CFTR in CF 

8.12E-07 HSP90, Csp, Sti1, HSP70, Aha1, SAE1, SUMO-2, NPL4, VCP, SUMO-3 

21 Cell cycle_Influence of Ras and Rho 

proteins on G1/S Transition 

2.23E-06 CDK4, MEK1(MAP2K1), Cyclin A2, DIA1, Cyclin E, PI3K cat class IA, c-Raf-1, GSK3 beta, 

SKP2, LIMK2, CDK2 

22 Cell cycle_Transition and 

termination of DNA replication 

2.31E-06 TOP2 alpha, Ribonuclease H1, Cyclin A, MCM2, TOP2, POLD reg (p50), FEN1, CDK2 

23 Possible regulation of HSF-1/ 

chaperone pathway in Huntington's 

disease 

5.55E-06 HSP90, GSK3 alpha/beta, PLA2, HSP70, PLK1, SUMO-2, HSP90 beta 

24 Cell cycle_Regulation of G1/S 

transition (part 1) 

5.95E-06 CDK4, Chk2, PP2A regulatory, Cyclin A, Cyclin E, Skp2/TrCP/FBXW, GSK3 beta, CDC25A, 

CDK2 

25 LRRK2 in neurons in Parkinson's 

disease 

1.65E-05 AP-2 alpha subunits, HSP90, MEK1/2, GSK3 beta, MARK2, AP2A1, Tubulin (in 

microtubules), 14-3-3 
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Supplementary Table 4. Pathway analysis of genes co-expressed with 26S proteasome delta subunit,  
non-ATPase 3 (PSMD3) from public breast cancer databases using the MetaCore platform (with p<0.01 set as 
the cutoff value). 

No. Map p-Value Network objects from active data 

1 Cell cycle_Role of APC in cell cycle regulation 3.21E-11 
Nek2A, CDC18L (CDC6), CDH1, Tome-1, Aurora-A, PLK1, Aurora-B, 

CDC25A, Cyclin B, MAD2a, ORC1L, CDK2 

2 
Cell cycle_Spindle assembly and chromosome 

separation 
4.92E-11 

Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, DCTN2, Aurora-A, 
Aurora-B, Tubulin alpha, Cyclin B, MAD2a, Separase, Tubulin (in 

microtubules) 

3 Cell cycle_Role of Nek in cell cycle regulation 6.49E-10 
Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A, 

Tubulin alpha, MAD2a, Histone H1, Histone H3, Tubulin (in microtubules) 

4 DNA damage_Intra S-phase checkpoint 2.89E-09 

CDC18L (CDC6), CDH1, DTL (hCdt2), Chk2, MCM4, PP1-cat, CDC25A, 

MCM7, Brca1, PP1-cat alpha, MCM2, Histone H3, CDK2, GCN5, 
CDC45L 

5 
DNA damage_ATM/ATR regulation of G2/M 

checkpoint: cytoplasmic signaling 
1.39E-08 

UBE2C, Cyclin B1, Chk2, PP2A regulatory, Aurora-A, PLK1, PP1-cat, 

Aurora-B, CDC25A, Brca1, Histone H3, 14-3-3 

6 
Cell cycle_Transition and termination of DNA 

replication 
2.28E-08 

TOP2 alpha, Brca1, TOP1, MCM2, TOP2, POLD reg (p50), FEN1, DNA 

ligase I, CDK2 

7 
Cell cycle_Chromosome condensation in 
prometaphase 

5.90E-08 
CAP-H/H2, Aurora-A, Aurora-B, TOP1, Cyclin B, TOP2, Histone H1, 

Histone H3 

8 Cytoskeleton remodeling_Keratin filaments 5.33E-07 
Tubulin beta, Keratin 8, Tubulin gamma 1, Keratin 18, Keratin 19, Tubulin 

alpha, Keratin 8/18, GRB2, Tubulin (in microtubules) 

9 
Transcription_Negative regulation of HIF1A 

function 
3.57E-06 

HSP90, Calpain 1(mu), HSP70, RUVBL2, Casein kinase I delta, Sirtuin7, 

HSP90 beta, MCM7, VCP, MCM2, PSMA7 

10 Cell cycle_The metaphase checkpoint 6.04E-06 
Nek2A, Aurora-A, PLK1, Aurora-B, HZwint-1, MAD2a, Survivin, CENP-

E 

11 
Regulation of degradation of deltaF508-CFTR in 

CF 
1.14E-05 HSP90, Csp, Sti1, HSP70, Aha1, NPL4, Derlin1, VCP 

12 
Cell cycle_Start of DNA replication in early S 

phase 
2.61E-05 CDC18L (CDC6), MCM4, MCM2, ORC1L, Histone H1, CDK2, CDC45L 

13 LRRK2 in neurons in Parkinson's disease 3.23E-05 
AP-2 alpha subunits, HSP90, MARK2, AP2A1, Tubulin (in microtubules), 

Beta-adaptin 2, 14-3-3 

14 
DNA damage_ATM/ATR regulation of G2/M 
checkpoint: nuclear signaling 

3.44E-05 CDC18L (CDC6), Cyclin B1, CDH1, Chk2, PLK1, Brca1, Cyclin B, CDK2 

15 
Signal transduction_mTORC1 downstream 

signaling 
4.58E-05 

SCD, p70 S6 kinase2, MVK, p70 S6 kinases, UBF, SIN1, MAF1, ATG13, 

ULK1 

16 
Apoptosis and survival_Regulation of apoptosis 

by mitochondrial proteins 
4.71E-05 

Calpain 1(mu), PKC-delta, Metaxin 1, Smac/Diablo, RAD9A, 14-3-3 

zeta/delta, PP1-cat alpha, PP2C, LETM1, RAD9, SOD1, CDK2 

17 
Regulation of lipid metabolism_Regulation of 
lipid metabolism via LXR, NF-Y and SREBP 

8.45E-05 AMPK gamma subunit, SCD, FASN, LDLR, ACACA, ACLY, RARalpha 

18 Translation_Regulation of EIF2 activity 8.45E-05 PKR, Casein kinase I, PP1-cat, H-Ras, PP1-cat alpha, eIF2AK1, GRB2 

19 
DNA damage_ATM-dependent double-strand 
break foci 

9.86E-05 
STARING, PRMT1, NPL4, Histone H2A, Brca1, VCP, BRG1, Histone H3, 

GCN5 

20 
Apoptosis and survival_Endoplasmic reticulum 

stress response pathway 
1.72E-04 

Calpain 1(mu), I-κB, TRAF2, PP1-cat, Derlin1, GRP78, PP1-cat alpha, 

ERP5 

21 Regulation of degradation of wtCFTR 1.99E-04 HSP90, Csp, NPL4, Derlin1, VCP 

22 NETosis in SLE 2.06E-04 DNase I, Histone H2, Histone H2A, PKC, Histone H1, Histone H3 

23 
SCAP/SREBP Transcriptional Control of 

Cholesterol and FA Biosynthesis 
2.56E-04 ELOVL1, SCD, FASN, ERG1, MVK, ACACA, ACLY 

24 
Mechanisms of resistance to EGFR inhibitors in 

lung cancer 
2.56E-04 HSP90, E-cadherin, H-Ras, Claudin-7, ErbB2, Survivin, GRB2 

25 Transport_Induction of Macropinocytosis 2.96E-04 
HSP90, ARF1, BAIAP2, SHIP2, H-Ras, 14-3-3 zeta/delta, PDGF-B, PKC, 

RhoGDI alpha 
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Supplementary Table 5. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 7 (PSMD7) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the 
cutoff value). 

No. Map p-Value Network objects from active data 

1 Cell cycle_Role of APC in cell cycle 

regulation 

2.73E-11 BUB1, CDH1, Geminin, Emi1, Cyclin A, Aurora-A, PLK1, PKA-cat (cAMP-

dependent), Cyclin B, MAD2a, Securin, CKS1 

2 Cell cycle_ESR1 regulation of G1/S 

transition 

2.64E-08 CDK4, Cyclin A2, E2F4/DP1 complex, p130, Cyclin A, ERK1/2, E2F4, ERK2 

(MAPK1), CKS1, CDK6 

3 Cell cycle_Regulation of G1/S transition 

(part 2) 

4.24E-08 CDK4, Cyclin A2, E2F4/DP1 complex, p130, DP1, Cyclin A, ERK1/2, E2F4, 

CDK6 

4 Cell cycle_Cell cycle (generic schema) 5.29E-08 CDK4, E2F5, p130, DP1, Cyclin A, Cyclin B, E2F4, CDK6 

5 Cell cycle_Spindle assembly and 

chromosome separation 

2.09E-07 Importin (karyopherin)-alpha, Aurora-A, HEC, Tubulin alpha, Cyclin B, MAD2a, 

Securin, Ran, Tubulin (in microtubules) 

6 Cell cycle_The metaphase checkpoint 4.73E-07 BUB1, SPBC25, CENP-A, Aurora-A, PLK1, HEC, HZwint-1, MAD2a, CENP-E 

7 The role of aberrations in CDKN2 locus 

and CDK4 in familial melanoma 

6.81E-07 CDK4, E2F4/DP1 complex, E2F5, p130, DP1, E2F5/DP1 complex, E2F4, CDK6 

8 Possible regulation of HSF-1/ chaperone 

pathway in Huntington's disease 

1.08E-06 HSP90, PLA2, HSP70, HSP90 alpha, PLK1, ERK1 (MAPK3), p23 co-chaperone 

9 Putative role of Estrogen receptor and 

Androgen receptor signaling in progression 

of lung cancer 

4.23E-06 MEK1(MAP2K1), E-cadherin, p38 MAPK, ERK1 (MAPK3), G-protein alpha-i 

family, Caspase-3, ERK1/2, ERK2 (MAPK1), SRD5A1, 14-3-3 

10 Signal transduction_Adenosine A3 receptor 

signaling pathway 

6.26E-06 HIF1A, MEK1/2, p38 MAPK, G-protein alpha-i family, G-protein alpha-i3, G-

protein alpha-i2, ERK1/2, PKC, G-protein alpha-q/11 

11 Transport_RAN regulation pathway 6.57E-06 NTF2, NUP54, Importin (karyopherin)-alpha, RanBP1, NUP153, Ran 

12 Cell cycle_Role of SCF complex in cell 

cycle regulation 

1.19E-05 CDK4, p130, Emi1, Chk1, PLK1, NEDD8, CKS1 

13 NRF2 regulation of oxidative stress 

response 

1.71E-05 Casein kinase II, alpha chains, MEK1(MAP2K1), Thioredoxin, PRDX1, TXNRD1, 

GCL reg, ERK1 (MAPK3), PKC, ERK2 (MAPK1) 

14 Cell cycle_Chromosome condensation in 

prometaphase 

1.79E-05 CAP-C, Cyclin A, CAP-G/G2, Aurora-A, CAP-E, Cyclin B 

15 Cell cycle_Role of Nek in cell cycle 

regulation 

2.39E-05 Tubulin beta, Aurora-A, HEC, Tubulin alpha, MAD2a, Ran, Tubulin (in 

microtubules) 

16 The role of KEAP1/NRF2 pathway in skin 

sensitization 

2.39E-05 HSP70, Thioredoxin, E-cadherin, TXNRD1, ERK1 (MAPK3), ERK1/2, ERK2 

(MAPK1) 

17 Immune response_Antigen presentation by 

MHC class II 

2.64E-05 HSP90, Cathepsin L, Dectin-1, HSP90 alpha, Cathepsin V, p38 MAPK, Legumain, 

MARCH1, ERK1/2, HSC70, PKC, MAP1LC3B, Tubulin (in microtubules) 

18 Development_S1P1 receptor signaling via 

beta-arrestin 

3.63E-05 MEK1(MAP2K1), ERK1 (MAPK3), G-protein alpha-i family, G-protein alpha-i3, 

G-protein alpha-i2, ERK1/2, ERK2 (MAPK1) 

19 Development_Regulation of telomere 

length and cellular immortalization 

4.43E-05 HSP90, hnRNP C, TRF2, PTOP, hRap1, Staufen, p23 co-chaperone 

20 G protein-coupled receptors signaling in 

lung cancer 

4.94E-05 PGE2R4, Galpha(i)-specific peptide GPCRs, G-protein alpha-i family, TGF-alpha, 

PKA-cat (cAMP-dependent), Galanin, Galpha(q)-specific peptide GPCRs, CXCR4, 

ERK1/2, G-protein alpha-q/11 

21 HSP70 and HSP40-dependent folding in 

Huntington's disease 

5.30E-05 HSP90, HSP70, HSP90 alpha, PSMD1, Hdj-2, HSC70 

22 DNA damage_ATM/ATR regulation of 

G2/M checkpoint: cytoplasmic signaling 

7.93E-05 p38alpha (MAPK14), Chk1, Aurora-A, PLK1, p38 MAPK, DCK, ERK2 (MAPK1), 

14-3-3 

23 HCV-dependent cytoplasmic signaling 

leading to HCC 

8.45E-05 MEK1(MAP2K1), p38 MAPK, PKA-cat (cAMP-dependent), ERK1/2, PKC, ERK2 

(MAPK1) 

24 Non-genomic signaling of ESR2 

(membrane) in lung cancer cells 

1.05E-04 MEK1(MAP2K1), ERK1 (MAPK3), N-Ras, G-protein alpha-i family, TGF-alpha, 

PKA-cat (cAMP-dependent), ERK1/2, ERK2 (MAPK1) 

25 Signal transduction_CXCR4 signaling via 

MAPKs cascades 

1.05E-04 MEK1(MAP2K1), MEK1/2, p38 MAPK, N-Ras, G-protein alpha-i family, G-

protein alpha-i2, CXCR4, ERK1/2 
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Supplementary Table 6. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 10 (PSMD10) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the 
cutoff value). 

No. Map p-Value Network objects from active data 

1 
HSP70 and HSP40-dependent folding in 

Huntington's disease 
9.52E-07 HSP90, Ubiquitin, HSP70, HSP90 alpha, PSMD1, Hdj-2, HSC70 

2 DNA damage_Nucleotide excision repair 3.58E-06 
ERCC8, ERCC6, PCNA, HMG14, Centrin-2, TFIIS, Histone H2A, E2N(UBC13), 

NEDD4, NEDD8 

3 CFTR folding and maturation (normal and CF) 1.21E-05 HSP70, Calnexin, HSP105, HSP90 alpha, Hdj-2, p23 co-chaperone 

4 
Immune response_Antigen presentation by 

MHC class II 
1.43E-05 

HSP90, Cathepsin L, 14-3-3 beta/alpha, HSP90 alpha, Cathepsin V, PI3K cat class 

IA, JNK(MAPK8-10), p38 MAPK, LAMP2, MARCH1, HSC70, SPPL2a 

5 
Regulation of degradation of deltaF508-CFTR 

in CF 
2.32E-05 HSP90, Ubiquitin, HSP70, RNF4, HSP105, Hdj-2, HSC70 

6 
Cell cycle_Role of SCF complex in cell cycle 

regulation 
3.89E-05 Ubiquitin, p130, Emi1, Skp2/TrCP/FBXW, Wee1, NEDD8 

7 
Immune response_BAFF-induced non-

canonical NF-kB signaling 
4.77E-05 Ubiquitin, SUMO-1, UBE1C, Skp2/TrCP/FBXW, E2N(UBC13), NEDD8 

8 
Development_Positive regulation of 

WNT/Beta-catenin signaling in the cytoplasm 
5.15E-05 

PP2C alpha, GSKIP, SIAH1, HSP105, JNK(MAPK8-10), SMAD4, PP2A 

catalytic, RNF146, 14-3-3 

9 Tricarbonic acid cycle 6.45E-05 SDHA, SUCLG1, SDHB, CISY, SUCB1, IDH3B, DLDH, SCS-A 

10 Role of XBP1 protein in multiple myeloma 6.70E-05 SERP1, DnaJB9, PSMA6, GRP78, ERP5 

11 Role of GIP in pathogenesis of type 2 diabetes 7.06E-05 
Ubiquitin, RAP-1A, p38alpha (MAPK14), MEK1/2, JNK(MAPK8-10), p38 

MAPK, PP2A catalytic 

12 
Possible regulation of HSF-1/ chaperone 

pathway in Huntington's disease 
8.63E-05 HSP90, HSP70, HSP90 alpha, JNK(MAPK8-10), p23 co-chaperone 

13 
DNA damage_ATM/ATR regulation of G2/M 

checkpoint: cytoplasmic signaling 
1.39E-04 

JAB1, p38alpha (MAPK14), p38 MAPK, JNK2(MAPK9), DCK, PP2A catalytic, 

14-3-3 

14 
Transcription_Negative regulation of HIF1A 

function 
1.57E-04 HSP90, PRDX4, Ubiquitin, HSP70, FBXW7, LAMP2, Elongin C, HSC70 

15 
Proteolysis_Role of Parkin in the Ubiquitin-

Proteasomal Pathway 
1.70E-04 SIAH1, HSP70, FBXW7, UBC7, Tubulin alpha 

16 
G-protein signaling_G-Protein alpha-12 

signaling pathway 
1.90E-04 

MEK1(MAP2K1), RAP-1A, 14-3-3 beta/alpha, PI3K cat class IA, JNK(MAPK8-

10), p38 MAPK 

17 
Immune response_HSP60 and HSP70/ TLR 

signaling pathway 
2.00E-04 Ubiquitin, HSP70, I-kB, MEK1/2, JNK(MAPK8-10), p38 MAPK, E2N(UBC13) 

18 Translation_Regulation of EIF4F activity 2.00E-04 
MEK1(MAP2K1), eIF4H, PI3K cat class IA, p38 MAPK, PP2A catalytic, RHEB2, 

eIF4E 

19 
Development_Glucocorticoid receptor 

signaling 
2.09E-04 HSP90, SUMO-1, HSP70, NCOA2 (GRIP1/TIF2), p23 co-chaperone 

20 
G-protein signaling_Ras family GTPases in 

kinase cascades 
2.54E-04 MEK1(MAP2K1), RAP-1A, p38alpha (MAPK14), JNK(MAPK8-10), p38 MAPK 

21 
Immune response_TLR5, TLR7, TLR8 and 

TLR9 signaling pathways 
3.15E-04 

Ubiquitin, I-kB, MEK1/2, PI3K cat class IA, JNK(MAPK8-10), p38 MAPK, 

E2N(UBC13) 

22 Immune response_IL-33 signaling pathway 3.15E-04 
Ubiquitin, p38alpha (MAPK14), I-kB, MEK1/2, PI3K cat class IA, Histone H2A, 

JNK(MAPK8-10) 

23 Signal transduction_AKT signaling 3.83E-04 HSP90, PCNA, I-kB, PI3K cat class IA, PP2A catalytic, RHEB2 

24 
ESR1 (membrane) 36 kDa isoform signaling 

in breast cancer 
3.83E-04 HSP90, E-cadherin, MEK1/2, PI3K cat class IA, JNK(MAPK8-10), CXCR4 

25 DNA damage_p53 activation by DNA damage 3.89E-04 
TTC5 (Strap), p38alpha (MAPK14), 14-3-3 theta, JNK(MAPK8-10), p38 MAPK, 

PP2A catalytic, 14-3-3 
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Supplementary Table 7. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 12 (PSMD12) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the 
cutoff value). 

No. Map p-Value Network objects from active data 

1 
Cell cycle_Role of APC in cell 

cycle regulation 
2.62E-23 

Nek2A, BUB1, CDC18L (CDC6), CDH1, Tome-1, Geminin, Emi1, Cyclin A, Aurora-A, 

PLK1, Aurora-B, CDC25A, CDC20, SKP2, Cyclin B, MAD2a, Securin, ORC1L, CDK2, 

CKS1 

2 
Cell cycle_The metaphase 

checkpoint 
3.68E-17 

Nek2A, INCENP, BUB1, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, 

CDCA1, CDC20, HZwint-1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14 

3 
DNA damage_Intra S-phase 

checkpoint 
2.96E-15 

PCNA, CDC18L (CDC6), BLM, CDH1, FANCD2, DTL (hCdt2), Histone H2AX, Chk2, 

MCM4, MCM3, Cyclin A, Chk1, FANCI (KIAA1794), CDC25A, MCM7, MCM10, 

CDC7, MCM2, Histone H3, CDK2, CDC45L 

4 
Cell cycle_Spindle assembly and 

chromosome separation 
5.66E-15 

Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B, 

HEC, CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin, Tubulin (in 

microtubules) 

5 

DNA damage_ATM/ATR 

regulation of G2/M checkpoint: 

nuclear signaling 

1.36E-12 
CDC25C, WDHD1, CDC18L (CDC6), Cyclin B1, CDH1, HSF1, Histone H2AX, Chk2, 

Cyclin A, Chk1, PLK1, Cyclin B, Cyclin B2, TTK, CDK2 

6 
Cell cycle_Start of DNA replication 

in early S phase 
2.27E-12 

CDC18L (CDC6), Geminin, MCM4, MCM3, Cyclin E, MCM10, ORC6L, MCM4/6/7 

complex, CDC7, MCM2, ORC1L, CDK2, CDC45L 

7 
Cell cycle_Cell cycle (generic 

schema) 
3.57E-12 

CDC25C, CDK4, E2F5, p107, Cyclin A, Cyclin E, CDC25A, Cyclin B, E2F2, CDC25B, 

CDK2 

8 
Cell cycle_Chromosome 

condensation in prometaphase 
3.57E-12 

INCENP, CAP-C, Cyclin A, CNAP1, CAP-G/G2, Aurora-A, CAP-D2/D3, Aurora-B, 

Cyclin B, TOP2, Histone H3 

9 

DNA damage_ATM/ATR 

regulation of G2/M checkpoint: 

cytoplasmic signaling 

1.07E-11 
CDC25C, UBE2C, Cyclin B1, JAB1, BORA, Chk2, Chk1, Aurora-A, PLK1, Aurora-B, 

CDC25A, DCK, CDC25B, Histone H3, 14-3-3 

10 
Abnormalities in cell cycle in 

SCLC 
1.25E-11 

CDK4, PCNA, Cyclin B1, Cyclin A, Cyclin E, Aurora-B, SKP2, E2F2, Histone H3, 

Cyclin E2, CDK2, CKS1 

11 
Cell cycle_Role of SCF complex in 

cell cycle regulation 
2.83E-10 

CDK4, Emi1, Cyclin E, Skp2/TrCP/FBXW, Chk1, PLK1, CDC25A, SKP2, NEDD8, 

CDK2, CKS1 

12 
Cell cycle_Role of Nek in cell cycle 

regulation 
9.73E-10 

Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A, HEC, Tubulin alpha, 

MAD2a, Histone H3, Tubulin (in microtubules) 

13 Cell cycle_Initiation of mitosis 1.59E-09 
CDC25C, Lamin B, Cyclin B1, PLK1, KNSL1, Cyclin B2, CDC25B, FOXM1, Kinase 

MYT1, Histone H3 

14 
Cell cycle_ESR1 regulation of 

G1/S transition 
2.91E-09 

CDK4, Cyclin A2, NCOA3 (pCIP/SRC3), Cyclin A, Cyclin E, Skp2/TrCP/FBXW, 

CDC25A, SKP2, CRM1, CDK2, CKS1 

15 
Cell cycle_Nucleocytoplasmic 

transport of CDK/Cyclins 
5.40E-08 CDK4, Importin (karyopherin)-alpha, Cyclin B1, Cyclin A, Cyclin E, CRM1, CDK2 

16 
DNA damage_ATM/ATR 

regulation of G1/S checkpoint 
4.62E-07 

CDK4, PCNA, Histone H2AX, Chk2, Cyclin A, Cyclin E, Chk1, CDC25A, CDK2, 

RFWD3 

17 
Mitogenic action of Estradiol / 

ESR1 (nuclear) in breast cancer 
1.01E-06 CDK4, NCOA3 (pCIP/SRC3), WIP1, Cyclin E, SGOL2, CDC25A, Cyclin E2, CDK2 

18 

Possible regulation of HSF-1/ 

chaperone pathway in Huntington's 

disease 

1.53E-06 HSP90, PLA2, HSP70, HSF1, HSP90 alpha, PLK1, p23 co-chaperone 

19 
Cell cycle_Role of 14-3-3 proteins 

in cell cycle regulation 
2.18E-06 CDC25C, Chk2, 14-3-3 theta, Chk1, CDC25A, 14-3-3 zeta/delta, CDC25B 

20 
Cell cycle_Sister chromatid 

cohesion 
3.06E-06 PCNA, Rad21, Cyclin B, DCC1, Separase, Securin, Histone H3 

21 
DNA damage_Nucleotide excision 

repair 
5.95E-06 

ERCC6, PCNA, DTL (hCdt2), EZH2, UFD1, Histone H2A, DNA polymerase kappa, 

Histone H2B, NEDD8, Histone H4, Histone H3 

22 
Cell cycle_Transition and 

termination of DNA replication 
7.60E-06 TOP2 alpha, PCNA, Cyclin A, MCM2, TOP2, FEN1, CDK2 

23 
Regulation of degradation of 

deltaF508-CFTR in CF 
1.50E-05 HSP90, Csp, Sti1, HSP70, SAE1, HSP105, UFD1, Derlin1 

24 
Reproduction_Progesterone-

mediated oocyte maturation 
1.83E-05 CDC25C, BUB1, Cyclin B1, Aurora-A, PLK1, CDC20, CDC25B, Kinase MYT1 

25 

Immune response_IFN-alpha/beta 

signaling via PI3K and NF-kB 

pathways 

2.03E-05 
CDK4, PCNA, 4E-BP1, p107, Cyclin A, Cyclin E, p19, DHFR, CDC25A, eIF4E, CDK2, 

ISG15 
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Supplementary Table 8. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 14 (PSMD14) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the 
cutoff value). 

 

No. Map p-Value Network objects from active data 

1 
Cell cycle_The metaphase checkpoint 4.46E-14 

Nek2A, BUB1, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, 

CDCA1, HZwint-1, MAD2a, Survivin, CENP-H, CENP-E, AF15q14 

2 
Cell cycle_Role of APC in cell cycle regulation 3.39E-12 

Nek2A, BUB1, Tome-1, Geminin, Emi1, Cyclin A, Aurora-A, PLK1, 

Aurora-B, Cyclin B, MAD2a, Securin, CKS1 

3 
Cell cycle_Spindle assembly and chromosome 

separation 
5.44E-12 

Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, 

Aurora-B, HEC, Tubulin alpha, Cyclin B, MAD2a, Securin, Tubulin (in 

microtubules) 

4 DNA damage_ATM/ATR regulation of G2/M 

checkpoint: cytoplasmic signaling 
1.68E-11 

UBE2C, Cyclin B1, JAB1, 14-3-3 gamma, BORA, Chk2, Chk1, Aurora-A, 

PLK1, PP1-cat, Aurora-B, DCK, Nucleolysin TIAR, Histone H3, 14-3-3 

5 
Cell cycle_Role of Nek in cell cycle regulation 2.23E-08 

Nek2A, Tubulin beta, Cyclin B1, TPX2, Aurora-A, HEC, Tubulin alpha, 

MAD2a, Histone H3, Tubulin (in microtubules) 

6 
DNA damage_Intra S-phase checkpoint 5.98E-08 

PCNA, DTL (hCdt2), Chk2, PP1-cat gamma, Cyclin A, RIF1, Claspin, Chk1, 

FANCI (KIAA1794), PP1-cat, MCM10, CDC7, Histone H3, CDC45L 

7 Cell cycle_Chromosome condensation in 

prometaphase 
1.01E-07 

Cyclin A, CAP-G/G2, Aurora-A, Aurora-B, CAP-E, Cyclin B, TOP2, 

Histone H3 

8 DNA damage_G2 checkpoint in response to DNA 

mismatches 
1.71E-07 

PCNA, MutSalpha complex, Chk2, MSH6, PMS1, Claspin, Chk1, EXO1, 

MSH2 

9 DNA damage_ATM/ATR regulation of G2/M 

checkpoint: nuclear signaling 
7.73E-07 

Cyclin B1, Chk2, Ku70, Cyclin A, Claspin, Chk1, PLK1, Cyclin B, Cyclin 

B2, TTK 

10 Regulation of degradation of deltaF508-CFTR in 

CF 
1.98E-06 Csp, HSP70, Aha1, HSP105, SUMO-2, Derlin1, UCHL1, Hdj-2, HSC70 

11 Cell cycle_Sister chromatid cohesion 3.77E-06 PCNA, Rad21, Cyclin B, DCC1, RFC3, Securin, Histone H3 

12 Oxidative stress_Role of ASK1 under oxidative 

stress 
4.54E-06 

HPK38, SOD2, UNRIP, 14-3-3 gamma, Thioredoxin, PRDX1, MT-TRX, 

Glutaredoxin, SOD1, 14-3-3 

13 Cell cycle_Initiation of mitosis 9.36E-06 Cyclin B1, Nucleolin, PLK1, KNSL1, Cyclin B2, FOXM1, Histone H3 

14 Transport_RAN regulation pathway 1.06E-05 NUP54, SUMO-1, Importin (karyopherin)-alpha, NUP58, RanBP1, CRM1 

15 Abnormalities in cell cycle in SCLC 2.05E-05 PCNA, Cyclin B1, Cyclin A, Aurora-B, Histone H3, Cyclin E2, CKS1 

16 Possible regulation of HSF-1/ chaperone pathway 

in Huntington's disease 
2.87E-05 PLA2, HSP70, PLK1, SUMO-2, Calmodulin, p23 co-chaperone 

17 Microsatellite instability in gastric cancer 3.85E-05 PCNA, MutSalpha complex, MSH6, PMS1, EXO1, MSH2 

18 CFTR folding and maturation (normal and CF) 6.59E-05 Csp, HSP70, Aha1, HSP105, Hdj-2, p23 co-chaperone 

19 Release of pro-inflammatory mediators and 

elastolytic enzymes by alveolar macrophages in 

COPD 

1.66E-04 MMP-12, Cathepsin L, MMP-1, IL-8, IP10, HDAC2 

20 Reproduction_Progesterone-mediated oocyte 

maturation 
1.83E-04 

BUB1, MEK1(MAP2K1), Cyclin B1, Aurora-A, PLK1, PKA-reg (cAMP-

dependent), G-protein alpha-i family 

21 Cell cycle_Role of SCF complex in cell cycle 

regulation 
2.04E-04 Emi1, Chk1, PLK1, RING-box protein 1, NEDD8, CKS1 

22 Apoptosis and survival_Granzyme A signaling 2.49E-04 Ku70/80, NDPK A, Ku80, HMGB2, Ku70, Histone H3 

23 DNA damage_Mismatch repair 3.61E-04 PCNA, MutSalpha complex, MSH6, EXO1, MSH2, Histone H3 

24 
Signal transduction_MIF signaling pathway 5.04E-04 

MEK1/2, PRDX1, SFK, IL-8, GCL reg, G-protein alpha-i family, CXCR4, 

SPPL2a 

25 Microsatellite instability in colorectal cancer 5.09E-04 PCNA, MutSalpha complex, Beta-2-microglobulin, MSH6, EXO1, MSH2 


