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By combiningwith sparse kernelmethods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary
automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider
regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning
problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i)
online sparsification, which can cope with unknown state regions and be used for online learning, (ii) 𝐿

2
and 𝐿

1
regularization,

which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion
operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and
reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make 𝐿

1
regularization easy to

implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.

1. Introduction

The least-squares temporal difference (LSTD) learning may
be the most popular approach for policy evaluation in rein-
forcement learning (RL) [1, 2]. Compared with the standard
temporal difference (TD) learning, LSTD uses samples more
efficiently and eliminates all step-size parameters. However,
LSTD also has some drawbacks. First, LSTD requires a
matrix-inversion operation at each time step. To reduce
computational complexity, Bradtke and Barto proposed a
recursive LSTD (RLSTD) algorithm [1], and Xu et al. pro-
posed a RLSTD(𝜆) algorithm [3]. But these two algorithms
still require many features especially for highly nonlinear
RL problems, since the RLS approximator assumes a linear
model [4]. Second, when the number of features is larger
than the number of training samples, LSTD is prone to
overfitting. To overcome this problem, Kolter and Ng pro-
posed an 𝐿

1
-regularized LSTD algorithm called LARS-TD

for feature selection [5], but it is only applicable for batch
learning and its implementation is complicated. On this basis,
Chen et al. proposed an 𝐿

2
-regularized RLSTD algorithm [6].

In contrast with LARS-TD, it has an analytical solution, but it
cannot obtain a sparse solution.Third, LSTD requires users to
design the feature vector manually, and poor design choices
can result in estimates that diverge from the optimal value
function [7].

In the last two decades, kernel methods have been
intensively and extensively studied in supervised and unsu-
pervised learning [8]. The basic idea behind kernel methods
can be summarized as follows: By using a nonlinear trans-
form, the origin input data can be mapped into a high-
dimensional feature space, and an inner product in this space
can be interpreted as a Mercer kernel function. Thus, as
long as a linear algorithm can be formulated in terms of
inner products, there is no need to perform computations
in the high-dimensional feature space [9]. Recently, there
have also been many research works on kernelizing least-
squares algorithms [9–13]. Here, we only review some works
related to our proposed algorithms. One typical work is
the sparse kernel recursive least-squares (SKRLS) algorithm
with the approximate linear dependency (ALD) criterion [11].
Compared with traditional RLS algorithms, it not only has
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a good nonlinear approximation ability but also can construct
the feature dictionary automatically. Similarly, Chen et al.
proposed an 𝐿

2
-regularized SKRLS algorithmwith the online

vector quantization [12]. Besides having the good properties
of SKRLS-ALD, it can avoid overfitting. In addition, Chen
et al. proposed an 𝐿

1
-regularized SKRLS algorithm with the

fixed-point subiteration [13], which can yield a much sparser
dictionary.

Intuitively, we can also bring the benefits of kernel
machine learning to LSTD algorithms. In fact, kernel-based
RL algorithms have becomemore andmore popular in recent
years [14–22], and several works have been done for kernel-
izing LSTD algorithms. In an earlier paper, Xu proposed a
sparse kernel-based LSTD(𝜆) (SKLSTD(𝜆)) algorithm with
the ALD criterion [19]. Although this algorithm can avoid
selecting features manually, it is only applicable for batch
learning and its derivation is complicated. After that, Xu et
al. proposed an incremental version of the SKLSTD(𝜆) algo-
rithm for policy iteration [20], but this algorithm still requires
a matrix-inversion operation at each time step. Moreover, the
feature dictionary is required to be constructed offline, which
makes this algorithm only approximate the value function
correctly in the area of the state space that is covered by
the training samples. Recently, Jakab and Csató proposed
a sparse kernel RLSTD (SKRLSTD) algorithm by using a
proximity graph sparsificationmethod [21]. Unfortunately, its
sparsification process is also offline. In addition, all of these
algorithms do not consider regularization, whereasmany real
problems exhibit noise and the high expressiveness of the
kernel matrix can result in overfitting [22].

In this paper, we propose two online SKRLSTD algo-
rithms with 𝐿

2
and 𝐿

1
regularization, called OSKRLSTD-𝐿

2

andOSKRLSTD-𝐿
1
, respectively. Compared with the deriva-

tion of SKLSTD(𝜆), our derivation uses Bellman operator
along with projection operator and thus is more simple. To
cope with unknown state-space regions and avoid overfitting,
our algorithms use online sparsification and regularization
techniques. Besides, to reduce computational complexity and
avoid caching all history samples, our algorithms also use the
recursive least-squares and the sliding-window technique.
Moreover, different from LARS-TD, OSKRLSTD-𝐿

1
uses the

subiteration and online pruning to find the fixed point.These
techniques make our algorithms more suitable for online RL
problems with a large or continuous state space. The rest of
this paper is organized as follows. In Section 2, we present
preliminaries and review the LSTD algorithm. Section 3
contains the main contribution of this paper: we derive
OSKRLSTD-𝐿

2
and OSKRLSTD-𝐿

1
algorithms in detail. In

Section 4, we demonstrate the effectiveness of our algorithms
for two 50-state chain problems. Finally, we conclude the
paper in Section 5.

2. Background

In this section, we introduce the basic definitions and nota-
tions, which will be used throughout the paper without any
further mention. We also review the LSTD algorithm, which
is needed to establish our algorithms described in Section 3.

2.1. Preliminaries. In RL and dynamic programming (DP), an
underlying sequential decision-making problem is often
modeled as a Markov decision process (MDP). An MDP can
be defined as a tuple M = ⟨S,A, 𝑃, 𝑟, 𝛾, 𝑑⟩ [5], where S is
a set of states, A is a set of actions, 𝑃 : S × A × S →

[0, 1] is a state transition probability functionwhere𝑃(s, a, s󸀠)
denotes the probability of transitioning to state s󸀠when taking
action a in state s, 𝑟 ∈ R is a reward function, 𝛾 ∈ [0, 1]

is the discount factor, and 𝑑 is an initial state distribution.
For simplicity of presentation, we assume that S and A are
finite. Given an MDP M and a policy 𝜋 : S → A, the
sequence s

1
, 𝑟
1
, s
2
, 𝑟
2
, . . . is a Markov reward processR = ⟨S,

𝑃
𝜋
, 𝑅
𝜋
, 𝛾, 𝑑⟩, where 𝑃𝜋(s, s󸀠) = ∑a∈A 𝜋(a | s)𝑃(s, a, s󸀠) and

𝑅
𝜋
(s) = ∑a∈A 𝜋(a | s) ∑s󸀠∈S 𝑃(s, a, s󸀠)𝑟(s, a, s󸀠).
RL and DP often use the state-value function 𝑉

𝜋
(s) to

evaluate how good the policy 𝜋 is for the agent to be in state
s. For anMDP,𝑉𝜋(s) can be defined as𝑉𝜋(s) = E

𝜋
[∑
∞

𝑡=0
𝛾
𝑡
𝑟
𝑡
|

s
0
= s], which must obey the Bellman equation [23],

𝑉
𝜋
(s) = 𝑅

𝜋
(s) + 𝛾∑

s󸀠∈S
𝑃
𝜋
(s, s󸀠)𝑉𝜋 (s󸀠) , (1)

or be expressed in vector form,

𝑉
𝜋
= 𝑅
𝜋
+ 𝛾𝑃
𝜋
𝑉
𝜋
. (2)

If 𝑃𝜋 and 𝑅𝜋 are known,𝑉𝜋 can be solved analytically; that is,

𝑉
𝜋
= (I − 𝛾𝑃

𝜋
)
−1

𝑅
𝜋
, (3)

where I is the |S| × |S| identity matrix.
However, different from the case in DP, 𝑃𝜋 and 𝑅

𝜋 are
unknown in RL. The agent has to estimate 𝑉𝜋 by exploring
the environment. Furthermore, many real problems have a
large or continuous state space, which makes 𝑉𝜋(s) hard to
be expressed explicitly. To overcome this problem, we often
resort to linear function approximation; that is,

𝑉̂
𝜋

(s) = wT
𝜙 (s)

or 𝑉̂𝜋 = Φw,
(4)

where w ∈ R𝑚 is a parameter vector, 𝜙(s) ∈ R𝑚 is the feature
vector of state s, and Φ = [𝜙(s

1
), . . . ,𝜙(s

|S|)]
T is a |S| × 𝑚

feature matrix. Unfortunately, when approximating 𝑉
𝜋 in

this manner, there is usually no way to satisfy the Bellman
equation exactly, because 𝑅

𝜋
+ 𝛾𝑃
𝜋
Φw may lie outside the

span of Φ [5].

2.2. LSTD Algorithm. The LSTD algorithm presents an effi-
cient way to find w such that 𝑉̂𝜋 “approximately” satisfies the
Bellman equation [5]. By solving the least-squares problem
minu∈R𝑚‖Φu − (𝑅

𝜋
+ 𝛾𝑃
𝜋
Φw)‖2D, we can find a closest

approximationΦu∗ in the span ofΦ to replace 𝑅𝜋 + 𝛾𝑃
𝜋
Φw.

Then, from (2) and (4), we can usew = u∗ for approximating
𝑉
𝜋. That means we can find w by solving the fixed-point

equation:

w = 𝑓 (w) = argmin
u∈R𝑚

󵄩󵄩󵄩󵄩Φu − (𝑅
𝜋
+ 𝛾𝑃
𝜋
Φw)󵄩󵄩󵄩󵄩

2

D , (5)
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where D is a nonnegative diagonal matrix indicating a
distribution over states. Nevertheless, since 𝑃

𝜋 and 𝑅
𝜋 are

unknown and sinceΦ is too large to form anyway in a large or
continuous state space, we cannot solve (5) exactly. Instead,
given a trajectory 𝑇

𝜋

𝑡
= {(s
𝑖
, s󸀠
𝑖
, 𝑟
𝑖
) | 𝑖 = 1, . . . , 𝑡} following

policy 𝜋, LSTD uses Φ̂
𝑡
= [𝜙(s

1
), . . . ,𝜙(s

𝑡
)]
T, Φ̂󸀠
𝑡
= [𝜙(s󸀠

1
), . . .,

𝜙(s󸀠
𝑡
)]
T, and 𝑅̂

𝑡
= [𝑟
1
, . . . , 𝑟

𝑡
]
T to replace Φ, 𝑃𝜋Φ, and 𝑅

𝜋,
respectively. Then, (5) can be approximately rewritten as

w
𝑡
= 𝑓̃ (w

𝑡
) = argmin

u∈R𝑚

󵄩󵄩󵄩󵄩󵄩󵄩
Φ̂
𝑡
u − (𝑅̂

𝑡
+ 𝛾Φ̂
󸀠

𝑡
w
𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

. (6)

Let 𝜕‖Φ̂
𝑡
u − (𝑅̂

𝑡
+ 𝛾Φ̂
󸀠

𝑡
w
𝑡
)‖
2

2
/𝜕u = 0; we have

𝑓̃ (w
𝑡
) = u∗ = (Φ̂

T

𝑡
Φ̂
𝑡
)

−1

Φ̂
T

𝑡
(𝑅̂
𝑡
+ 𝛾Φ̂
󸀠

𝑡
w
𝑡
) . (7)

Thus, the fixed point w
𝑡
= 𝑓̃(w

𝑡
) can be found by

w
𝑡
= (Φ̂

T

𝑡
(Φ̂
𝑡
− 𝛾Φ̂
󸀠

𝑡
))

−1

Φ̂
T

𝑡
𝑅̂
𝑡
. (8)

3. Regularized OSKRLSTD Algorithms

To overcome the weaknesses of the previous kernel-based
LSTD algorithms, we propose two regularized OSKRLSTD
algorithms in this section.

3.1. OSKRLSTD-𝐿
2
Algorithm. Now,we use𝐿

2
regularization

and online sparsification to derive the first OSKRLSTD
algorithm, which is called OSKRLSTD-𝐿

2
.

First, we use the kernel trick to kernelize (6). Suppose the
feature dictionary D

𝑡
= {d
𝑗
| d
𝑗
∈ S, 𝑗 = 1, . . . , 𝑛

𝑡
}, and let

Φ
𝑡
= [𝜙(d

1
), . . . ,𝜙(d

𝑛
𝑡

)]
T denote the corresponding feature

matrix. By the Representer Theorem [24], w
𝑡
and u can be

expressed as follows:

w
𝑡
= Φ

T
𝑡
𝛼
𝑡
=

𝑛
𝑡

∑

𝑗=1

𝛼
𝑗
𝜙 (d
𝑗
) ,

u = Φ
T
𝑡
𝛽 =

𝑛
𝑡

∑

𝑗=1

𝛽
𝑗
𝜙 (d
𝑗
) ,

(9)

where 𝛼
𝑡
= [𝛼
𝑡,1
, . . . , 𝛼

𝑡,𝑛
𝑡

]
T and 𝛽 = [𝛽

1
, . . . , 𝛽

𝑛
𝑡

]
T are the

coefficient vector of w
𝑡
and u, respectively. Then, from (6),

we have

𝛼
𝑡
= 𝑓̂ (𝛼

𝑡
) = argmin
𝛽∈R𝑛𝑡

󵄩󵄩󵄩󵄩󵄩󵄩
Φ̂
𝑡
Φ

T
𝑡
𝛽 − (𝑅̂

𝑡
+ 𝛾Φ̂
󸀠

𝑡
Φ

T
𝑡
𝛼
𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

. (10)

By theMercerTheorem [24], the inner product of two feature
vectors can be calculated by 𝑘(s

𝑖
, s
𝑗
) = 𝜙(s

𝑖
)
T𝜙(s
𝑗
). Thus, we

can define K
𝑡
= Φ
𝑡
Φ

T
𝑡
, K̂
𝑡
= Φ
𝑡
Φ̂

T

𝑡
, and K̂󸀠

𝑡
= Φ
𝑡
(Φ̂
󸀠

𝑡
)
T. On

this basis, (10) can be rewritten as

𝛼
𝑡
= 𝑓̂ (𝛼

𝑡
) = argmin
𝛽∈R𝑛𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
K̂T

𝑡
𝛽 − (𝑅̂

𝑡
+ 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

. (11)

Second, we try to derive the 𝐿
2
-regularized solution of

(11). Add an 𝐿
2
-norm penalty into (11); that is,

𝛼
𝑡
= 𝑓̂ (𝛼

𝑡
)

= argmin
𝛽∈R𝑛𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
K̂T

𝑡
𝛽 − (𝑅̂

𝑡
+ 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜂
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩

2

2
,

(12)

where 𝜂 ∈ [0,∞) is a regularization parameter. Let 𝜕(‖K̂T

𝑡
𝛽 −

(𝑅̂
𝑡
+ 𝛾(K̂󸀠

𝑡
)
T𝛼
𝑡
)‖
2

2
+ 𝜂‖𝛽‖2

2
)/𝜕𝛽 = 0; we have

K̂
𝑡
(K̂T

𝑡
𝛽
∗
− 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
) + 𝜂𝛽

∗
= K̂
𝑡
𝑅̂
𝑡
. (13)

Since w
𝑡
= u∗, we easily have 𝛼

𝑡
= 𝛽∗ from (9). Then, the

above equation can be rewritten as

(K̂
𝑡
(K̂
𝑡
− 𝛾K̂󸀠
𝑡
)

T

+ 𝜂I
𝑡
)𝛼
𝑡
= K̂
𝑡
𝑅̂
𝑡
, (14)

where I
𝑡
is the 𝑛

𝑡
× 𝑛
𝑡
identity matrix. Thus, 𝛼

𝑡
can be

analytically solved as

𝛼
𝑡
= (K̂
𝑡
(K̂
𝑡
− 𝛾K̂󸀠
𝑡
)

T

+ 𝜂I
𝑡
)

−1

K̂
𝑡
𝑅̂
𝑡
= A−1
𝑡
b
𝑡
, (15)

where A
𝑡
∈ R𝑛𝑡×𝑛𝑡 and b

𝑡
∈ R𝑛𝑡 denote

A
𝑡
= K̂
𝑡
(K̂
𝑡
− 𝛾K̂󸀠
𝑡
)

T

+ 𝜂I
𝑡

=

𝑡

∑

𝑖=1

k
𝑡
(s
𝑖
) ΔkT
𝑡
(s
𝑖
, s󸀠
𝑖
) + 𝜂I

𝑡
,

b
𝑡
= K̂
𝑡
𝑅̂
𝑡
=

𝑡

∑

𝑖=1

k
𝑡
(s
𝑖
) 𝑟
𝑖
,

(16)

where k
𝑡
(⋅) = [𝑘(⋅, d

1
), . . . , 𝑘(⋅, d

𝑛
𝑡

)]
T andΔk

𝑡
(s
𝑖
, s󸀠
𝑖
) = k
𝑡
(s
𝑖
)−

𝛾k
𝑡
(s󸀠
𝑖
).

Third, we derive the recursive formulas of A−1
𝑡

and 𝛼
𝑡
.

Under online sparsification, there are two cases: (1) D
𝑡
=

D
𝑡−1

, 𝑛
𝑡
= 𝑛
𝑡−1

, k
𝑡
(⋅) = k

𝑡−1
(⋅), Δk

𝑡
(s
𝑖
, s󸀠
𝑖
) = Δk

𝑡−1
(s
𝑖
, s󸀠
𝑖
),

and I
𝑡
= I
𝑡−1

; (2) D
𝑡
= D
𝑡−1

∪ {s
𝑡
}, 𝑛
𝑡
= 𝑛
𝑡−1

+ 1, k
𝑡
(⋅) =

[kT
𝑡−1

(⋅), 𝑘(⋅, s
𝑡
)]
T, Δk

𝑡
(s
𝑖
, s󸀠
𝑖
) = [ΔkT

𝑡−1
(s
𝑖
, s󸀠
𝑖
), Δ𝑘
𝑡
(s
𝑖
, s󸀠
𝑖
)]
T,

where Δ𝑘
𝑡
(s
𝑖
, s󸀠
𝑖
) = 𝑘(s

𝑖
, s
𝑡
) − 𝛾𝑘(s󸀠

𝑖
, s
𝑡
), and I

𝑡
is expanded

as

I
𝑡
= [

I
𝑡−1

0
𝑡−1

0T
𝑡−1

1

] , (17)

where 0
𝑡−1

is the 𝑛
𝑡−1

dimensional zero vector.
For the first case, (16) can be rewritten as follows:

A
𝑡
= A
𝑡−1

+ k
𝑡−1

(s
𝑡
) ΔkT
𝑡−1

(s
𝑡
, s󸀠
𝑡
) , (18)

b
𝑡
= b
𝑡−1

+ k
𝑡−1

(s
𝑡
) 𝑟
𝑡
. (19)

Applying the matrix-inversion lemma [25] for A−1
𝑡
, we get

A−1
𝑡

= A−1
𝑡−1

−

A−1
𝑡−1

k
𝑡−1

(s
𝑡
) ΔkT
𝑡−1

(s
𝑡
, s󸀠
𝑡
)A−1
𝑡−1

1 + ΔkT
𝑡−1

(s
𝑡
, s󸀠
𝑡
)A−1
𝑡−1

k
𝑡−1

(s
𝑡
)
. (20)
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Thus, plugging (19) and (20) into (15), we obtain

𝛼
𝑡
= 𝛼
𝑡−1

+

(𝑟
𝑡
− 𝛼T
𝑡−1

Δk
𝑡−1

(s
𝑡
, s󸀠
𝑡
))A−1
𝑡−1

k
𝑡−1

(s
𝑡
)

1 + ΔkT
𝑡−1

(s
𝑡
, s󸀠
𝑡
)A−1
𝑡−1

k
𝑡−1

(s
𝑡
)

. (21)

For the second case, (16) can be rewritten as follows:

A
𝑡
= [

Ã
𝑡
h
𝑡

gT
𝑡

𝑝
𝑡

] ,

b
𝑡
= [

b̃
𝑡

𝑞
𝑡

] ,

(22)

where Ã
𝑡
and b̃

𝑡
are the same as the updated A

𝑡
and

b
𝑡
when the feature dictionary keeps unchanged, h

𝑡
=

∑
𝑡

𝑖=1
Δ𝑘
𝑡
(s
𝑖
, s󸀠
𝑖
)k
𝑡−1

(s
𝑖
), g
𝑡
= ∑
𝑡

𝑖=1
𝑘(s
𝑖
, s
𝑡
)Δk
𝑡−1

(s
𝑖
, s󸀠
𝑖
), 𝑝
𝑡
=

∑
𝑡

𝑖=1
𝑘(s
𝑖
, st)Δ𝑘𝑡(s𝑖, s󸀠𝑖 ) + 𝜂, and 𝑞

𝑡
= ∑
𝑡

𝑖=1
𝑘(s
𝑖
, s
𝑡
)𝑟
𝑖
. However,

computing h
𝑡
, g
𝑡
, 𝑝
𝑡
, and 𝑞

𝑡
requires caching all history

samples, and the computational cost will become more and
more expensive as 𝑡 increases. Inspired by the work of Van
Vaerenbergh et al. [26], we introduce a sliding windowH

𝑡
to

deal with these problems. Let H
𝑡
= {(s
𝑗
, s󸀠
𝑗
, 𝑟
𝑗
) | 𝑗 = max(1,

𝑡 − 𝑀 + 1), . . . , 𝑡}, where 𝑀 is the window size. We only use
the samples inH

𝑡
to evaluate h

𝑡
, g
𝑡
, 𝑝
𝑡
, and 𝑞

𝑡
; that is,

h̃
𝑡
= ∑

𝑗∈H
𝑡

Δ𝑘
𝑡
(s
𝑗
, s󸀠
𝑗
) k
𝑡−1

(s
𝑗
) ,

g̃
𝑡
= ∑

𝑗∈H
𝑡

𝑘 (s
𝑗
, s
𝑡
) Δk
𝑡−1

(s
𝑗
, s󸀠
𝑗
) ,

𝑝̃
𝑡
= ∑

𝑗∈H
𝑡

𝑘 (s
𝑗
, s
𝑡
) Δ𝑘
𝑡
(s
𝑗
, s󸀠
𝑗
) + 𝜂,

𝑞̃
𝑡
= ∑

𝑗∈H
𝑡

𝑘 (s
𝑗
, s
𝑡
) 𝑟
𝑗
.

(23)

Then, similar to those in the first case, A−1
𝑡

and 𝛼
𝑡
can be

derived as follows:

A−1
𝑡

=
1

𝑚
𝑡

[

[

𝑚
𝑡
Ã−1
𝑡

+ Ã−1
𝑡
h̃
𝑡
g̃T
𝑡
Ã−1
𝑡

−Ã−1
𝑡
h̃
𝑡

−g̃T
𝑡
Ã−1
𝑡

1

]

]

, (24)

𝛼
𝑡
=

1

𝑚
𝑡

[

[

𝑚
𝑡
𝛼̃
𝑡
− Ã−1
𝑡
h̃
𝑡
(𝑞̃
𝑡
− g̃T
𝑡
𝛼̃
𝑡
)

𝑞̃
𝑡
− g̃T
𝑡
𝛼̃
𝑡

]

]

, (25)

where 𝑚
𝑡
= 𝑝̃
𝑡
− g̃T
𝑡
Ã−1
𝑡
h̃
𝑡
and 𝛼̃

𝑡
is the same as the updated

𝛼
𝑡
when the dictionary keeps unchanged.
Finally, we summarize the whole algorithm in Algo-

rithm 1.

Remark 1. Here, we do not restrict the OSKRLSTD-𝐿
2

algorithm to a specific online sparsification method. That
means it can be combined with many popular sparsification
methods such as the novelty criterion (NC) [27] and the ALD
criterion.

(1) Input: 𝜋 to be evaluated, 𝑘(⋅, ⋅), 𝛾, 𝜂,𝑀
(2) for 𝑡 = 1, 2, . . . do
(3) if 𝑡 == 1 then
(4) Initialize s

1
,D
1
= {s
1
}

(5) Take a
1
given by 𝜋, and observe s󸀠

1
, 𝑟
1

(6) InitializeH
1
= {(s
1
, s󸀠
1
, 𝑟
1
)}

(7) Initialize A−1
1

= (𝑘(s
1
, s
1
)(Δ𝑘
1
(s
1
, s󸀠
1
) + 𝜂))

−1

(8) Initialize 𝛼
1
= A−1
1
𝑘(s
1
, s
1
)𝑟
1

(9) else
(10) Take a

𝑡
given by 𝜋, and observe s󸀠

𝑡
, 𝑟
𝑡

(11) UpdateH
𝑡
,D
𝑡
= D
𝑡−1

(12) Update 𝛼
𝑡
, A−1
𝑡

by (21) and (20)
(13) if s

𝑡
satisfies the sparsification condition then

(14) D
𝑡
= D
𝑡−1

∪ {s
𝑡
}, 𝛼̃
𝑡
= 𝛼
𝑡
, Ã−1
𝑡

= A−1
𝑡

(15) Compute h̃
𝑡
, g̃
𝑡
, 𝑝̃
𝑡
and 𝑞̃

𝑡
by (23)

(16) Update 𝛼
𝑡
, A−1
𝑡

by (25) and (24)
(17) end if
(18) end if
(19) s

𝑡+1
= s󸀠
𝑡

(20) end for

Algorithm 1: OSKRLSTD-𝐿
2
.

Remark 2. Although the OSKRLSTD-𝐿
2
algorithm is de-

signed for infinite horizon tasks, it can be modified for
episodic tasks. When s󸀠

𝑡
is an absorbing state, it only requires

setting 𝛾 = 0 temporarily and setting s
𝑡+1

as the start state of
next episode.

Remark 3. Our simulation results show that a big slidingwin-
dow cannot help improve the convergence performance of
the OSKRLSTD-𝐿

2
algorithm. Thus, to save memory and

reduce the computational cost, 𝑀 should be set to a small
integer.

3.2. OSKRLSTD-𝐿
1
Algorithm. In this subsection, we use 𝐿

1

regularization and online sparsification to derive the second
OSKRLSTD algorithm, which is called OSKRLSTD-𝐿

1
.

First, we try to derive the 𝐿
1
-regularized solution of (11).

Add an 𝐿
1
-norm penalty into (11); that is,

𝛼
𝑡
= 𝑓̂ (𝛼

𝑡
)

= argmin
𝛽∈R𝑛𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
K̂T

𝑡
𝛽 − (𝑅̂

𝑡
+ 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 2𝜉
󵄩󵄩󵄩󵄩𝛽

󵄩󵄩󵄩󵄩1
,

(26)

where 𝜉 ∈ [0,∞) is a regularization parameter.However, ‖𝛽‖
1

is not differentiable. Similar to Painter-Wakefield and Parr in
[28], we resort to the subdifferential of 𝑔(𝛽) = ‖K̂T

𝑡
𝛽 − (𝑅̂

𝑡
+

𝛾(K̂󸀠
𝑡
)
T𝛼
𝑡
)‖
2

2
+ 2𝜉‖𝛽‖

1
; that is,

∇𝑔 (𝛽) = 2K̂
𝑡
(K̂T

𝑡
𝛽 − (𝑅̂

𝑡
+ 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
))

+ 2𝜉 sgn (𝛽) ,

(27)
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where sgn(𝛽) is the set-valued function defined component-
wise as

sgn (𝛽
𝑗
) =

{{{{

{{{{

{

{+1} 𝛽
𝑗
> 0

[−1, +1] 𝛽
𝑗
= 0

{−1} 𝛽
𝑗
< 0.

(28)

Let ∇𝑔(𝛽) = 0, so that

K̂
𝑡
(K̂T

𝑡
𝛽
∗
− 𝛾 (K̂󸀠

𝑡
)

T

𝛼
𝑡
) = K̂

𝑡
𝑅̂
𝑡
− 𝜉 sgn (𝛽∗) . (29)

Sincew
𝑡
= u∗, we also have𝛼

𝑡
= 𝛽∗ from (9).Then, the above

equation can be rewritten as

K̂
𝑡
(K̂
𝑡
− 𝛾K̂󸀠
𝑡
)

T

𝛼
𝑡
= K̂
𝑡
𝑅̂
𝑡
− 𝜉 sgn (𝛼

𝑡
) , (30)

where sgn(𝛼
𝑡
) has the same meaning as sgn(𝛽). To avoid the

singularity of K̂
𝑡
(K̂
𝑡
−𝛾K̂󸀠
𝑡
)
T and further reduce the complexity

of the subsequent derivation, we introduce 𝜂𝛼
𝑡
into both

sides; that is,

(K̂
𝑡
(K̂
𝑡
− 𝛾K̂󸀠
𝑡
)

T

+ 𝜂I
𝑡
)𝛼
𝑡

= K̂
𝑡
𝑅̂
𝑡
+ 𝜂𝛼
𝑡
− 𝜉 sgn (𝛼

𝑡
) ,

(31)

where 𝜂 ∈ [0,∞) is a regularization parameter. Obviously,
the left hand side of (31) is the same as that of (14).Thus, from
(16), the above equation can be rewritten as

A
𝑡
𝛼
𝑡
= b
𝑡
+ 𝜂𝛼
𝑡
− 𝜉 sgn (𝛼

𝑡
) . (32)

Then, we have the following fixed-point equation:

𝛼
𝑡
= 𝜇
𝑡
+ A−1
𝑡
(𝜂𝛼
𝑡
− 𝜉 sgn (𝛼

𝑡
)) , (33)

where 𝜇
𝑡
denotes

𝜇
𝑡
= A−1
𝑡
b
𝑡
. (34)

Unfortunately, here, 𝛼
𝑡
cannot be solved analytically.

Second, we investigate how to find the fixed point of (33).
In 𝐿
1
-regularized LSTD algorithms [5, 29], researchers often

used the LASSO method to tackle this problem. However,
the LASSO method is inherently a batch method and is
unsuitable for online learning. Instead, we resort to the fixed-
point subiterationmethod introduced in [13].We first use the
sign function sign(𝛼

𝑡
) to replace sgn(𝛼

𝑡
) in (33).Then, we can

construct the following subiteration:

𝛼
𝑙+1

𝑡
= 𝜇
𝑡
+ A−1
𝑡
(𝜂𝛼
𝑙

𝑡
− 𝜉 sign (𝛼𝑙

𝑡
)) , (35)

where 𝑙 ∈ N+ denotes the 𝑙th subiteration and 𝛼1
𝑡
is initialized

to 𝜇
𝑡
since the fixed point will be close to 𝜇

𝑡
if 𝜂 and 𝜉 are

small. If the subiteration number reaches a preset value 𝑁 ∈

N+ or ‖𝛼V+1
𝑡

− 𝛼V
𝑡
‖ is less than or equal to a preset threshold

𝜀 ∈ R+, the subiteration will stop. From (32) and (28), if |(b
𝑡
+

𝜂𝛼
𝑡
−A
𝑡
𝛼
𝑡
)
𝑗
| < 𝜉, 𝛼

𝑡,𝑗
should be 0. Obviously, the replacement

(1) Input:D
𝑡
, 𝜇
𝑡
, A−1
𝑡
, 𝜂, 𝜉,𝑁, 𝜀, V

(2) Initialize: 𝛼1
𝑡
= 𝜇
𝑡

(3) for 𝑙 = 1 to 𝑁 do
(4) Update 𝛼𝑙

𝑡
by (35)

(5) if ‖𝛼𝑙+1
𝑡

− 𝛼𝑙
𝑡
‖ ≤ 𝜀 then

(6) Break out of the loop
(7) end if
(8) end for
(9) 𝛼

𝑡
= 𝛼𝑙+1
𝑡

(10) Determine the index setI
𝑡
by (37)

(11) Perform ΨI𝑡
(D
𝑡
), ΨI𝑡

(𝛼
𝑡
), ΨI𝑡

(𝜇
𝑡
) and ΨI𝑡

(A−1
𝑡
)

Algorithm 2: Fixed-point subiteration and online pruning.

of sgn(𝛼
𝑡
) makes 𝛼

𝑡
lose the ability to select features. To

remedy this situation, after thewhole subiteration, we remove
the weakly dependent elements from D

𝑡
according to the

magnitude of 𝛼
𝑡
; that is,

D
𝑡
= ΨI

𝑡

(D
𝑡
) , (36)

where ΨI
𝑡

(⋅) denotes the operation to remove the elements
indexed by the setI

𝑡
, which is determined by

I
𝑡
= {𝑗 | −V ≤ 𝛼

𝑡,𝑗
≤ V, 𝑗 = 1, . . . , 𝑛

𝑡
− 1} , (37)

where V ∈ R+ is a preset threshold. Note that we do not
remove the last element d

𝑛
𝑡

ofD
𝑡
, since |𝛼

𝑛
𝑡

| is probably very
small, especially when d

𝑛
𝑡

is just added to D
𝑡
. Similarly, we

perform ΨI
𝑡

(𝛼
𝑡
) and ΨI

𝑡

(𝜇
𝑡
) to remove the weakly depen-

dent coefficients. From (16),A−1
𝑡
also requires removing some

rows and columns. Unfortunately, we cannot use the method
in [30] to do this like Chen et al. in [13], since A−1

𝑡
is not

a symmetry matrix. Considering that b
𝑡
will remove the

corresponding elements ifD
𝑡
is pruned, we directly perform

ΨI
𝑡

(A−1
𝑡
) to remove the rows and columns indexed by I

𝑡
.

Although this method may bring some bias into A−1
𝑡
, our

simulation results show that it is feasible and effective. The
whole fixed-point subiteration and online pruning algorithm
are summarized in Algorithm 2.

Remark 4. Our simulation results show that Algorithm 2
will converge in few iterations. Thus, Algorithm 2 does not
become the computational bottleneck of the OSKRLSTD-𝐿

1

algorithm, and the maximum subiteration number𝑁 can be
set to a small positive integer.

Third, we derive the recursive formulas of A−1
𝑡

and 𝜇
𝑡
.

Although the dictionary can be pruned by using Algorithm 2,
it still has the risk of rapidly growing if new samples are
allowed to be added continually. Thus, the conventional
sparsification method is also required to be considered here.
Similar to Section 3.1, there are two cases under online
sparsification. Since A

𝑡
and 𝜇

𝑡
have the same definitions as

A
𝑡
and 𝛼

𝑡
in the OSKRLSTD-𝐿

2
algorithm, we can directly

use (20) and (24) for updating A−1
𝑡

and rewrite (21) and (25)
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Figure 1: The 50-state chain problem.

(1) Input: 𝜋 to be evaluated, 𝑘(⋅, ⋅), 𝛾, 𝜂, 𝜉,𝑀,𝑁, 𝜀, V
(2) for 𝑡 = 1, 2, . . . do
(3) if 𝑡 == 1 then
(4) Initialize s

1
,D
1
= {s
1
}

(5) Take a
1
given by 𝜋, and observe s󸀠

1
, 𝑟
1

(6) InitializeH
1
= {(s
1
, s󸀠
1
, 𝑟
1
)}

(7) Initialize A−1
1

= (𝑘(s
1
, s
1
)(Δ𝑘
1
(s
1
, s󸀠
1
) + 𝜂))

−1

(8) Initialize 𝜇
1
= A−1
1
𝑘(s
1
, s
1
)𝑟
1

(9) Perform Algorithm 2
(10) else
(11) Take a

𝑡
given by 𝜋, and observe s󸀠

𝑡
, 𝑟
𝑡

(12) UpdateH
𝑡
,D
𝑡
= D
𝑡−1

(13) Update 𝜇
𝑡
, A−1
𝑡

by (38) and (20)
(14) Â−1

𝑡
= A−1
𝑡
, 𝜇̂
𝑡
= 𝜇
𝑡

(15) Perform Algorithm 2
(16) if s

𝑡
satisfies the sparsification condition then

(17) D
𝑡
= D
𝑡−1

∪ {s
𝑡
}, 𝜇̃
𝑡
= 𝜇̂
𝑡
, Ã−1
𝑡

= Â−1
𝑡

(18) Compute h̃
𝑡
, g̃
𝑡
, 𝑝̃
𝑡
and 𝑞̃

𝑡
by (23)

(19) Update 𝜇
𝑡
, A−1
𝑡

by (39) and (24)
(20) Perform Algorithm 2
(21) end if
(22) end if
(23) s

𝑡+1
= s󸀠
𝑡

(24) end for

Algorithm 3: OSKRLSTD-𝐿
1
.

for updating 𝜇
𝑡
. If s
𝑡
dissatisfies the sparsification condition,

𝜇
𝑡
will be updated by

𝜇
𝑡
= 𝜇
𝑡−1

+

(𝑟
𝑡
− 𝜇T
𝑡−1

Δk
𝑡−1

(s
𝑡
, s󸀠
𝑡
))A−1
𝑡−1

k
𝑡−1

(s
𝑡
)

1 + ΔkT
𝑡−1

(s
𝑡
, s󸀠
𝑡
)A−1
𝑡−1

k
𝑡−1

(s
𝑡
)

. (38)

Otherwise, 𝜇
𝑡
will be updated by

𝜇
𝑡
=

1

𝑚
𝑡

[

[

𝑚
𝑡
𝜇̃
𝑡
− Ã−1
𝑡
h̃
𝑡
(𝑞̃
𝑡
− g̃T
𝑡
𝜇̃
𝑡
)

𝑞̃
𝑡
− g̃T
𝑡
𝜇̃
𝑡

]

]

, (39)

where h̃
𝑡
, g̃
𝑡
, 𝑝̃
𝑡
, and 𝑞̃

𝑡
are also calculated by (23). Since D

𝑡
,

A−1
𝑡
, and 𝜇

𝑡
will be pruned by Algorithm 2 after the update, it

is important to note that Ã−1
𝑡

and 𝜇̃
𝑡
in (39) denote A−1

𝑡
and

𝜇
𝑡
updated byD

𝑡−1
but unpruned by ΨI

𝑡

(⋅). Likewise, when
(24) is used here, Ã−1

𝑡
has the same meaning.

Finally, we summarize the whole algorithm in Algo-
rithm 3. For episodic tasks, the modification is the same

as Remark 2. In addition, similar to Remark 3, the sliding-
window size𝑀 should also be set to a small integer.

Remark 5. By pruning the weakly dependent features, the
OSKRLSTD-𝐿

1
algorithm can yield a much sparser solution

than the OSKRLSTD-𝐿
2
algorithm.

4. Simulations

In this section, we use a nonnoise chain and a noise chain
[2, 20, 31] to demonstrate the effectiveness of our pro-
posed algorithms. For comparison purposes, RLSTD [1] and
SKRLSTD [21] algorithms are also tested in the simulations.
To analyze the effect of regularization and online pruning
on the performance of our algorithms, the OSKRLSTD-𝐿

2

algorithm with 𝜂 = 0 and the OSKRLSTD-𝐿
1
algorithm with

V = 0 (called OSKRLSTD-0 and OSKRLSTD-𝐿
1𝑢
, resp.) are

tested here, too. In addition, the effects of the sliding-window
size on the performance of our algorithms and OSKRLSTD-
𝐿
1𝑢

are evaluated as well.

4.1. Simulation Settings. As shown in Figure 1, in both
chain problems, each chain consists of 50 states, which
are numbered from 1 to 50. For each state, there are two
actions available, that is, “left” (L) and “right” (R). Each
action succeeds with probability 0.9, changing the state in the
intended direction, and fails with probability 0.1, changing
the state in the opposite direction. The two boundaries of
each chain are dead-ends, and the discount factor 𝛾 of each
chain is set to 0.9. For the nonnoise chain, the reward is 1 only
in states 10 and 41, whereas, for the noise chain, the reward
is corrupted by an additive Gaussian noise 0.3N(0, 1). Due
to the symmetry, the optimal policy for both chains is to go
right in states 1–9 and 26–41 and left in states 10–25 and 42–
50. Here, we use it as the policy 𝜋 to be evaluated. Note that
the state transition probabilities are available only for solving
the true state-value functions𝑉𝜋, and they are assumed to be
unknown for all algorithms compared here.

In the implementations of all tested algorithms for both
chain problems, the settings are summarized as follows: (i)
For all OSKRLSTD algorithms, the Mercer kernel is defined
as 𝑘(x, y) = exp(−‖x − y‖2/16), the sparsification condition
is defined as mind

𝑗
∈D
𝑡−1

‖s
𝑡
− d
𝑗
‖ > 2, and the sliding-

window size 𝑀 is set to 5. Besides, for the OSKRLSTD-𝐿
1

algorithm, the regularization parameters 𝜂 and 𝜉 are set to
0.8 and 0.3, the maximum subiteration number 𝑁 is set to
10, the precision threshold 𝜀 is set to 0.1, and the pruning
threshold V is set to 0.4; for the OSKRLSTD-𝐿

1𝑢
algorithm,



Computational Intelligence and Neuroscience 7

RLSTD
SKRLSTD OSKRLSTD-0

10 20 30 40 50 60 70 80 90 1000
Episode

−1

0

1

2

3

4

5

6

lo
g(

RM
SE

)

OSKRLSTD-L1u

OSKRLSTD-L1

OSKRLSTD-L2

(a) In the nonnoise chain

10 20 30 40 50 60 70 80 90 1000
Episode

−1

0

1

2

3

4

5

6

lo
g(

RM
SE

)

RLSTD
SKRLSTD OSKRLSTD-0

OSKRLSTD-L1u

OSKRLSTD-L1

OSKRLSTD-L2

(b) In the noise chain

Figure 2: Learning curves of all tested algorithms.

𝜂, 𝜉, and 𝑁 are the same as those in the OSKRLSTD-
𝐿
1
algorithm; for the OSKRLSTD-𝐿

2
algorithm, 𝜉 is set

to 1. (ii) For the SKRLSTD algorithm, the Mercer kernel
and the sparsification condition are the same as those in
each OSKRLSTD algorithm. (iii) For the RLSTD algorithm,
the feature vector 𝜙(s) consists of 19 Gaussian radius basis
functions (GRBFs) plus a constant term 1, resulting in a total
of 20 basis functions. The GRBF has the same definition
as the Mercer kernel used in each OSKRLSTD algorithm,
and the centers of GRBFs are uniformly distributed over
[1, 50]. In addition, the variance matrix 𝐶

0
of RLSTD is

initialized to 0.4I, where I is the 20× 20 identitymatrix. (iv) In
the simulations, each algorithm performs 50 runs, each run
includes 100 episodes, and each episode is truncated after 100
time steps. In particular, the SKRLSTD algorithm requires an
extra run for offline sparsification before each regular run.

4.2. Simulation Results. We first report the comparison
results of all tested algorithms with the simulation set-
tings described in Section 4.1. Their learning curves are
shown in Figure 2. At each episode, the root mean square
error (RMSE) of each algorithm is calculated by RMSE =

(1/50)∑
50

𝑗=1
((1/50)∑

50

s=1(𝑉̂
𝜋

𝑗
(s) − 𝑉

𝜋
(s))2)0.5, where 𝑉

𝜋
(s) is

solved by (1) and 𝑉̂
𝜋

𝑗
(s) is the approximate value of the 𝑗th

run. From Figure 2, we can observe that (i) OSKRLSTD-
𝐿
2
and OSKRLSTD-𝐿

1
can obtain the similar performance

as RLSTD and converge much faster than SKRLSTD. (ii)
Without regularization, the performance of OSKRLSTD-
0 becomes very poor, especially in the noise chain. In
contrast, OSKRLSTD-𝐿

2
and OSKRLSTD-𝐿

1
still perform

well. (iii)The performance of OSKRLSTD-𝐿
1𝑢
is only slightly

better than that of OSKRLSTD-𝐿
1
, which indicates that

online pruning has little effect on the performance. Figure 3
illustrates 𝑉̂𝜋(s) approximated by all tested algorithms at the

final episode. Clearly, OSKRLSTD-0 has lost the ability to
approximate 𝑉

𝜋
(s) of the noise chain. Figure 4 shows the

dictionary growth curves of all tested algorithms. Compared
with RLSTD and SKRLSTD, all OSKRLSTD algorithms can
construct the dictionary automatically, and OSKRLSTD-
𝐿
1
yields a much sparser dictionary. Figure 5 shows the

average subiterations per time step in OSKRLSTD-𝐿
1
and

OSKRLSTD-𝐿
1𝑢
. As episodes increase, the subiterations

decline gradually. In addition, online pruning can reduce
the subiterations significantly. Even in the noise chain, the
subiterations are small. Finally, the main simulation results
of all tested algorithms at the final episode are summarized
in Table 1.

Next, we evaluate the effect of the sliding-window size
on our proposed algorithms and OSKRLSTD-𝐿

1𝑢
with 𝑀 =

1, 5, 10, . . . , 45, 50. The logarithmic RMSEs of each algorithm
at the final episode are illustrated in Figure 6. Note that
the parameter settings of these algorithms are the same
as those described in Section 4.1 except for 𝑀. From
Figure 6, OSKRLSTD-𝐿

1
and OSKRLSTD-𝐿

1𝑢
obviously

becomeworse rather than better as thewindow size increases,
and OSKRLSTD-𝐿

2
has a strong adaptability to different

window sizes.The reason for this result is analyzed as follows:
From the derivation of our algorithms, the influence of the
window size is mainly manifest in A−1

𝑡
. Since here A−1

𝑡
is

calculated by recursive update instead of matrix inversion
and samples are used one by one, using too many history
samples together may increase the calculation error. In
OSKRLSTD-𝐿

2
, a moderate regularization parameter 𝜂 can

relieve the influence of this error. In contrast, in OSKRLSTD-
𝐿
1
and OSKRLSTD-𝐿

1𝑢
, the subiteration may expand the

influence. Especially for OSKRLSTD-𝐿
1
, online pruning

can introduce the new error, which further worsens the
convergence performance. To verify the above analysis, we
reset 𝜂 = 0.6, 𝜉 = 0.3, and 𝑁 = 1 for OSKRLSTD-𝐿

1

and OSKRLSTD-𝐿
1𝑢
and reevaluate the effect of the window
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Figure 3: 𝑉̂𝜋(s) approximated by all tested algorithms at the final episode.
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Figure 4: Dictionary growth curves of all tested algorithms.

size. The new results are illustrated in Figure 7. As expected,
OSKRLSTD-𝐿

1
and OSKRLSTD-𝐿

1𝑢
can also adapt to 𝑀.

Nevertheless, there is still no proof that a big window size can
help improve the convergence performance of OSKRLSTD-
𝐿
2
and OSKRLSTD-𝐿

1
. Thus, as stated in Remark 3, 𝑀 is

suggested to be set to a small integer in practice.

5. Conclusion

As an important approach for policy evaluation, LSTD
algorithms can use samples more efficiently and eliminate
all step-size parameters. But they require users to design the
feature vector manually and often require many features to

approximate state-value functions. Recently, there are some
works on these issues by combining with sparse kernel meth-
ods. However, these works do not consider regularization
and their sparsification processes are batch or offline. In this
paper, we propose two online sparse kernel recursive least-
squares TD algorithms with 𝐿

2
and 𝐿

1
regularization, that

is, OSKRLSTD-𝐿
2
and OSKRLSTD-𝐿

1
. By using Bellman

operator along with projection operator, our derivation is
more simple. By combining online sparsification, 𝐿

2
and

𝐿
1
regularization, recursive least squares, a sliding window,

and the fixed-point subiteration, our algorithms not only
can construct the feature dictionary online but also can
avoid overfitting and eliminate the influence of noise. These
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Table 1: Main simulation results on both chains at the final episode.

Algorithm Nonnoise chain Noise chain
RMSE Dictionary size Subiterations RMSE Dictionary size Subiterations

RLSTD 0.47 ± 0.03 20 — 0.50 ± 0.04 20 —
SKRLSTD 0.47 ± 0.05 15.36 ± 0.78 — 0.49 ± 0.06 15.32 ± 0.71 —
OKRLSTD-𝐿

2
0.45 ± 0.05 15.30 ± 0.81 — 0.47 ± 0.04 15.32 ± 0.84 —

OKRLSTD-𝐿
1

0.49 ± 0.08 11.52 ± 1.16 1.81 ± 1.82 0.53 ± 0.10 12.42 ± 1.13 2.60 ± 2.56
OKRLSTD-0 2.21 ± 0.05 15.25 ± 0.87 — 32.92 ± 68.67 15.24 ± 0.77 —
OKRLSTD-𝐿

1𝑢
0.44 ± 0.05 15.40 ± 0.76 5.08 ± 3.24 0.47 ± 0.05 15.28 ± 0.88 4.90 ± 3.26
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Figure 5: Average subiterations in OSKRLSTD-𝐿
1
and OSKRLSTD-𝐿

1𝑢
algorithms.
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Figure 6: Effect of the sliding-window size𝑀 on three OSKRLSTD algorithms.
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Figure 7: Effect of the sliding-window size𝑀 on three OSKRLSTD algorithms with new parameters.

advantages make themmore suitable for online RL problems
with a large or continuous state space. In particular, com-
pared with the OSKRLSTD-𝐿

2
algorithm, the OSKRLSTD-

𝐿
1
algorithm can yield a much sparser dictionary. Finally,

we illustrate the performance of our algorithms and compare
them with RLSTD and SKRLSTD algorithms by several
simulations.

There are also some interesting topics to be studied
in future work: (i) How to select proper regularization
parameter should be investigated. (ii) A more thorough
simulation analysis is needed, including an extension of our
algorithms to learning control problems. (iii) Eligibility traces
would be combined for further improving the performance
of our algorithms. (iv) The convergence and prediction error
bounds of our algorithms will be analyzed theoretically.
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