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Immunotherapy represents the new era of cancer treatment because of its promising results in various cancer types. In urological
tumors, the use of the immune-checkpoint inhibitors (ICIs) is increasingly spreading. Although not all patients and not all
diseases respond equally well to immunotherapy, there is an increasing need to find predictive markers of response to ICIs.
Patient- and tumor-related factors may be involved in primary and secondary resistance to immunotherapy: tumor-derived
protein and cytokines, tumor mutational burden, and patient performance status and comorbidities can condition tumor re-
sponse to ICIs. Recently, some of these factors have been evaluated as potential biomarkers of response, with conflicting results. To
date, the expression of programmed death-ligand 1 (PD-L1) and the presence of deficient mismatch repair (dMMR) in tumor
tissue are the only biomarkers capable of guiding the clinician’s decision in urothelial cancer and prostate cancer, respectively. In
this review, we performed a comprehensive search of the main publications on biomarkers that are predictive of response to ICIs
in urological cancers. Our aim was to understand whether existing data have the potential to drive clinical decision-making in the
near future.

1. Introduction

Immunotherapy is fast becoming the new frontier of on-
cology, accompanied by the dream of being able to defeat
cancer definitively. Although a substantial improvement in
survival has been seen since immunotherapy was first used in
melanoma, response remains low.(e use of different types of
immune-checkpoint inhibitors (ICIs), in particular the pro-
grammed death-1/programmed death-ligand 1 (PD-1/PD-
L1) axis, has led to significantly better results in terms of
response and manageability. In recent years, advances have
been made in the treatment of urological tumors, especially
renal cell cancer (RCC) and urothelial cancer (UC). However,
the issue of the identification of nonresponding patients

persists. According to the tumor immunity in the microen-
vironment (TIME) classification [1], tumors can be divided
into 4 subgroups based on the presence of inflammatory
infiltrate (TIL) and PD-L1 expression: T1 (PD-L1− , TIL− ), T2
(PD-L1+, TIL+), T3 (PD-L1− , TIL+), and T4 (PD-L1+, TIL− )
(Figure 1). Although the TIME classification has significant
predictive implications, there is an increasing need to find
predictive markers of response to ICIs.

2. Factors Involved in Primary and Secondary
Resistance to ICIs in Solid Tumors

Several factors can directly or indirectly influence the im-
mune response and therefore contribute to triggering
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resistance mechanisms. As shown in Figure 2, these factors
can be divided into two categories:

(1) Patient-related factors: it is acknowledged that pa-
tients in poor clinical conditions have a lower immune
response. However, the underlying mechanism for
this is still not understood. In fact, Pan et al. reported
that an Eastern Cooperative Oncology Group per-
formance score (ECOG PS) of 2 inmelanoma patients
was associated with worse prognosis when ICIs were
used [2]. Conversely, a study carried out on patients
with UC treated with atezolizumab showed that re-
sponse rates (RRs) did not differ among patients with
different PS [3]. Recently, several trials conducted on
UC demonstrated a shorter overall survival (OS) in
patients with ECOG PS> 2 compared with ECOG PS
0 [3–6]. Several comorbidities can also affect the
immune response: autoimmune diseases [7, 8], di-
abetes [9], transplantations [10–12] (including bone
marrow transplants), and infections [13]. Another
important host-related factor is gut microbiota: sev-
eral studies have shown that restoration of some
bacterial families (Ruminococcaceae [14], Akker-
mansia muciniphila [15], and Bacteroides fragilis [16])
is correlated with a longer response inmelanomamice
treated with anti-PD1 drugs. (us, the use of anti-
biotics or steroids during ICI therapy may affect the
outcome of treatment. In particular, 2 recent studies
[17, 18] showed that the use of beta-lactams, quino-
lones, and macrolides during ICIs therapy also led to
shorter progression-free survival (PFS) and poorer RR
in RCC patients.

(2) Tumor-related factors: this category can be divided
into 2 subcategories: intratumoral and microenvi-
ronmental factors.

2.1. Intratumoral Factors. Among tumor-related factors,
different histologies and the presence of chromosomal al-
terations influence the immune response. For example,
strongly aneuploid tumors have shown an intrinsic re-
sistance to ICIs [19]. (is is due to the poor expression of

markers capable of activating the immune response. Con-
versely, a high expression of mutations, i.e., tumor muta-
tional burden (TMB), especially if mismatch repair genes are
involved, correlates with a high RR to ICIs, regardless of
histology [20–23]. In UC, a recent study showed a higher RR
in patients with alterations in the following genes: ATM,
BRCA2, ERCC2, FANCA, MSH6, and POLE [24]. However,
unlike solid tumors, elevated TMB has been associated with
poor prognosis in hematological cancers, for example,
multiple myeloma [25].(e growing interest in TMB has led
to the development of studies aimed at testing the efficacy of
neoantigens, structured within new molecules, such as
chimeric antigen T-cell receptor therapy (CAR-T). Several
studies are also underway for patients with RCC [26–28] and
prostate tumors (PCa) [29].

PD-L1 expression in tumor tissue is one of the best
known mechanisms for neutralizing immune system ac-
tivity. A higher PD-L1 expression results in a poorer
prognosis without the use of ICIs [13]. However, PD-L1 is
not always capable of predicting response to ICIs [30, 31]. In
fact, although response rates in UC differ significantly on the
basis of PD-L1 status, this is not the case for RCC patients
[32, 33].

To date, CTLA-4 and PD1/PD-L1 axis are not the only
molecules involved in the modulation of the immune re-
sponse. Other molecules are currently under investigation as
potential immune checkpoint for new ICIs, e.g., lymphocyte-
activation gene-3 (LAG-3), T-cell immunoglobulin mucin-3
(TIM-3), and B7-H3 and B7-H4/B7x/B7S1.

LAG-3 molecule is located on the cell surface of several
immune cells; its ligand is Class II MHC and binds with
higher affinity than CD4 [34]. LAG-3 downregulates the
immune response of CD4+- and CD8+-activated cells. In
fact, its negative activity has been observed in CD8+ tumor-
infiltrating lymphocytes (TILs) and in CD4+ TRegs [35].

TIM-3 is a regulatory molecule expressed on the surface
of innate immune cells; CD8+ TILs usually coexpress PD-L1
and TIM-3, causing a strong inhibition of cytokine secretion
[36]. To date, TIM-3/PD-L1 coexpression has also been
studied in CD8+ cells in melanoma patients. In one study,
blocking both PD-L1 and TIM-3 led to a restoration of
cytokine secretion [37].

T1: PD-L1–TIL–

T3: PD-L1–TIL+ T4: PD-L1+TIL–
T2: PD-L1+TIL+ Tumor-infiltrating

lymphocyte (TIL)

Tumor cell

Programmed 
death-ligand 1

(PD-L1)

Figure 1: Four tumor subtypes according to the TIME classification based on the expression of PD-L1 in tumor cells and on the presence of TILs.
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B7-H3 and B7-H4 (also known as B7x/B7S1) are 2
members of the B7 super-family expressed not only by
immune cells but also by nonlymphoid tissues, including
prostate and testis cells [38]. Although B7-H3 was initially
characterized as a costimulatory molecule, recent studies
have indicated its dual activity. In some cases, it acts as an
upregulator of the immune responses and in others, a
downregulator [39].

2.2.Microenvironmental Factors. Tumor microenvironment
plays an important role in silencing the immune response.
Usually, the presence of TILs is related to higher PD-L1
expression [40, 41] and to better response to ICI treatment
[23]. (e KEYNOTE 028 study tested the efficacy of pem-
brolizumab in 20 different tumors. Results showed that
treatment with ICIs was more effective in patients with TILs,
independently of tumor histology [42].

On the other hand, the aforementioned TIME classifi-
cation [1] has emphasized the link between TILs and PD-L1 in
determining the response to ICIs. However, its correlation
with response in UTs is still under evaluation [43]. (e T2
subgroup, for example, is characterized by the presence of
TILs and higher PD-L1 expression, stimulated by the TIL-
mediated production of interferon-gamma (IFN-c). (is
subgroup is associated with high RRs when treated with ICIs.
Unlike T2, the T3 subgroup expresses TILs but not PD-L1
(probably due to a nonexpression of inducing factors, such as
IFN-c). In this context, the use of OX-40 or 4-1BB agonists
may convert tumors classified as T3 into T2 [44, 45]. T1 and
T4 subgroups differ because of their lack of TILs. Many
tumors have this characteristic, which is usually associated
with a nonresponse to treatment with ICIs.(ere are different
ways to stimulate the immune response, for example, by using

anti-CTLA4 antibodies or CAR-T-cell therapy. However,
some negative PD-L1 tumors may respond to an anti-PD-L1
drug. Positivity or negativity of the histological examination
may not reflect a common characteristic of the overall tumor.
(us, tumor heterogeneity may be responsible for ICI re-
sponse in patients with PD-L1-negative biopsy [1]. It is also a
unstable characteristic over time; in fact, treatment may select
altered tumor cells capable of activating the process of im-
mune escape, blocking the immune system activation, and
even transforming positive TIL into negative TIL tumors.(is
condition has been described in different tumor types, such as
lung and breast cancer and RCC [46–48]. In particular,
discordance in PD-L1 status between primary and metastatic
sites has been observed in 20% of RCC patients [49]. (e
immune-silencing process is ascribed to several mechanisms:
activation of the Wnt–β-catenin pathway [50]; loss of PTEN
associated with AKT activation [51]; and loss of immuno-
genicity [52] through several mechanisms (including
downregulation of MHC class I molecules and reduced
production of immunogenic antigens).

(e study of the tumor microenvironment has led to the
discovery of other molecules involved in immune-silencing
mechanisms. For example, indoleamine-2,3-dioxygenase
(IDO) is a molecule produced in TILs capable of stimulating
the immune infiltrate, reducing the concentration of tryp-
tophan which is necessary for the activation of cytotoxic
T cells, and permitting their transformation into regulatory
T cells (TRegs). (is promotes an immunosuppressive mi-
croenvironment near the tumor. Consequently, IDO is a
promising biomarker, and high concentrations are associ-
ated with worse prognosis. However, IDO as a target for new
drug development has been disappointing, and the use of
IDO inhibitors has not shown any advantages over ICI
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Figure 2: Factors influencing immune response and possibly related to resistance to immunotherapy. TMB: tumor mutational burden; PD-
L1: programmed death-ligand 1; LAG-3: lymphocyte-activation gene-3; TIM-3: T-cell immunoglobulin and mucin domain 3; TILs: tumor-
infiltrating lymphocytes; IDO: indoleamine-2,3-dioxygenase; TGF-β: transforming growth factor-β; CXCR: CXC chemokine receptors;
CXCL: CXC chemokine receptors ligands; NLR: neutrophil-to-lymphocyte ratio; SII: systemic immune-inflammation index.
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treatment [53]. In addition to IDO, there is a high expression
of other molecules in tumor microenvironment, including
TGF-β secreted by fibroblasts [54], and various other cy-
tokines involved in immune-silencing mechanisms. Among
these molecules, CXCL9 and CXCL10, two CXCR3 ligands,
have shown to be correlated with the TIL-positive TIME
subgroups, whereas TIL-negative subgroups lack these
chemokines [55, 56].

Furthermore, several studies have evaluated the prog-
nostic/predictive role of some parameters, such as the
neutrophil-to-lymphocyte ratio (NLR) and the systemic
immune-inflammation index (SII). NLR is the most widely
tested prognostic index and correlates with prognosis in
different tumor types [57]. Similarly, SII, combining
neutrophils, lymphocytes, and platelet count in a single
parameter, demonstrates a significant correlation with
prognosis in different cancers [58–60]. Among UTs, SII and
NLR have shown a prognostic and predictive role of re-
sponse to conventional treatment in several retrospective
trials [61–63]. In particular, Lalani et al. recently demon-
strated that an early reduction in NLR (at 6 weeks) was
associated with a significantly improved outcome in mRCC
patients after ICI treatment [64]. Moreover, Raccioppi et al.
found that preoperatory NLR value was a predictor of re-
sponse to BCG therapy in non-muscle-invasive bladder
cancer [65].

3. Potential Prognostic and Predictive
Biomarkers in UCs Treated with ICIs

3.1. PD-L1 and TILs. PD-L1 is the most widely studied
(potential) biomarker in immunotherapy, and several
studies have investigated its predictive value in UCs. Table 1
lists the clinical trials that evaluated PD-L1 expression by
immunohistochemistry (IHC) or the IHC-based combined
positive score (CPS) to develop a reproducible PD-L1
scoring method that can be used to identify patients most
likely to respond to therapy. CPS is obtained as follows:
CPS� 100×PD-L1 stained cells (tumor cells, lymphocytes,
macrophages)/total viable tumor cells. In RCC, PD-L1 is not
a useful predictor of response to ICI treatment. Both PD-L1-
negative and PD-L1-positive tumors respond to immuno-
therapy, despite higher rates of RR and PFS in patients with
PD-L1 expression. In fact, in the metastatic RCC population
of the CheckMate 214 trial, the combination of nivolumab
plus ipilimumab obtained an objective RR of 37% in patients
with PD-L1 expression <1%, compared to 58% of those with
PD-L1 expression >1% [31]. In the IMmotion 151 trial,
patients with PD-L1≥ 1% showed longer PFS when treated
with bevacizumab plus atezolizumab [66]. Conversely, the
combination of axitinib with pembrolizumab (KEYNOTE
423 trial) or axitinib with avelumab (Javelin Renal 101) did
not produce different efficacy results on the basis of different
PD-L1 statuses [67, 68]. Similarly, Motzer et al. observed that
the use of nivolumab after treatment with anti-VEGFR
inhibitors improved OS independently of PD-L1 status [69].
Unlike RCC, PD-L1 has been recognized as a predictive
biomarker in UCs. In metastatic/locally advanced UC,
atezolizumab and pembrolizumab demonstrated antitumor

activity and acceptable tolerability in the first-line treatment
of cisplatin-ineligible patients [3, 5]. Based on these results,
the Food and Drug Administration (FDA) approved ate-
zolizumab and pembrolizumab in this subgroup. However,
the FDA updated the prescribing information for first-line
pembrolizumab and atezolizumab in cisplatin-ineligible
patients, making it compulsory to use an approved PD-L1
diagnostic test (Dako PDL-1 ICH 22C3 PharmDx Assay®and Ventana PDL-1 Assay®) to select patients. (erefore,
FDA indications were modified as follows: cisplatin-unfit
patients are eligible for pembrolizumab and atezolizumab if
the tumor expresses PD-L1 (CPS≥ 10 for pembrolizumab
and PD-L1≥ 5% for atezolizumab) [70]. In patients not
eligible for any platinum, pembrolizumab and atezolizumab
can be administered in first-line regardless of tumor PD-L1
expression. In postplatinum UC patients, several trials have
demonstrated ICI efficacy [71–75], with ICI-treated PD-L1-
positive TIL-positive UCs showing higher RRs. In the
IMvigor 210 trial, the use of atezolizumab obtained an
overall response rate (ORR) of 16%, which was higher (28%)
in patients with ≥5% PD-L1 expression [71]. In CheckMate
275, patients with tumor cluster III proved most likely to
obtain a better response to nivolumab (30%) [73]. Similar
results were obtained in 2 other studies. In the JAVELIN
trial, avelumab demonstrated an ORR of 17% in all patients
and 50% in those showing PD-L1 expression [75]. In a phase
1/2 trial, durvalumab obtained an ORR of 31% in the overall
population, 46% in patients with PD-L1 expression, and 0%
in those without PD-L1 expression [76]. Based on these
results, the FDA approved pembrolizumab as the preferred
drug, with atezolizumab, nivolumab, and durvalumab as
alternative preferred agents, regardless of PD-L1 expression.
(e European Medicines Agency (EMA) recently approved
pembrolizumab for the treatment of metastatic/unresectable
UCs in relapsed patients after first-line platinum-based
therapy and also in nonpretreated cisplatin-unfit patients
with CPS>10. (e EMA has also approved atezolizumab for
the first- and second-line treatment of UC and nivolumab
for use in a second-line setting. Although the cancer vaccine,
sipuleucel-T, has shown activity in prolonging OS in PCa,
none of the new ICIs have been approved. (is is due to
limited antitumor immune infiltrates and poor PD-L1 ex-
pression in this tumor type [77, 78]. In germ-cell tumors,
PD-L1 expression has been observed in 73% and 64% of
patients with seminoma and nonseminoma types, re-
spectively [79] and correlates with outcome. Low levels of
PD-L1 are associated with better PFS [80]. Despite the
prognostic value of PD-L1 expression, pembrolizumab has
not shown activity as a single agent in the treatment of
refractory germ-cell tumors [81]. (erefore, PD-L1 is the
only recognized biomarker in patients with UC, but its
prognostic and predictive role is still open to debate in
nonurothelial urological tumors. A recent study of 160 UC
patients showed that although PD-L1 positivity ≥5% in
tumor cells was not predictive of OS, it was predictive if
expressed in TIL cells [82]. Mariathasan et al., after evalu-
ating data from the IMvigor 210 phase 2 trials, reported that
differences in PD-L1 also existed between tumor cells and
inflammatory cells in TILs [54]. Hence, the debate about the
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Table 1: Potential predictive biomarkers in urological tumors treated with ICIs.

Histology Biomarker Trial/author Drugs Setting Study results

Urothelial PD-L1 (CPS) KEYNOTE 052
(phase 2) Pembrolizumab 1-line CDDP ineligible 24% ORR, highest ORR in

patients with CPS≥ 10%

PD-L1 (CPS) KEYNOTE 045
(phase 3)

Pembrolizumab vs
CHT

Second line after
platinum-based CHT

Higher ORR in
pembrolizumab group
than CHT, regardless of
tumor PD-L1 expression

PD-L1 (IHC) NCT02108652
(phase 2) Atezolizumab

≥2-line after
platinum-based CHT

(cohort 2)

ORR: 26% (PD-L1≥ 5%)
vs 15% (all patients)

OS: 11.4 (PD-L1≥ 5%) vs
7.9 (all patients) months

PD-L1 (IHC) NCT02108652
(phase 2) Atezolizumab First-line CDDP

ineligible

No significant enrichment
of response and OS by

PD-L1 expression

PD-L1 (IHC) NCT01772004
(phase 1b) Avelumab ≥2-line treatment after

platinum-based CHT

Patients with higher PD-
L1≥ 5% showed higher
response rates and longer

PFS and OS

PD-L1 (IHC) CheckMate 275
(phase 2) Nivolumab ≥2-line treatment after

platinum-based CHT

ORR: 28.4% (PD-L1≥ 5%)
vs 23.8% (PD-L1≥ 1%) vs
16.1 (PD-L1< 1%); OS:
11.3 (PD-L1≥ 1%) vs 5.9
(PD-L1< 1%) months

CXCL9, CXCL10
cytokines

CheckMate 275
(phase 2) Nivolumab ≥2-line treatment after

platinum-based CHT
Positive predictors of
response to nivolumab

CXCL9, CXCL10
cytokines PD-L1 rabbit

SP142 (Ventana)
IMvigor 210 (phase 2) Atezolizumab

≥2-line after
platinum-based CHT

(cohort 2)

Positive predictors of
response to atezolizumab;
PD-L1 expression on IC

(>5% of cells) was
significantly associated

with response. In
contrast, PD-L1

expression in tumor cells
was not associated with

response

PD-L1 (IHC) NCT01693562
(phase 2) Durvalumab ≥2-line treatment after

platinum-based CHT

No differences in PFS and
ORR between high and
low/negative PD-L1

patients

dMMR or MSI-H G. Iyer et al., J Clin
Oncol 2017 ICIs Metastatic setting

dMMR caused a high
mutation load and was
associated to durable
responses to ICIs

Kidney PD-L1 rabbit 28-8 (Dako) CheckMate 214
(phase 3)

Nivolumab
ipilimumab vs

sunitinib
First line

Greater benefit in ORR,
PFS, and OS for patients
with PD-L1≥ 1% treated
with nivolumab and

ipilimumab

PD-L1 (IHC) Javelin renal 101 Avelumab plus
axitinib vs sunitinib First line

Greater benefit in ORR
and PFS in patients with
treated with avelumab

plus axitinib,
independently from PD-

L1

PD-L1 (IHC) KEYNOTE 423
(phase 3)

Pembrolizumab plus
axitinib vs sunitinib First line

Greater benefit in ORR,
OS, and PFS in patients

with treated with
pembrolizumab plus

axitinib, independently of
PD-L1

Journal of Oncology 5



different value of PD-L1 expression in tumor and nontumor
cells (TILs) is still open.

3.2. Prognostic and Predictive Role of TIM-3, B7-H3, and
B7-H4. Tumor-associated macrophages induce a more
immunosuppressive phenotype, leading to an enhanced
expression of TIM-3 and PD-1 on CD4+ and CD8+ T cells.
(e concentration of TIM-3 and PD-1-positive CD4+ and
CD8+ T cells is higher in TILs than in peripheral blood in
RCC patients [83]. Recently, Granier et al. demonstrated that
PD-1+Tim-3+CD8+ Tcells could not be enhanced in vitro by
a strong stimulus, suggesting that these cells cannot be
reactivated after PD-1-PD-L1 blockade [84]. In PCa patients,
malignant cells show higher TIM-3 expression than benign
cells, expression correlating with TNM staging system,
grading, and PFS [85]. Piao et al. demonstrated that Tim-3
expression in both CD4+ and CD8+ Tcells closely correlated
with advanced disease and poor prognosis in PCa patients
[86]. Other studies have evaluated the prognostic role B7-H3
and B7-H4 in UTs. In both RCC and PCa, the over-
expression of B7-H3 and B7-H4 was correlated with poor
prognosis and a higher risk of recurrent and metastatic
disease [87, 88]. Moreover, in RCC, B7-H3 and B7-H4 were
expressed by both immune and endothelial cells: among 743
RCC patients, B7-H3-positive TILs were observed in 17% of
tumor samples and in 95% of tumor vasculature [89].
Another study reported a B7-H4 positive expression in
tumor vasculature of 211 RCC patients [90, 91]. In UCs, B7-
H3 is overexpressed in all tumor stages and its expression
can be stimulated by Bacillus Calmette–Guérin-based
therapy [92].

3.3. Prognostic Role of NLR and SII. In the last few years,
the prognostic role of NLR and SII has been evaluated in
urological and nonurological cancers. Although several
studies have demonstrated a correlation between NLR and

prognosis and NLR and treatment response, its prognostic
role remains uncertain [93, 94]. In UC and RCC, NLR is
significantly associated with prognosis [95–97]. As seen in
breast cancer [98], lymphopenia is also associated with poor
prognosis in patients with RCC [99]. In a study on an elderly
mRCC population treated with first-line sunitinib, lym-
phopenia proved to be a negative prognostic factor [100].
(rombocytosis has also been identified as a negative
prognostic factor in RCC patients [101]. A recently pub-
lished study evaluated the role of SII in RCC patients treated
with the PD-1 inhibitor nivolumab and enrolled in an Italian
Expanded Access Program. (e authors demonstrated that
normal body mass index combined with higher SII tripled
the risk of death, suggesting that SII is a critical prognostic
factor for OS in pretreated RCC patients during treatment
with nivolumab [102]. A recent article confirmed the
prognostic role of SII (and its variations during therapy) in
mRCC patients treated with sunitinib [103]. Recently, a
study evaluated the combination of SII and the monocyte/
lymphocyte ratio (MLR) as new prognostic factor in upper-
tract UC. (e authors demonstrated that SII was signifi-
cantly associated with PFS and OS, whereas MLR signifi-
cantly correlated with OS but not with PFS. Both SII and
MLR correlate with an enhanced risk of disseminated disease
[104]. In PCa, Fan et al. reported that SII has a negative
independent prognostic role in terms of OS in patients
treated with both abiraterone and docetaxel, independently
of the treatment sequence [105].

3.4. Predictive Role of IFN-c and Other Cytokines. A 25-
gene IFN-c signature was evaluated in patients with met-
astatic UC enrolled in the phase II trial CheckMate 275, a
trial focusing nivolumab used as a single agent. (e analysis
demonstrated that a higher IFN-c signature was expressed in
the basal-1 subgroup, corresponding to cluster III of the
TCGA classification. (e patients in this group were more
likely to respond to ICIs [72, 73]. Recently, IFN-c-induced

Table 1: Continued.

Histology Biomarker Trial/author Drugs Setting Study results

PD-L1 (IHC) rabbit
SP142 (Ventana)

IMmotion 151
(phase 3)

Bevacizumab/
atezolizumab vs

sunitinib
1-line

PFS in PD-L1≥ 1%
patients: 11.2mo (with
atezolizumab plus

bevacizumab) vs 7.7mo
(with sutent), HR 0.74,

P� 0.0217
PD-L1 (IHC) rabbit 28-8

(Dako)
CheckMate 025

(phase 3)
Nivolumab vs
everolimus

≥2-line treatment after
anti-VEGFR therapy

No differences in OS on
the basis of PD-L1 status

SII rabbit 28-8 (Dako) De Giorgi et al., Clin
Cancer Research 2019

Retrospective analysis
of EAP of nivolumab

≥2-line treatment after
anti-VEGFR therapy

Normal body mass index
combined with higher SII
tripled the risk of death

Prostate dMMR Le DT et al., Science
2017 Pembrolizumab Advanced dMMR

cancers

ORR: 53% of patients and
complete responses were

achieved in 21% of
patients

PD-L1� programmed death-ligand 1; CPS� combined positive score; ICIs� immune-checkpoint inhibitors; ICH� immunohistochemistry; SII� systemic
inflammation index; dMMR�mismatch repair genes deficiency; MSI-H� higher microsatellite instability; CHT�chemotherapy; EAP� expanded access
program; ORR� overall response rate; PFS� progression-free survival; OS� overall survival.
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cytokines (CXCL9 and CXCL10) were also shown to be
positive predictors of response to atezolizumab in the
IMvigor trial [71].

3.5. Prognostic and Predictive Role of TMB and Genetic
Instability. In PCa, 2 large phase III trials on unselected
patients reported the failure of anti-CTLA4 (ipilimumab)
[106, 107]. Initial clinical data had shown that 5%–12% of
patients with metastatic PCa may benefit from ICIs
[108, 109], probably due to the low mutational loads of PCa,
which is correlated with low neoantigen burden [110]. (e
mismatch repair (MMR) gene is a DNA single-strand repair
mechanism. Mismatch repair-deficient (dMMR) cancers are
characterized by microsatellite instability and hypermutator
phenotype, both associated with chemotherapy resistance
but immunotherapy sensitivity [111]. In a study by Iyer et al.,
dMMR or high MSI (MSI-H) were found in 3% of 424 UC
patients [112], both subgroups showing a higher response to
ICIs [112]. A recently published phase II trial including
patients with cholangiocarcinoma, colorectal, endometrial,
gastric, and small bowel cancer demonstrated that dMMR
predicted clinical benefit from pembrolizumab [20]. In PCa,
the prevalence of dMMR varies between 12% and 22% in
different studies, probably because of the different assays
used to detect the genomic aberrations [113, 114]. Recent
evidence that dMMR cancers may benefit from pem-
brolizumab [20] has led to FDA approval of pembrolizumab
for the treatment of metastatic/unresectable solid tumors
with dMMR or MSI-H in patients who progress on prior
treatment. Initially, this indication included several cancer
types but not PCa. After the results from the KEYNOTE-
028-phase 1b trial were published [109], the FDA expanded
the previous indication to include patients with pretreated
metastatic PCa with MSI-H or dMMR deficiency [115].
However, dMMR cancers do not always respond to im-
munotherapy, and not all cancers responding to ICIs are
dMMR [20, 21, 116]. In fact, a recent study showed that
dMMR tumors constitute a subtype with decreased survival
time but that only a proportion has a high mutation load and
show PD-L1 IHC staining. (us, dMMR tumors represent a
heterogeneous group and may require further sub-
classification to understand their clinical behaviour and
response to ICIs [117]. However, NCCN guidelines still
recommend DNA-repair gene mutation testing for all pa-
tients with high-risk regional or metastatic PCa [115].

4. Conclusions

In UCs, several ICIs have been approved in metastatic disease
and several studies are ongoing in a nonmetastatic setting. To
date, 2 biomarkers have been recognized in clinical practice:
PD-L1 and dMMR. (e FDA and EMA permit the use of
pembrolizumab and atezolizumab in UC cisplatin-ineligible
patients expressing PD-L1 and undergoing first-line treat-
ment formetastatic disease.(e presence of dMMRorMSI-H
also represents a predictive factor of response to ICIs in PCa
and has led to FDA approval of pembrolizumab in this
subgroup. Notwithstanding, several unanswered questions

remain: Why do some tumors express TILs and some do not?
Why do some tumors not express PD-L1? What regulates
immune escape mechanisms? (e role of PD-1 and PD-L1
expression as a predictive biomarker is still unclear, the use of
different methods and cutoff points in trials complicating its
validation. As suggested by Mariathasan et al., another dif-
ference may derive from different PD-L1 expressions in both
tumor cells and immune cells [54]. Moreover, patients with
low or negative PD-L1 expression respond to ICIs. Conse-
quently, more suitable biomarkers must be sought. In the near
future, it is hoped that the biological characterization of
tumors will be able to drive clinical decision-making, leading
to more personalized treatment. In UCs, new classification
systems such as TCGA will add further valuable information,
allowing for better patient selection. Furthermore, classifi-
cation of biomarker expression into the three immunological
phenotypes “immune inflamed,” “immune excluded,” and
“immune desert” could improve our knowledge of distinct
immunological pathways, enabling a more effective use of
ICIs such as mono- or combination therapies [118].

In the past, nanoparticle-based drugs have been hypoth-
esized for the treatment of cancer.(ese drug nanocarriers can
improve the therapeutic efficacy of a drug by penetrating deep
into tissue and overcoming the physical barriers linked to drug
release [119]. In this scenario, the identification of new cancer-
specific biomarkers could lead to the development of new
nanocarrier drugs directed against cancer-specific driver
biomarkers. In the near future, the identification of new
biomarkers capable of predicting outcome and of acting as
molecular targets for cancer treatment will be possible, thanks
to a greater understanding of the intrinsic mechanisms that
regulate immune system activity. Meanwhile, the search for
new and reliable predictive biomarkers will proceed in 3 main
directions: humoral (cytokines), immunohistochemical (new
or unexplored checkpoints), and genomic (mutations, genetic
instability).
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