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It is well-known that morphological features in the brain undergo changes due

to traumatic events and associated disorders such as post-traumatic stress

disorder (PTSD). However, existing approaches typically o�er group-level

comparisons, and there are limited predictive approaches for modeling

behavioral outcomes based on brain shape features that can account for

heterogeneity in PTSD, which is of paramount interest. We propose a

comprehensive shape analysis framework representing brain sub-structures,

such as the hippocampus, amygdala, and putamen, as parameterized surfaces

and quantifying their shape di�erences using an elastic shape metric. Under

this metric, we compute shape summaries (mean, covariance, PCA) of brain

sub-structures and represent individual brain shapes by their principal scores

under a shape-PCA basis. These representations are rich enough to allow

visualizations of full 3D structures and help understand localized changes. In

order to validate the elastic shape analysis, we use the principal components

(PCs) to reconstruct the brain structures and perform further evaluation by

performing a regression analysis to model PTSD and trauma severity using the

brain shapes represented via PCs and in conjunction with auxiliary exposure

variables. We apply our method to data from the Grady Trauma Project

(GTP), where the goal is to predict clinical measures of PTSD. The framework

seamlessly integrates accurate morphological features and other clinical

covariates to yield superior predictive performance when modeling PTSD

outcomes. Compared to vertex-wise analysis and other widely applied shape

analysis methods, the elastic shape analysis approach results in considerably

higher reconstruction accuracy for the brain shape and reveals significantly

greater predictive power. It also helps identify local deformations in brain

shapes associated with PTSD severity.
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computational anatomy, elastic shape analysis, PTSD diagnosis, statistical regression
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1. Introduction

Scientific studies have increasingly documented the extent of

traumatic experiences in our society—60.7% of men and 51.2%

of women would experience at least one potentially traumatic

event (Javidi and Yadollahie, 2012). A significant proportion of

these events occurs during young age; for example, 26% of males

and 18% of females reported having experienced at least one

traumatic event at a young age (Perkonigg et al., 2000). Of those

experiencing traumatic events, 15–40% develop psychiatric

symptoms of clinical relevance (Priebe et al., 2010), such as

post-traumatic stress disorder (PTSD). PTSD is the fourth most

common mental disorder in the USA and results in significant

impairments of psychological and physical health (Kessler et al.,

1995; Sareen, 2014). Diagnosing psychiatric disorders using

brain imaging data has started gaining attention in the literature.

Imaging provides physical biomarkers, such as volumes and

shapes of anatomical structures in the human brain. Subcortical

structures, in particular, have been implicated in preclinical

neuroscience research in behaviors and phenotypes with crucial

relevance to mental health.

Voxel based morphometry (VBM) approaches have

identified associations between PTSD and the volumes of a

variety of brain regions including the amygdala, prefrontal

cortex, temporal cortex, insula, thalamus, anterior cingulate

cortex (ACC), and hippocampus (Nemeroff et al., 2006; Francati

et al., 2007; Mahan and Ressler, 2012). All of these regions

contain sub-regions with specialization in function, and likely

different links to psychopathology. Sub-regions have been

investigated in PTSD using automated segmentation methods

(Van Leemput et al., 2009; Saygin et al., 2017). For example,

PTSD-related alterations in the hippocampus have been isolated

to lower volume of the CA1 sub-field (Chen et al., 2018).

Findings are more mixed for amygdalar subnuclei. In adult

military veterans, PTSD is linked with smaller paralaminar and

lateral subnuclei, but larger central, medial, and cortical nuclei

which are critical to the behavioral and physiological outputs of

fear (Morey et al., 2020). In contrast, in youth exposed to a terror

attack, PTSD symptoms were associated with smaller volumes

across all major subnuclei (Ousdal et al., 2020). These findings

suggest that the developmental timing and type of trauma

exposure may have important effects on neural phenotypes in

PTSD. However, the analyses of subnuclei are limited by the

limits in tissue contrast and spatial resolution available in typical

3T MRI research scans. Alternative methods for understanding

the morphology of subcortical regions are likely to provide

important neural biomarkers of various psychiatric conditions.

There is limited literature on brain shape changes in

PTSD, although the relationship between morphologies of

structures such as hippocampus and putamen shapes with

disorders such as ADHD, Alzheimer’s, and Schizophrenia are

well-established (Kurtek et al., 2011b; Joshi et al., 2016). The

value of brain shape analysis lies in its ability to reveal local

regions of variation within a structure’s surface. This is valuable

complementary information to the volumetric descriptions of

a structure which depict gross variation in a single direction

(i.e., increased or decreased volume). The addition of localized

topology descriptions allows the detection of subtler changes

in the morphometry of a surface whose signal may be lost

when averaged across the whole ROI. For example, although

hippocampal changes are expected between PTSD and control

groups, volumetric analyses in (Veer et al., 2015; Bae et al., 2020)

found that the differences in bilateral hippocampus were not

significant. In contrast, full shape analysis can allow investigators

to detect regions of equal but opposite variation within a single

surface, which would have otherwise been canceled out had they

been reduced to a single scalar value. Furthermore, despite the

recent developments of limited literature concerning the use of

brain structures for assessing PTSD severity, there are significant

unanswered questions. They related to how alterations in the

brain structure and shape after trauma exposure results in PTSD

onset and progression.

The most commonly used tools for shape analysis in PTSD

involve an FSL toolbox pipeline that is utilized to identify the

correlation between PTSD and subcortical volumes and shapes,

most focused on the amygdala and hippocampus (Veer et al.,

2015; Akiki et al., 2017; Knight et al., 2017; Klaming et al.,

2019; Bae et al., 2020). This pipeline, known as FIRST, is a

surface-based vertex-wise shape analysis (Patenaude et al., 2011)

method that compares the brain surface distances between the

PTSD and control populations via multivariate statistics such

as radial distance and Jacobian determinant. Other methods

(Tate et al., 2016) have used spherical shape registration tools

proposed in Gutman et al. (2015). The latter uses a combination

of spherical and medial axis representations to achieve a final

surface registration. Although such analyses are useful, they

essentially rely on a vertex-wise analysis that visualizes the

brain surface as a collection of discrete vertices represented by

voxels, which overlooks the interpretation of the brain shape as

a continuously varying object in three dimensions. Moreover,

due to a large number of voxels included in the multivariable

analysis, it is challenging to accommodate interactions between

the brain shape and confounding variables such as trauma

exposure without giving rise to an inflated number of parameters

in the model. Existing approaches in Knight et al. (2017) and

Klaming et al. (2019) overcome this difficulty by including

interactions via a voxel-wise analysis, which ignores the spatial

nature of the brain shape, and requires stringent multiplicity

adjustments for testing significant effects. These limitations

are likely to result in biological findings that may not be

reproducible across studies, especially in studies with moderate

sample sizes. For example, the vertex-wise analysis in Knight

et al. (2017) did not find significant subcortical volume or shape

differences between PTSD and control groups, although there

were weakly significant interaction effects between depression

and PTSD severity in the left amygdala. In contrast, Veer et al.
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(2015) found smaller right amygdala volume for PTSD vs.

control, while Bae et al. (2020) discovered larger left amygdala

volume for PTSD vs. control group.

In this article, we apply elastic shape analysis

method (Jermyn et al., 2017) to analyze brain subcortical

structures. It characterizes shapes as parameterized surfaces in

R
3, instead of point sets, and it incorporates dense registration of

points across objects. The elastic shape analysis quantifies pure

shape variability, modulo shape-preserving transformations,

and helps discern subtle variations across populations by

minimizing mis-registration errors. The elastic shape analysis

helps align, register, and compare shapes of surfaces. It also

provides shape summaries, i.e., statistical means and covariances

of shapes sampled from a population. The computation of

covariance leads to principal component analysis (PCA) of

sample shapes and the set of principal coefficients (PC) forms

a parsimonious, low-dimensional representation of those brain

structures. By including interactions between a subset of PCs

and confounding variables (such as trauma), the proposed

approach provides a parsimonious and flexible classification

or prediction approach not restricted to vertex-wise analysis.

It enables non-linear associations between the brain shape,

potential confounders, and their interactions with the clinical

phenotype of interest. This results in superior prediction

performance compared to the widely applied shape analysis

methods in PTSD literature.

An essential strength of these shape features is

reconstructing full shapes from these feature vectors (principal

components). Consequently, one can visualize changes in

the shapes of a structure by varying only one or multiple

features at a time. This provides a vital tool for physicians and

clinicians to visualize localized changes or deformations in

the brain anatomy for statistically significant shape features or

principal components. We focus on a pre-specified subset of

subcortical structures and their interactions with demographic

and exposure confounding variables to classify and predict

PTSD severity. In contrast to most existing studies that focus on

brain shape changes in military veterans, our study is one of the

first to investigate brain shape changes in PTSD in conjunction

with co-morbidities such as trauma in a civilian minority

population of AA females.

The main contributions of this paper are:

1. The use of elastic shape analysis to characterize shapes

of subcortical structures as parameterized surfaces. This

framework integrates the registration of surfaces as a part

of shape analysis, and provides a comprehensive toolbox

for registering, comparing, summarizing, and testing shapes.

This leads to a representation of shapes using (invertible)

PCA features. Many of the past works that utilize anatomical

shapes in medical diagnoses represent shapes as point clouds,

i.e., a set of discrete points. In contrast, we follow an approach

that incorporates full surface geometries of anatomical

objects, which results in more accurate reconstructions and

considerably more accurate predictions.

2. The use of shape features and other clinical covariates in

statistical regression models for modeling PTSD severity

measures as response variables. This results in shortlisting

and analysis of features that are significant in predicting

PTSD. Furthermore, it allows us to include the interaction

terms in the regression models also. While elastic shape

distances have been used for predicting clinical measures

in some previous works (Kurtek et al., 2011a; Joshi et al.,

2016), the use of full elastic shapes has not been explored and

presents a new methodological contribution of independent

interest.

3. The visualization of local deformations associated with

significant morphological features and their interpretations

in predicting PTSD severity. A significant outcome of this

framework is these tools that allow physicians and other

experts to validate the findings through visualizations, thus

making it easier to incorporate into clinical practice.

2. Materials and methods

This section lays out the entire pipeline for extracting and

analyzing shapes of subcortical brain surfaces. This pipeline is

illustrated pictorially in Figure 1 with the time costs computed

on a laptop with Intel i7-8705G processor. As the figure shows,

the proposed pipeline has three main steps: (i) pre-processing

of the original data; (ii) registration and shape analysis of 3D

surfaces; and (iii) regression models for analysis of PTSD. We

describe these steps next, starting with introducing the data used

in the experiments presented later.

2.1. Data description

In this study, we utilize T1-weighted MRI scans of

brains of 90 subjects. The dataset also contains demographic

information with the questionnaire results on PTSD symptoms

and traumatic experiences.

2.1.1. T1-weighted MRI scans

The original data is T1-weighted MRI scans acquired by

Emory University Grady Trauma Project using Siemens Tim

Trio (Logue et al., 2018). Field of view is 224 × 256 mm, while

repetition time and echo time are 2,600 and 3.02 ms separately.

2.1.2. Demographic information

Participants of the experimental data collection are all

African American women. The other demographic information

included in the data is: age (18–61), education (0–5),

employment (0,1), and disability (0,1).
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FIGURE 1

Pipeline steps and time cost. The time cost is computed with Intel i7-8705G. SRNF, square root normal field; PCA, principal component analysis;

PC, principal component; PSS, PTSD symptom scale; CTQTOT, childhood trauma questionnaire total score.

2.1.3. Questionnaire results

In the study, we are most interested in participants’

answers to questions related to PTSD symptoms and traumatic

experiences. Specifically, we focus on three questionnaire results:

(i) PTSD Symptom Scale (PSS), which measures the presence

and frequency of current PTSD symptoms and has a range

of 0–42; (ii) Childhood Trauma Questionnaire Total Score

(CTQTOT), which is a 25-item inventory of different types of

childhood maltreatment including abuse and neglect and has

a range of 25–125; and (iii) Beck Depression Inventory (BDI),

which is a 21-question multiple-choice self-report inventory and

has a range of 0–63.

2.2. Data pre-processing

Here we describe the steps for extracting subcortical

structures from brain imaging data. We use the widespread

packages to pre-process the MRI scans obtained as the original

data.We first convert 176 DICOM scan files for each subject into

a single NIfTI file using SPM12 (Penny et al., 2011). The NIfTI

images each have a resolution of 240× 256× 176.

Next, we utilize the FMRIB Software Library (FSL) that

contains image analysis and statistical tools for functional,

structural and diffusion MRI brain imaging data. Among the

tools in FSL, FSL FIRST (Patenaude et al., 2011) is a model-

based segmentation/registration tool. FSL FIRST can segment

a T1-weighted MRI image into 15 subcortical structures’

surfaces. Using some manually segmented images, in which

the subcortical labels are parameterized as surface meshes and

modeled as a point distribution model, FSL FIRST trains an

automatic segmentation model using a Bayesian approach.

The inputs of FSL FIRST are T1-weighted MRI images in

NIfTI file format, and the outputs are triangular meshed

surfaces of 15 subcortical brain structures. Although there

are several structures available for study, this paper mainly

focuses on three structures: left hippocampus, left amygdala,

and left putamen. They are identified as the most related

subcortical structures in the existing literature (Filipovic et al.,

2011; Veer et al., 2015; Zhong et al., 2015; Akiki et al.,

2017; Knight et al., 2017; Klaming et al., 2019; Bae et al.,

2020).

We then apply a spherical conformal mapping and Tuette

mapping algorithms in Jermyn et al. (2017) to transform the

triangulated meshes into spherically-parameterized surfaces.

The method first creates progressively finer mesh structure

with triangles, and then embeds the mesh vertices into a

sphere. The surfaces are spherically parameterized since

each point on the surface corresponds uniquely to a point

on the unit sphere S
2. This provides a representation of
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the surface as an embedding: f : S2 → R
3. Figure 2A

illustrates the process: Column (a) shows an example of

triangular mesh surface, column (b) and (c) are sphere S
2

and the corresponding spherically-parameterized surface.

Points in the same color indicate the corresponding

relationship.

2.3. Framework: Elastic shape analysis

To analyze shapes of subcortical structures and to discern

shape changes with traumatic experiences, we utilize the

elastic shape analysis approach, developed in the book (Jermyn

et al., 2017). This comprehensive theory provides several

tools for analyzing shapes of 3D objects, including (1) metric

for quantifying differences in their shapes, (2) deforming

objects into each other using geodesic paths, (3) optimally

registering points across surfaces being compared, and (4)

computing mean, covariance, and PCA of shapes. An important

aspect of this approach is that these results are theoretically

invariant to the chosen shape-preserving transformations

(rigid motions, global scaling, and parameterizations of

surfaces). From a practical perspective, it helps remove

misregistration errors from the analysis. In the past, this

framework has been applied to shape analysis of human bodies

(Laga et al., 2017) and brain morphology associated with

Alzheimer’s (Joshi et al., 2016) and ADHD (Kurtek et al.,

2011a).

2.3.1. Elastic metric and SRNF

Next, we present some salient ideas of this approach. The

subcortical objects are considered as closed surfaces in R
3.

Each closed surface can be represented in a parameterized

form using a smooth map: f : S2 → R
3. Let F denotes the

space of all such surfaces. If s = (u, v) is a point on the

sphere S
2, then the partial derivatives fu and fv denote two

orthogonal tangent vectors to the surface f at the point f (s).

The (unnormalized) normal vector at point s is given by n(s) =

fu × fv, where × indicates the cross product in R
3. Figure 2B

shows a surface f , parameterized by points on a unit sphere

S
2, with the tangent and normal vectors at point f (s) on the

surface.

Let Ŵ be the set of all orientation-preserving

diffeomorphisms of S
2; the elements of Ŵ help us re-

parameterize surfaces. For any parameterized surface f ∈ F and

a γ ∈ Ŵ, the composition f ◦ γ denotes a re-parameterization of

f . Equivalently, elements of γ also help in a dense registration of

points across two surfaces, say f1 and f2. Initially, for any s ∈ S
2,

the point f1(s) on f1 is said to be registered to the point f2(s) on

f2. However, if we re-parameterize f2 by γ , then the point f1(s)

is now registered to the point f2(γ (s)) on f2. Thus, γ becomes a

tool for controlling the registration between f1 and f2. The next

question is: How can we find the best registration between any

two surfaces f1 and f2? A related question is: What should be

the objective function for defining and calculating the optimal γ

that best registers f2 with f1? An obvious choice would be the L2

norm, but it is degenerate and leads to singularities in solutions.

While one can impose additional penalties to avoid degeneracy,

the resulting solution is not inverse symmetric. That is, the

registration of surface f1 to f2 may not be consistent with the

registration of surface f2 to f1. From a mathematical perspective,

the problems in using the L2 norm for registering surfaces stem

from the following fact. In general, for any f1, f2 ∈ F and γ ∈ Ŵ,

we have:
∥

∥f1 − f2
∥

∥ 6=
∥

∥f1 ◦ γ − f2 ◦ γ
∥

∥ . In the other words, we

lose some information about the shape of the surfaces after re-

parameterization if we use the L2 distance to compare them. A

better alternative for registration and shape analysis comes from

an elastic Riemannian metric. While this metric’s original form

is too complex for practical usage, a square-root representation

of surfaces simplifies their usage. This representation, termed

the square root normal field (SRNF), is defined as follows: for

s ∈ S
2, define q(s) = n(s)/

∣

∣n(s)
∣

∣

1
2 , where n(s) is the normal

at a point f (s) as explained earlier. Thus, q is nothing a but a

normal vector field on the surface f with the magnitude given

by
√

|n(s)|. SRNF of the re-parameterized surface f ◦ γ is given

by (q ◦ γ )
√

Jγ , where Jγ is the determinant of the Jacobian

of γ .

The most important property of elastic shape analysis is that:

for any two surfaces f1, f2 ∈ F and their SRNFs q1, q2, we have

the famous invariance property:

‖q1 − q2‖ = ‖O(q1 ◦ γ )
√

Jγ − O(q2 ◦ γ )
√

Jγ ‖ (1)

for all 3D rotationsO ∈ SO(3) and all γ ∈ Ŵ. Such an invariance

is not present in any other method that has been discussed

in the paper. This is an important fundamental limitation of

non-elastic, non-Riemannian approaches.

Let C = L
2(S2,R3) be the pre-shape space of all SRNFs.

Then, due to the invariance property (1), we can define a proper

metric on the shape space C/(Ŵ × SO(3)):

ds([q1], [q2]) = inf
(O,γ )∈SO(3)×Ŵ

‖q1 − O(q2 ◦ γ )
√

Jγ ‖ . (2)

With this metric we can define a statistical mean and register

individual surfaces to this mean according to:

[qµ] = arg min
[q]∈C/(Ŵ×SO(3))

n
∑

i=1

ds([q], [qi])
2

= arg min
[q]∈C/(Ŵ×SO(3))

n
∑

i=1

(

inf
(Oi,γi)∈SO(3)×Ŵ

‖q− Oi(qi ◦ γi)
√

Jγi‖
2
)

. (3)

This formula not only defines the mean of given shapes but

also describes the registration of each qi to the mean qµ. It
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FIGURE 2

(A) Object pre-processing: Triangular mesh surface and spherical parameterized surface. Each vertex on the spherical parameterized surface

corresponds to a vertex on the meshed unit sphere S
2. (B) Local geometry of a parameterized surface viewed as a mapping f : S

2 → R
3. The

figure shows the tangent vectors fv and fu and the normal vector n at point f(s) on f.

explains how the shape metric ds (which is based on pairwise

registration) leads to a registration of multiple samples from

a population. We refer the reader to two textbooks (Jermyn

et al., 2012; Srivastava and Klassen, 2016) for a more detailed

explanation of these ideas.

Methods that do not employ proper metrics do not have a

well-defined notion of the statistical means and need to provide

some separate notion of a “template” for registration. In elastic

Riemannian approaches, the template is given by the statistical

mean of shapes.

The computation of shape metric in (2) requires solving

for the optimal O∗ ∈ SO(3) and γ ∗ ∈ Ŵ. Before solving

for the optimal rotation and re-parameterization, we remove

the shape-preserving transformations including translation and

global scaling. It is easy to remove these shape-preserving

transformations, contributing to the advantage of using the

SRNF representation described in the previous paragraphs.

Specifically, the SRNFs of surfaces are already invariant to

translation. Scaling variability was removed by re-scaling all

surfaces to have a unit area: f = f /
√

αf , where αf =

∫

S2
|nf (s)|ds is the area of surface f . Then, we use the

Procrustes method to solve for the optimal rotations and we

use a gradient-descent approach to optimize over Ŵ, whose

details and algorithms are presented in Jermyn et al. (2017).

The gradient-descent is preceded by a course search over 60

elements of the dodecahedron group to try 60 different rigid

rotations (corresponding to 60 placements of the north-south

pole coordinate system) and select the minimum. Theminimum

allows us to get closer to a global solution, and we use that

minimum as an initial condition for a gradient search method to

find the optimal parameterization. Due to the lack of symmetry

in the shapes of these subcortical structures, we expect to get a

unique global solution to the registration problem (optimizing

over Ŵ).

2.3.2. Elastic registration: A simulation study

Here, in order to illustrate and validate the necessity

of surface registration, we conduct some simulation studies.

We randomly generate 40 simulated surfaces using PCA
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FIGURE 3

(A) Heat map and (B) MDS plot of distances between well-aligned and registered surfaces. (C) Heat map and (D) MDS plot of distances between

randomly-parameterized surfaces (not well-registered). Colors of the heat map indicates the relative distances between surfaces. Blue dots in

MDS plot indicate the first 20 simulation surfaces and red dots indicate the last 20 simulation surfaces.

FIGURE 4

Two examples of geodesic between left hippocampus surfaces. (Top) Between unregistered surfaces. (Bottom) Between elastic registered

surfaces.

representations of shapes of left hippocampus (the use of PCA

is detailed later in this paper). More specifically, we use only the

first principal direction v1 in this experiment and generate 20

surfaces each on either side of mean µ along that direction. That

is, we generate fi = µ + xiv1, i = 1, 2, . . . , 40, where xi ∈ (0, 1]

for i ≤ 20 and xi ∈ [−1, 0) for i > 20.

Since PCA is performed after surface registration, these

simulated surfaces can be considered well aligned and registered.

We calculate the pairwise distances between surfaces as dij =
∥

∥fi − fj
∥

∥, where i, j = 1, 2, ..., 40. Figures 3A,B show the heat

map and multidimensional scaling (MDS) plot of the distances

between surfaces. First 20 surfaces are presented by blue dots and

last 20 are presented by red dots. This figure illustrates that for

registered surfaces, the shapes that are on the same direction of

principal shape component have relatively small distance, and

are correctly clustered into the same class.

Next, we introduce random parameterization functions γi ∈

Ŵ and apply γi’s to fi’s to simulate randomly parameterized

surfaces. For each i, the surface f̃i = fi ◦ γi has the same

shape as fi, but a different parameterization. The distances

between unregistered surfaces are again calculated by d̃ij =

∥

∥

∥
f̃i − f̃j

∥

∥

∥
. Figures 3C,D shows the heat map and MDS plot of

the distances between randomly parameterized surfaces. We see

that distances between surfaces that have similar shapes are not

smaller anymore andMDS plot shows that unregistered surfaces

are not effectively clustered.

2.3.3. Shape analysis tools: Geodesics, mean,
and PCA

The framework developed so far allows for representing

and registering anatomical surfaces and comparing shapes of

these surfaces pairwise using a proper shape metric. This metric

is used to develop some additional statistical tools, leading

to a compact way of representing shapes. These tools include

finding geodesics between shapes, computing means of shapes

of surfaces, and discovering principal modes of shape variation

in a given set of shapes.

2.3.3.1. Shape geodesic

Given two surfaces, f1 and f2, a geodesic between their

shapes is a visualization of the optimal deformation from one
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to the other. Although there are more sophisticated ways to

compute exact geodesics, we use a simple linear interpolation

to approximate this deformation according to: α∗
τ (s) = (1 −

τ )f1(s) + τ f ∗2 (s), s ∈ S
2, where τ ∈ [0, 1] is the time index

of the geodesic and f ∗2 is the optimally registered version of f2.

At τ = 0 we have α = f1 and at τ = 1 we have α = f ∗2 . Figure 4

shows two examples of geodesics, where the upper one is the

geodesic between unregistered surfaces and the lower one is

between elastically registered surfaces. Due to the misalignment

of points between surfaces, the hippocampus’s posterior end

“degenerates” on the upper geodesic at the midway point. In

contrast, the anatomical features of hippocampus surfaces are

preserved with elastic registration, making the midway surfaces

along the geodesic more interpretable.

Additional examples of elastic geodesics can be found in

Supplementary Figure 1. We also provide these deformations as

GIF files in the Supplementary material.

2.3.3.2. Mean shape

Here, we introduce the algorithm of computing the mean

shape of surfaces defined in (3). We use an iterative algorithm

to compute this mean shape. Here we start by selecting an

arbitrary surface as the initial guess for µ. Then, in each

iteration, we register each fi with the current mean and compute

the (Euclidean) mean of these registered fi’s in F . Once the

algorithm has converged, we obtain the mean shape µ. We

outline these steps using Algorithm 1.

Figure 5 presents the Karcher mean surfaces µ as computed

with Algorithm 1 for different structures. Figure 5A shows

some registered individual surfaces f ∗i (drawn around the

mean) and their Karcher mean surfaces µ (drawn in the

Data: Surfaces fi ∈ F, i = 1, 2, ..., n

Let qi be the SRNF of surface fi

Result: Karcher mean µ and registered surfaces

f ∗i

Find random fi as µ0 ;

for j = 1 to 20 do

Compute SRNF qµ of the mean surface µj−1;

for i = 1 to n do

O∗
i , γ

∗
i = argmin

O∈SO(3),γ∈Ŵ

‖qµ − O(qi ◦ γ )
√

Jγ ‖;

f ∗i = O∗
i (fi ◦ γ ∗

i );

end

µj =
1
n

∑n
i=1 f

∗
i ;

end

O∗
i , γ

∗
i = argmin

O∈SO(3),γ∈Ŵ

‖qµ − O(qi ◦ γ )
√

Jγ ‖;

f ∗i = O∗
i (fi ◦ γ ∗

i );

Algorithm 1. Computing Karcher mean of surfaces.

middle). We see that the Karcher mean surfaces capture salient

anatomical shape features among the groups while reducing

the individual noise. The result of comparison between elastic

registered mean surface and unregistered mean surface is

presented in Figure 5B. The left red ones are elastic mean

surfaces computed with Algorithm 1 and registered surfaces,

and the right blue ones are the mean surfaces computed without

surface registration. It is observed that elastic mean captures

more anatomical shape features, especially obvious at the end

part of subcortical structures. On the contrary, some shape

information is “averaged out” when computing themean surface

without surface registration. For example, posterior end of the

hippocampus surfaces degenerates when computing the mean

without elastic registration. As a result, it is more reasonable to

use the elastic mean surface for later shape analysis.

2.3.3.3. Shape PCA

Next, we perform Principal Component Analysis (PCA) to

capture essential shape variability in a given set of surfaces.

We start by computing the covariance matrix C for surfaces:

C =
∑n

i=1 ViV
T
i , where Vi = vec(fi − µ), and vec

denotes vectorization of a matrix. By performing singular value

decomposition (SVD) on the covariance matrix C, we obtain

the left singular vectors as the columns of the unitary matrix U.

These columns form the principal directions of shape variability

the data. The first column is called the 1st principal component,

the second column the 2nd principal component, etc. This

decomposition also results in singular values that indicate the

variance of the shape variability among each of the principal

directions.

Figure 6 illustrates the 1st principal component of left

hippocampus, left amygdala, and left putamen surface shape.We

show a principal direction using the elastic deformation path

µ − σ −→ µ −→ µ + σ . Colors on a surface indicate the

patch-wise shape differences of that surface when compared with

the mean surface. Note that along the 1st principal component:

Figure 6A for left hippocampus, the largest shape variability

is in the angle of the posterior endings; Figure 6B for left

amygdala, the surfaces “bends” more toward the “tail” end;

and Figure 6C for left putamen, the curvature of the middle

part changes.

The 2nd and 3rd principal components of three subcortical

structure surfaces are shown in Supplementary Figures 2–4. We

also provide interactive slider graphs to help visualize changes

along different principal components for these subcortical

structures in the Supplementary material.

2.3.3.4. Low-dimensional shape representations

We use PCA to derive low-dimensional representations of

shapes of objects for use in statistical models and regressions.

During experiments, we randomly divide all surfaces (of

a specific type, say hippocampus) into training and test
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FIGURE 5

(A) Karcher mean surfaces and sample individual surfaces of three subcortical structures. Surrounding blue ones are randomly selected sample

individual surfaces, and the middle red ones are Karcher mean surfaces computed using Algorithm 1. (B) Comparison between mean surfaces

computed with and without elastic registration. Red ones are mean surfaces computed using Algorithm 1 with surface registration, while blue

ones are computed without surface registration.

groups. Then we compute the principal components of

shape variation using only the training surfaces and we

compute the principal scores for all test surfaces. For a test

surface fi ∈ F , i = 1, 2, ..., n and principal directions

U(:, d), d = 1, 2, ..., n, the principal score is computed

by: zi,d =
〈

fi − µ,U(:, d)
〉

. In this way, a high-dimensional

object fi is now represented by a d-dimensional vector

zi ∈ R
n. It is important to note that this representation

is invertible. We can map these features back to the object

space and reconstruct test surfaces according to: f̂i,k = µ +
∑k

d=1 zi,dU(:, d). We validate this representation by examining

the difference between the reconstructed surface f̂i,k and the

original surface fi.

Figure 7 presents some examples of such surface

reconstructions. We use 90 × 0.8 = 72 surfaces to compute

principal components and the other 18 surfaces to reconstruct

and test. The right column shows sample individual surfaces

for each subcortical structure, and the left side shows the

reconstructed surfaces with k = 0, 1, 5, 15, and 72 principal

components added to the mean surface respectively. Color

indicates the patch-wise relative shape differences between

the reconstructed surface and the example surface |fi − f̂i,k|.

In other words, “1” indicates the largest patch-wise difference

along the whole individual surface reconstruction process, and

“0” means no reconstruction error in the patch. As more and

more principal components added, the patches change color

from red to blue, and the shapes of reconstructed surfaces

look similar to the sample surfaces. When k = 72 principal

components (all of the principal components) are used, the

reconstructed is almost identical to the original surface.

The reconstructed surfaces are mostly blue, which means

the difference between reconstructed surface and example

surface is relatively very small. This result illustrates that

elastic mean and PCA successfully capture the modes of shape

variations in subcortical structure surfaces, and represent

individual shapes using a small number of PCA coefficients.

We provide GIF examples of the surface reconstruction in the

Supplementary material.
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FIGURE 6

First principal components of three subcortical structures. The figures show the deformation along the path of µ − σ → µ + σ following 1st

principal direction. Color indicates the small patch’s relative shape di�erence (deformation level) compared with the mean surface. (A) First

principal component of left hippocampus. (B) First principal component of left amygdala. (C) First principal component of left putamen.

2.4. Comparison with other shape
analysis methods

To verify the effectiveness and ability of elastic shape analysis

in identifying shape differences attributed to PTSD disease, we

compare it with three widely applied shape analysis methods

in neuroimaging: vertex-wise analysis, SPHARM-PDM (Styner

et al., 2006), and ShapeWorks (Cates et al., 2017).

In order to perform the comparison with vertex-wise

analysis, we apply a similar pipeline as our elastic approach and

compare the results. We start by representing surfaces using sets

of vertices or point clouds. Next, we apply the widespread point

cloud registration algorithm, iterative closest point (ICP) (Besl

and McKay, 1992), to register individual surfaces. This step is

analogous to the elastic registration step. After registration, we

compute mean, covariance and PCA, in the same way as elastic

shape analysis.

Both the SPHARM-PDM and ShapeWorks are point-

based models with open-source software. We generate the

comparable results with both methods and compare with elastic

shape analysis. We used the suggested software versions and

hyperparameters for both methods as follows: SPHARM-PDM:

Version: 3D Slicer 4.11.20210226 SPHARM-PDM extension

(Published on May 26, 2021); Iterations of generating mesh:

500; Subdivision level for linear ikosahedron subdivision: 20;

Degree of spherical harmonic expansion: 12; Number of theta

iterations: 100; Number of phi iterations: 100. ShapeWorks:

Version: ShapeWorksStudio 6.2.1; Mesh Grooming: Fill holes;

Alignment: Iterative Closest Point; Particle System Parameters:

128 particles, 0.05 initial relative weighting, 1 relative weighting,

1,000 starting regularization, 10 ending regularization, 1,000

iterations per split, 1,000 optimization iterations, 10 normals

strength, 10 procrustes interval, 32multiscale start, and 4 narrow

band.

2.4.1. Shape variability explanation

We can quantify the level of shape variability explained

by the principal components using the cumulative proportion

of total singular values, as shown in Figure 8 for the four

shape analysis methods. Under elastic shape analysis, the 1st

principal component explains about 33, 37, and 42% variability

for the left hippocampus, left amygdala, and left putamen,

respectively. For these three structures, we can explain over

95% of the variability in shapes with 14, 15, and 10 principal

components in total, respectively. Therefore, we will use the first

15 principal components to represent a shape in the subsequent

regression analysis. Furthermore, when comparing elastic shape

analysis (red lines) with the other three shape analysis methods,

we conclude that elastic shape analysis explains more shape
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FIGURE 7

Sample surface reconstructions of three subcortical structures. (A) Reconstructed surfaces with first 0, 1, 5, 15, and 72 principal components. (B)

Target surfaces. Color indicates the small patch’s relative shape di�erence compared with the target surface.

variability with the same number of principal components.

These results imply that only a small number of PCs can be

used to represent the shapes under the proposed elastic shape

analysis, which has direct advantages in regression analysis with

shape features as elaborated in the sequel.

2.4.2. Low-dimensional representation
e�ciency

Since SPHARM-PDM performs the second best in

explaining the shape variability, we conduct further comparison

with SPHARM-PDM to illustrate the necessity of elastic

registration and the efficiency of our elastic shape analysis

framework bringing the surfaces into low-dimensional

representations. We quantify the efficiency of low-dimensional

representations using the number of principal components

needed for representing shapes up to a fixed reconstruction

error. Let fi be the original surface and f̂i,k be the reconstructed

surfaces with k principal components added. The reconstruction

error is defined as ‖fi − f̂i,k‖. Therefore, the framework that

generates a smaller reconstruction error with the same fixed

k is more efficient in low-dimensional shape representation.

Figure 9 presents the results for reconstructing surfaces of the

three subcortical structures. Figure 9A shows the reconstruction

errors of all individual surfaces vs. principal components

for the elastic shape analysis framework (red lines) and

SPHARM-PDM (blue lines). Figure 9B presents the total

distances of all reconstructed surfaces to their original surfaces

under different principal components and the results show

that elastic shape analysis outperforms SPHARM-PDM in

low-dimensional representation efficiency. Figure 9C quantifies

this out-performance by the percentage of improvement,

indicating that our elastic shape analysis framework has a much

superior reconstruction performance when only a few principal

components are used to represent the complex shapes.

3. Results: Validation of shape
analysis using regression modeling

In order to explicitly validate the shape analysis framework,

we now conduct regression analysis for modeling PTSD and

childhood trauma outcomes based on the low dimensional

shape features in the form of principal scores (PS) derived via

PCA. We fit a series of 5 different linear models with PTSD

symptom scales (PSS) as the outcome and another five models

with childhood trauma (CTQTOT) as the outcome, listed in

Table 1. These models vary with respect to the type of covariates

included for analysis. Models 1 and 5 are the most extensive

and include age, depression index (BDI), shape features (PS),

and interactions between shape features with age and BDI.

The interaction terms are all the pairwise interactions between

shape features (the first five principal scores for each subcortical

structure) and the confounding variables (age and BDI). They

are formed by taking the pairwise products of the original
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FIGURE 8

The cumulative proportion of total singular values of the covariance. Under elastic shape analysis, the 1st PCs can explain about 33, 37, and 42%

variability of surface shape for left hippocampus (A), amygdala (B), and putamen (C). The cumulative singular values take up more than 95% of

total singular values with 14, 15, and 10 PCs, respectively.

FIGURE 9

Comparison of the low-dimensional representation e�ciency of the elastic shape analysis framework to SPHARM-PDM. (A) Individual surface

reconstruction errors vs. the number of principal components, (B) total reconstruction error of all surfaces vs. the number of principal

component, and (C) the percentage of e�ciency improvement of our elastic shape analysis framework over SPHARM-PDM.

predictors, for example, amygdala 1st × age, amygdala 1st ×

BDI, hippocampus 1st × age, and so on. Here, × denotes

the product of two predictors. Models 2 and 6 exclude these

interaction terms. Further, models 3 and 7 only include age

and BDI, while models 4 and 8 include shape features only.

Finally, we also fit models 9 and 10 that augment models

1 and 5, respectively, by including additional covariates in

the form of intracranial volume (ICV) that measures the size

of the cranium and is an important normalization measure

used in morphometric analyses to correct for head size. To

capture the shape differences while minimizing noise, we take

only the first 15 principal scores (PS) for each surface. These

represent the 15 most dominant modes of shape variation to

train the model. In these models, we select the most significant

predictors using bidirectional stepwise regression. We also focus

our shape analysis on including certain subcortical structures in

the brain that are known to be associated with PTSD, such as

the hippocampus, amygdala, and putamen. Thus, we present the

shape analysis results for three groups of surfaces in relation to

traumas and PTSD disease.

3.1. Regression models

We use the compact shape representations as predictors

in regression models. Specifically, we study the ten linear

regression models listed in Table 1. Table 1 shows the adjusted

R2 values for the fitted models, and Tables 2, 3 list the significant

principal components with their signs of regression coefficients

and the corresponding p-values and significant interaction terms

for each model.
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TABLE 1 Adjusted R
2 of regression models.

Model no. Model design Adjusted

R2 (%)

1 PSS∼ Age+ BDI+ PS+ Interactions 63.80

2 PSS∼ Age+ BDI+ PS 48.26

3 PSS∼ Age+ BDI 18.99

4 PSS∼ PS 31.23

5 CTQTOT∼ Age+ BDI+ PS+ Interactions 69.66

6 CTQTOT∼ Age+ BDI+ PS 38.46

7 CTQTOT∼ Age+ BDI 10.97

8 CTQTOT∼ PS 29.25

9 PSS∼ Age+ BDI+ PS+ Interactions+ ICV 63.80

10 CTQTOT∼ Age+ BDI+ PS+ Interactions+ ICV 69.66

PS, First 15 principal scores;

Interactions: age× first 5 PS and BDI× first 5 PS.

TABLE 2 Significant principal components.

Response Predictor Sign of coefficient p-value

PSS Amygdala 4th + 0.0045

Amygdala 5th + 0.0005

Amygdala 6th + 0.006

Hippocampus 2nd + 0.001

Putamen 6th + 0.004

CTQTOT Amygdala 2nd + 0.02

Amygdala 11th − 0.0008

Hippocampus 5th − 0.04

Putamen 2nd − 0.01

Putamen 4th − 0.03

Predictors are significant under significance level 0.05.

From Table 1, we can see that the models including

interactions between shape (PS) and confounding variables (age

and BDI) have larger adjusted R2 value than those excluding

interactions. Both Models 1 and 5 achieve large adjusted R2

values. Although BDI is highly correlated with PTSD symptoms,

when we compare Models 2, 4, 6, and 8 with Models 3 and 5

that only includes age and BDI, we reach a higher adjusted R2.

This implies that shape explainsmore variability in the responses

(PSS and CTQTOT) than BDI. Next, we focus on the significant

shape principal components of each subcortical structure.

From Table 2, we see that PTSD symptoms are most

correlated with subcortical shapes of the following principal

components: amygdala 4th, amygdala 5th, amygdala 6th,

hippocampus 2nd and putamen 6th. Similarly, the most

significant subcortical shape changes associated with childhood

traumatic experience lie in the principal directions: amygdala

2nd, amygdala 11th, hippocampus 5th, putamen 2nd, and

putamen 4th. After controlling for ICV, the principal shape

components of elastic shape analysis are still found to be

statistically significant. This result indicates that the elastic

registration procedure is sound and can naturally control for

the variability in the head size after registration. Clearly, the

elastic shape analysis approach can successfully register the

different brains, so that variable head sizes do not impact the

analysis and do not provide any additional gains in explaining

the variability in the clinical outcomes. Table 3 presents the

significant interactions between shape and confounding patterns

correlated with PTSD and traumatic experience.

3.2. Shape pattern

In order to understand variations associated with different

PSS and CTQTOT levels, we visualize the significant principal

components for each subcortical structure. From Figure 10A, we

observe that with severe PTSD symptoms:

• Left hippocampus surface moves along the positive

direction of 2nd principal component, which shows a

shrunken anterior end and curved body part;

• Moving along the positive direction of 4th, 5th, and 6th

principal components, the left amygdala surface mainly

deforms at the “head” end, where the central nucleus lies.

The “head” end tends to indent;

• Left putamen surface’s concave middle part has a larger

curvature, and the end part gets thinner and sharper along

the positive direction of the 6th principal component.

Figure 10B shows that with severe childhood trauma:

• Left hippocampus surface has thinner anterior and

posterior ends moving along the negative direction of 5th

principal component;

• Left amygdala surface has shrunken head end and the left

side appears more flattened;

• Left putamen surface’s middle part is hollower and the end

part gets sharper along the negative direction of 2nd and

4th principal component.

Through these visualizations, we find that the shape changes

of three subcortical structures following different levels of PTSD

symptoms and childhood traumatic experience are consistent.

This, in turn, supports the results of regression models. Subjects

with more childhood traumatic experiences potentially have

more severe PTSD, and the shape of subcortical structures

deforms in the same direction.

Additional displays of deformations along the most

significant principal components for PSS and CTQTOT are

presented in Supplementary Figures 5, 6. The interactive graphs

to visualize shapes at different levels of PSS and CTQTOT are

also presented in the Supplementary material.
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TABLE 3 Significant interactions of model 1 and 5.

Predictor for PSS p-value Predictor for CTQTOT p-value

Age× Amygdala 4th 0.002 Age× Amygdala 1st 2 ∗ 10−5

BDI× Amygdala 4th 0.005 Age× Amygdala 2nd 0.0007

Age×Hippocampus 3rd 0.0005 Age× Amygdala 4th 3 ∗ 10−6

BDI×Hippocampus 3rd 5 ∗ 10−5 BDI× Amygdala 3rd 7 ∗ 10−6

BDI×Hippocampus 4th 0.002 BDI× Amygdala 4th 1 ∗ 10−5

Age× Putamen 1st 0.001 Age×Hippocampus 4th 0.001

Age× Putamen 2nd 0.005 BDI×Hippocampus 5th 8 ∗ 10−5

Age× Putamen 4th 0.01 Age× Putamen 1st 0.01

Age× Putamen 5th 8 ∗ 10−5 Age× Putamen 2nd 3 ∗ 10−5

BDI× Putamen 1st 0.0007 Age× Putamen 3rd 3 ∗ 10−6

BDI× Putamen 2nd 0.005

BDI× Putamen 3rd 0.002

BDI× Putamen 4th 8 ∗ 10−6

Predictors are significant under significance level 0.01.

×: Product of two variables.

3.3. Result comparisons

To compare the four methods in the regression context,

we replace the elastic shape analysis principal scores with the

principal scores of other shape analysis methods and repeat

the experiments with the first eight model designs. Table 4 lists

the model adjusted R2 values of the four methods. Regression

models trained with elastic shape analysis principal scores

outperform those trained with the principal scores of other

shape analysis methods in all six models (note that models 3

and 7 are independent of principal scores, so the adjusted R2

values of these two models are identical for all four methods).

Besides, with the same number of principal components, those

computed with the elastic shape analysis method contain more

shape information (shape variation) because of the geometric

properties discussed in Section 2.

From these results, we conclude that elastic shape analysis is

more effective and accurate in identifying the shape differences

of subcortical structures correlated with PTSD and childhood

traumatic experience, when compared to other widely applied

shape analysis methods.

4. Discussion

We have proposed a comprehensive shape-analysis

approach that treats the brain structures as continuous surfaces

instead of a collection of discrete points. One of the key aspects

of the approach is that it incorporates crucial registration steps

such as rigid motions, global scaling, and parameterizations of

surfaces in a unified way. It uses a novel SRNF representation

and an elastic metric that appropriately measures geodesic

distances between shapes while registering them. Incorporating

these important registration steps when comparing shapes helps

reduce errors due to additional pre-processing and registration

steps that are routinely employed in existing shape analysis

approaches and helps enhance the accuracy of the proposed

method.

Another important feature of the proposed approach is that

it registers shapes by pairwise deformations and comparisons,

and it does not need a standardized brain template for

registration and shape analysis. This is a useful feature that is not

present in existing shape analysis methods that usually employ

a standardized brain template for registration and subsequent

shape analysis (for example, Klein et al., 2009). In addition, the

proposed approach is able to compute a standardized template

that represents the average shape of the sample of images in

the data via the Karcher mean, and is further able to provide

confidence intervals around this Karcher mean that provides

measures of uncertainty corresponding to the brain shapes in

the population.

Our analysis of the MRI neuroimaging data for trauma-

exposed participants illustrated that the proposed approach was

able to capture more than 95% of the variability in subcortical

shapes using a moderate number of principal components,

whereas a considerably higher number of components were

needed to capture similar levels of variability under other

alternate widespread shape analysis methods. We conclude

therefore that the elastic shape analysis comprises a more

parsimonious characterization of the shape of subcortical brain

regions. This provides a benefit for a number of modeling

techniques that would benefit from sparser representation of the

neural features of interest.

These principal components were then used as shape

features to predict continuous clinical measures in PTSD in
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FIGURE 10

(A) Shape deformation along the most significant principal

components on PTSD symptom scale. The surfaces to the left

have less severe or no PTSD symptoms, and the surfaces to the

right have more severe PTSD symptoms. (B) Shape deformation

along the most significant principal components on childhood

traumatic experience inventory. The surfaces to the left have less

or no childhood traumatic experience, and the surfaces to the

right have more childhood traumatic experience. Color indicates

the small patch’s relative shape di�erence along the direction.

conjunction with additional exposure variables such as trauma

and their interactions. This joint analysis is a significant

advantage over the other shape analysis methods, where such

interactions are challenging to include because of an inflated

number of model parameters. The predictive analysis yielded

high adjusted R2 values that were considerably higher than what

is typically observed in the psychiatric neuroimaging literature.

We were able to explain a unique 29% of the variance in

PTSD symptom severity using the principal scores, above and

beyond effects of age or depressive symptoms. In contrast, large

collaborative meta-analyses of PTSD neuroimaging biomarkers

find small effect sizes ranging from d = 0.06 − 0.17 across

subcortical volumes, major white matter tracts, and regional

cortical thickness (Logue et al., 2018; Dennis et al., 2019; Wang

et al., 2020), and are often not able to co-vary for potential

comorbid conditions.

Furthermore, in comparison with the other medical shape

analysis approaches, elastic shape analysis produced increases

TABLE 4 Comparison: adjusted R
2 values for models under four

methods.

Model no. Vertex- SPHARM- ShapeWorks Elastic

wise (%) PDM (%) (%) shape (%)

1 58.96 59.41 50.92 63.80

2 46.55 40.69 34.34 48.26

3 18.99 18.99 18.99 18.99

4 23.32 31.20 24.23 31.23

5 55.63 54.20 23.97 69.66

6 24.35 24.37 32.92 38.46

7 10.97 10.97 10.97 10.97

8 18.10 22.52 28.09 29.25

The bold values indicate highlights for the results of the article.

in sensitivity for the association with PTSD symptoms and

the association with childhood trauma exposure. The current

findings suggest that these minor effects may arise in part from

methodological issues with signal detection and precision in

post-acquisition analysis of the images. This is encouraging

and suggests that precision psychiatric biomarkers may become

more feasible and translatable with additional development of

analytic tools for characterizing brain structural alterations.

We must also acknowledge, however, the major role that

heterogeneity in patient populations and symptom presentation

play in moderating effect sizes in PTSD. We conjecture that

the increased sensitivity observed under elastic shape analysis is

due to the incorporation of accurate shape features (principal

components), along with the subsequent capacity to incorporate

supplementary variables and their interactions in our analysis.

We identified an association between PTSD symptom

severity and complex alterations in the hippocampus, amygdala,

and putamen. With increasing PTSD symptom severity, the left

hippocampus showed shrinkage of the medial wall of the head

as well as lateral aspects of the tail, producing a more curved

body shape. Although elastic shape analysis is not designed to

investigate specific subfields of the hippocampus, this could be

consistent with the location of CA1 and/or subiculum along the

longitudinal axis of the hippocampus, consistent with prior work

(Chen et al., 2018; Bae et al., 2020). The left amygdala showed an

indentation in superior aspects located near central subnuclei.

This differs from prior literature in male veterans showing either

no shape differences (Bae et al., 2020), or larger central and

medial nuclei (Klaming et al., 2019; Morey et al., 2020). In

contrast, our study was conducted in women exposed to civilian

traumas such as interpersonal violence. Lastly, the left putamen

showed greater concavity with thinning and sharpening of the

medial end, near the nucleus accumbens. The link with brain

regions involved in motivation and reward is interesting given

the affective andmotivational blunting observed in the numbing

symptoms of PTSD, although striatal morphology has received

very little attention in studies of trauma and PTSD.
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The utility of the principal components as shape features are

provided via a Matlab GUI interactive tool that enables one to

visualize how the brain shape changes as the first few principal

components are varied (provided in Supplementary material).

Such a tool provides a novel way to visualize changes in the

brain shape that is expected to have an important impact for

investigators.

5. Conclusions

This study uses the elastic shape analysis to compute

shape summaries (mean, covariance, PCA) of subcortical data

from the Grady Trauma Project (GTP). Having obtained PCA-

based low-dimensional representation of shapes, we build

regression models to predict PTSD clinical measures that use

shapes of hippocampus, amygdala, and putamen as predictors

and have considerably great predictive power. Furthermore,

we localize and visualize the subcortical shape deformations

related to change in PTSD severity. This tool can also

provide physicians and clinicians a novel way to visualize

localized changes or deformations in the brain anatomy for

statistically significant shape features or principal components.

Prospective studies can be carried out in larger sample/data

sizes and involving additional subcortical structures to improve

predictions of PTSD clinical measures. In addition, some more

computationally efficient algorithms can improve the proposed

approach.
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