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Özgün Babur,7 Theodore P. Braun,1,2,6 and Emek Demir1,2,4,8,10,*
SUMMARY

Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detec-
tion of aberrant transcription factor activity is important to understand disease pathogenesis. We have
developed Priori, a method to predict transcription factor activity from RNA sequencing data. Priori
has two key advantages over existing methods. First, Priori utilizes literature-supported regulatory infor-
mation to identify transcription factor-target gene relationships. It then applies linear models to deter-
mine the impact of transcription factor regulation on the expression of its target genes. Second, results
from a third-party benchmarking pipeline reveals that Priori detects aberrant activity from 124 single-
gene perturbation experiments with higher sensitivity and specificity than 11 other methods. We applied
Priori and other top-performing methods to predict transcription factor activity from two large primary
patient datasets. Our work demonstrates that Priori uniquely discovered significant determinants of sur-
vival in breast cancer and identified mediators of drug response in leukemia.

INTRODUCTION

The coordinated expression and activity of transcription factors are fundamental mechanisms in establishing and maintaining cell identity

and function. Transcription factors bind to cis-regulatory DNA sequences, including promoters and enhancers, and modulate gene tran-

scription.1,2 Dysregulation of these normal transcription factor functions frequently contributes to the development of a pathogenic cell

phenotype.3,4 Abnormal transcription factor activity can result from mutations in the putative cis-regulatory DNA binding sequences or in

the transcription factors themselves. Recent studies have highlighted the importance of aberrant expression of pathogenetic transcription

factors as drivers of disease.4 For example, MYC, which is important for cellular growth and proliferation, is the most frequently amplified

oncogene. Elevated levels of MYC has been shown to promote tumorigenesis in a variety of tissue types.4 In tumor cells expressing high

levels of MYC, the transcription factor accumulates in cis-regulatory regions of genes associated with cellular proliferation and growth,

resulting in transcriptional amplification of MYC’s gene regulatory network and, subsequently, abnormal cellular proliferation.5,6 There-

fore, detection of abnormal transcription factor activity is valuable for better understanding the mechanisms that underly disease

pathogenesis.

Gene expression profiling, including RNA sequencing (RNA-seq), is commonly used to monitor dynamic changes in transcription factors

and their gene regulatory networks. Initial studies to infer transcription factor activity only used transcription factor gene expression as a proxy

for activity.7–9 However, this approach has several shortcomings. Gene expression is only an indirect measurement of protein activity due to

the complex mechanisms controlling protein synthesis and degradation.10–12 Additionally, feedback loops may alter the expression of tran-

scription factors in response to their regulatory activity.4,13–15 Reliable predictions of transcription factor activity, therefore, cannot be limited

to evaluating transcription factor expression alone.

An alternative approach to inferring transcription factor activity is to assess the expression of downstream target genes.7–9 This approach

has two major benefits. First, evaluation of hundreds or thousands of downstream targets instead of a single transcription factor likely im-

proves the prediction robustness. While some of these targets may be context-specific, analyzing them in aggregate likely improves the pre-

diction generalizability across many contexts. Second, as target gene expression is downstream of transcription factor control, these
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signatures are expected to reflect the actual transcriptional impactmore accurately. Therefore, accounting for the downstream impact of tran-

scription factors on its gene regulatory networks is likely important for activity inference.

Multiple methods have been developed to quantify transcription factor activity from gene expression data. These approaches can be

grouped based on how they select gene expression features. Methods like Univariate Linear Model (ULM) and Multivariate Linear Model

(MLM) use every gene in a dataset, nominating transcription factors as a covariate that best estimates the expression of all other genes.16

However, these methods develop activity signatures using genes that may not have a true biological relationship to the transcription factor

of interest. Gene set approaches like Over-Representation Analysis (ORA), Fast Gene Set Enrichment (FGSEA), Gene Set Variation Analysis

(GVSA), and AUCell infer activity using sets of published transcription factor target genes or target genes curated by experts.17–20 While gene

set methodologies are simple and popular, they are susceptible to the quality and comparability of gene set signatures.21 Network inference

approaches, including Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe), infer gene regulatory networks based on

the covariance of transcription factors and its putative targets.22,23 This process is not completely unsupervised, however, as ARACNe requires

a user-defined list of transcription factors in order to infer gene regulatory networks.22,23 The same group that developed ARACNe also

created Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER) to infer transcription factor activity from ARACNe gene

expression signatures.24 The challenge with these approaches is deconvoluting combinatorial regulation, where the expression of a target

gene is controlled by multiple transcription factors. While some of these methods, including VIPER, have an option to correct for this, it re-

mains difficult to infer transcriptional networks as there are many possible solutions that can explain the underlying data.7,25 While these

methods deploy various techniques to generate activity scores using the expression of downstream target genes, most do not select their

target gene features from literature-supported transcriptional relationships.

Recent studies have highlighted that grounding predictions using transcription factor activity methods remains challenging.25–29 A

rigorous evaluation of widely used transcription factor algorithms demonstrated that most methods do not robustly detect perturbed tran-

scription factors.20 Despite this, there are precision medicine clinical studies that use inferred transcription activity from bulk RNA-seq as a

marker to guide clinical decisions. While there is an increasing number of single cell and spatial -omic modalities available to clinical re-

searchers, these studies as well as many larger cohorts and clinical trials most commonly use markers identified from bulk sequencing of

RNA or DNA. Therefore, it is critical to develop methods that can robustly detect aberrant transcription factor activity from primary patient

bulk RNA-seq data.

Here, we propose an approach that uses prior, peer-reviewed biological information to infer transcription factor activity called Priori. Our

method has twomajor advantages over the existingmethods. First, Priori identifies transcription factor target genes using carefully extracted

transcriptional regulatory networks from Pathway Commons.30,31 This resource continually collects information on biological pathways

including molecular interactions, signaling pathways, regulatory networks, and DNA binding. Pathway Commons currently contains data

from 22 high-quality databases with over 5,700 detailed pathways and 2.4 million interactions. Using the transcriptional relationships from

Pathway Commons, Priori fits linear models to the expression of transcription factors and their target genes. These models allow Priori to

understand the impact and direction of transcription factor regulation on its known target genes. Second, comparison with a third-party

benchmarking workflow reveals that Priori detects aberrant transcription factor activity from 124 gene perturbation experiments with higher

sensitivity and specificity than 11 other methods. We applied Priori and three other methods nominated from the benchmarking workflow to

generate activity scores from two large primary patient datasets, TCGA-BRCA and Beat AML.We demonstrate that Priori can be deployed to

discover significant predictors of survival in breast cancer as well as identify mediators of drug response in leukemia from primary patient

samples that were not robustly detected using the other methods.
RESULTS

Priori uses prior biological information to infer transcription factor activity

For each transcription factor in an RNA-seq dataset, Priori generates an activity score (Figure 1A). The activity score is a weighted, aggregate

statistic that reflects the impact and direction of transcription factor regulation on its target genes. Priori first identifies the known target genes

for each transcription factor in an RNA-seq dataset from Pathway Commons (or another network provided by the user).30,31 Priori then assigns

weights to each target gene by correlating the target gene expression to its transcription factor (Equation 5). To identify the targets that are

most impacted by transcription factor regulation, Priori separates the up- and down-regulated genes by their transcription factor-target gene

weights and ranks their expression (Equation 6). These ranks are subsequently scaled bymultiplying it with the transcription factor-target gene

weights. The activity score for each transcription factor is then calculated by summing the weighted ranks (Equation 7). With this single-

component model, researchers can use Priori to predict transcription factor activity from RNA-seq data.

In order to compare how well Priori detects aberrant transcription factor activity to other methods, we used a third-party benchmarking

workflow called decoupleR (Figure 1B).20 The decoupleR workflow facilitated an unbiased, common evaluation scheme to determine how

often eachmethod correctly identified transcription factors that have been knocked-down or over-expressed from RNA-seq data, resembling

the pathologic disruption of normal transcription factor regulation.32 Using this workflow, we generated transcription factor activity scores for

16 methods, including Priori, using the default parameters (Table 1). Several of these methods were developed by the authors of the decou-

pleR workflow, including the standard, normalized (Norm), and corrected (Corr) versions of Weighted Mean (WMEAN), Weighted Sum

(WSUM), Univariate Decision Tree (UDT), and Multivariate Decision Trees (MDT).20 These authors also developed a normalized version of

FGSEA. For methods that use prior information, we generated activity scores using the Pathway Commons transcriptional relationships.

We ranked the transcription factor activity scores for each experiment and compared the ranks of perturbed and unperturbed transcription
2 iScience 27, 109124, March 15, 2024



Figure 1. Overview of the Priori methodology and benchmarking workflow

(A) Priori generates an activity score for each transcription factor in an RNA-seq dataset. Priori first extracts the downstream target genes for each transcription

factor from Pathway Commons. Priori then calculates weights for each target gene by correlating the expression of each transcription factor to its target genes.

Priori then ranks the absolute expression of all genes in the dataset and scales these ranks by the transcription factor-target gene weights. The summation of the

weighted target gene ranks is the transcription factor activity score.

(B) Schematic overview of the benchmarking workflow. We generated transcription factor activity scores for each method using normalized RNA-seq counts

following single-gene knockdown or over-expression. Priori, along with other methods that use prior information, generated activity scores with

transcriptional relationships from Pathway Commons. AUROC and AUPRC values were calculated for each down-sampling permutation. 100 down-sampling

permutations were performed to compare an equal number of perturbed and unperturbed genes.
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factors. We evaluated how often the perturbed transcription factor activity score was among the top activity scores in each experiment. The

authors of the decoupleR pipeline defined this threshold by the number of perturbed transcription factors in the dataset. Since the number of

unperturbed transcription factors vastly outnumbered the perturbed transcription factors, we implemented a down-sampling strategy. For

each down-sampling permutation, we calculated area under the precision recall curve (AUPRC) and receiver operating characteristic

(AUROC) metrics. The results of this third-party benchmarking workflow allowed us to objectively compare the sensitivity and specificity of

Priori to detect perturbed transcription factor activity to 11 other methods.

Priori identifies perturbed transcription factors with greater sensitivity and specificity than other methods

The decoupleR workflow evaluates transcription factor activity methods using a curated dataset from Holland et al.32 This dataset includes

RNA-seq data from 94 knockdown and 30 over-expression experiments of 62 different transcription factors (Table S1). Before using this data-

set to compare transcription factor activity methods, we wanted to evaluate whether transcription factor knockdown resulted in decreased

normalized expression and over-expression resulted in increased normalized expression. Moreover, since Priori and other methods use
iScience 27, 109124, March 15, 2024 3



Table 1. Transcription factor activity methods evaluated using the decoupleR benchmarking workflow

Feature

Selection Method Acronym Normalized Method Corrected Method Reference

All features Univariate Linear Model ULM – – Teschendorff and Wang

npj genomic medicine (2020)16

All features Multivariate Linear Model MLM – – Teschendorff and Wang

npj genomic medicine (2020)16

Gene set Over Representation Analysis ORA – – Badia-i-Mompel et al.

Bioinformatic Advances (2022)20

Gene set Fast Gene Set Enrichment FGSEA Norm FGSEA – Korotkevich et al. bioRxiv (2021)17

Gene set Gene Set Variation Analysis GVSA – – Hänzelmann et al.

BMC Bioinformatics (2013)18

Gene set AUCell – – – Aibar et al. Nature Methods (2017)19

Inferred networks Virtual Inference of Protein-activity

by Enriched Regulon analysis

VIPER – – Alvarez et al. Nature Genetics

(2016)24

Curated gene

networks

Weighted Mean WMEAN Norm WMEAN Corr WMEAN Badia-i-Mompel et al.

Bioinformatic Advances (2022)20

Curated gene

networks

Weighted Sum WSUM Norm WSUM Corr WSUM Badia-i-Mompel et al.

Bioinformatic Advances (2022)20

Curated gene

networks

Univariate Decision Tree UDT – – Badia-i-Mompel et al.

Bioinformatic Advances (2022)20

Curated gene

networks

Multivariate Decision Trees MDT – – Badia-i-Mompel et al.

Bioinformatic Advances (2022)20

ID: Norm = normalized; Corr = corrected.
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the transcription factor expression to generate activity scores, we wanted to understand the extent to which transcription factor expression

alone could predict gene perturbation status. To assess this, we compared the normalized expression of perturbed transcription factors to

unperturbed genes. We found that the normalized expression of knocked-down transcription factors was significantly less than unperturbed

genes (Figure S1A). While over-expressed transcription factors were associated with a higher normalized expression, it was not significantly

different than unperturbed genes (Figure S1B). This data indicates that while transcription factor expression is a reasonable indicator of gene

perturbation, other features are needed to confidently predict aberrant activity.

Using the decoupleR workflow, we generated activity scores for 16 transcription factor activity methods using RNA-seq data from the 124

gene perturbation experiments. To understand the patterns in predicted activity across the methods, we correlated the activity scores (Fig-

ure 2A). The Priori activity scores were dissimilar from the other methods, indicating that Priori identified a unique pattern of transcription

factor activity. To assess how well the methods detected perturbed transcription factors, we calculated AUPRC and AUROC metrics for

each down-sampling permutation (Figures 2B–2D; Table S2). Priori had a greater AUPRC and AUROC values than the other methods across

all experiments. ULM, Norm WMEAN, Norm WSUM, and VIPER were the next closest methods by AUPRC and AUROC. Collectively, these

experiments show that Priori detects perturbed transcription factors with greater sensitivity and specificity than other methods.

While our analyses showed that Priori can accurately identify perturbed transcription factors, we wanted to understand the extent to which

prior information from other datasets impacted its performance. Pathway Commons is one of several large databases that curates transcrip-

tional relationships. DoRothEA is a comprehensive resource, which assembles transcription factor-target gene relationships from ChIP-seq

peaks, inferred regulatory networks (including ARACNe), transcription factor binding motifs, and literature-curated resources.33 OmniPath,

on the other hand, integrates intra- and inter-cellular signaling networks in addition to transcriptional relationships from 100 different re-

sources, includingDoRothEA and Pathway Commons.34 To evaluate the impact of prior information on eachmethod, we used the decoupleR

workflow to generate activity scores using transcription factor-target gene interactions fromDoRothEAorOmniPath instead of Pathway Com-

mons. We used the default parameters for each method, including a lower limit of 15 downstream targets for the Priori analyses. We found

that in both instances, Priori had higher AUPRC and AUROC values than the other methods (Figures 2E, 2F, and S1C‒S1F; Tables S3 and S4).

Priori exhibited similar AUPRCandAUROCvalueswhen using transcriptional relationships fromDoRothEA,OmniPath, or PathwayCommons.

However, Priori had the highest mean AUPRC and AUROC values using the Pathway Commons transcriptional relationships. Our analyses

demonstrated that regardless of the prior transcriptional relationship information, Priori detected perturbed transcription factor activity

with improved sensitivity and specificity.

We evaluated how transcriptional relationships from Pathway Commons, DoRothEA, and.

OmniPath affected the performance of each method. However, these databases do not provide the appropriate information for methods

that were designed to generate activity scores from networks with signed edges weighted by likelihood, like VIPER. While decoupleR does
4 iScience 27, 109124, March 15, 2024
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Figure 2. Priori detects aberrant transcription factor activity with improved sensitivity and specificity

(A) Using the decoupleR workflow, transcription factor activity scores were generated using the perturbation dataset. Spearman correlation of the activity scores

for each method.

(B) Activity scores were generated using Pathway Commons transcriptional relationships. Mean AUPRC and AUROC values across the 100 down-sampling

permutations for each method.

(C and D) The distribution of (C) AUPRC and (D) AUROC values across the 100 down-sampling permutations from (B). Error bars represent the SEM.

(E and F) Activity scores were generated using (E) DoRothEA or (F) OmniPath transcriptional relationships. Mean AUPRC and AUROC values across the 100 down-

sampling permutations for each method.
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not allow for networks with signed edges, we wanted to understand how VIPER’s performance changed with ARACNe-generated networks

with likelihood-weighted edges.20 The authors of ARACNe have published cancer-type-specific networks trained on TCGA RNA-seq data-

sets.23 We identified the cancer types and organ sites associated with each cell line tested in the perturbation dataset (Figures S2A‒S2C;
Table S5). With decoupleR, we generated VIPER activity scores using any TCGA ARACNe network that was trained on a cancer type that

was also evaluated in the perturbation dataset. We observed that VIPER had greater AUPRC and AUROC values when using the transcrip-

tional relationships from Pathway Commons than those from the TCGAARACNe networks (Figure S2D). ARACNe can also be used to reverse

engineer gene regulatory networks from an RNA-seq dataset.23 Using the new implementation of ARACNe, ARACNe-AP, we inferred tran-

scriptional relationships using the perturbation RNA-seq data. We observed improved AUPRC and AUROC values when VIPER used

ARACNe-AP transcriptional relationships as prior information (Figure S2E). However, these AUPRC and AUROC values were still not greater

than Priori using transcriptional relationships from Pathway Commons.

Priori’s predictions are robust to noise

We demonstrated that Priori detects perturbed transcription factors with improved sensitivity and specificity, particularly when it used

Pathway Commons transcriptional relationships as prior information. However, we wanted to understand how robust these predictions

are to noise. For methods that use prior information, the major sources of noise are introduced in the RNA-seq data and the prior tran-

scriptional relationships. First, to evaluate the effect of noisy gene expression data, we introduced increasing amounts of zero-centered,

Gaussian-distributed noise to the Holland et al. perturbation dataset. We evaluated the accuracy of perturbed transcription factor predic-

tions using the decoupleR pipeline as described above. We observed a drop in AUPRC and AUROC in most methods when more than one

standard deviation of gaussian-centered noise was introduced (Figures S3A and S3B; Table S6). Notably, Priori could still accurately iden-

tify perturbed transcription factors even when five standard deviations of noise was added. Second, to understand the impact of noisy prior

information, we gradually removed the number of transcription factor-target gene relationships from the prior Pathway Commons

network. We observed that Priori and other methods that use prior information had similar AUPRC and AUROC values as long as 20%

of the network was retained (Figures S3C and S3D; Table S6). It was unclear, however, whether this pattern was due to the diminished num-

ber of transcriptional relationships or to the masking of true relationships. To test this, we randomized the target genes in the Pathway

Commons by sampling with replacement any feature in the gene expression dataset. We observed a drop in prediction accuracy when

more than 60% of the target genes were randomized (Figures S3E and S3F; Table S6). These analyses demonstrate that Priori is robust

to artificial noise introduced to the gene expression data and can accurately identify perturbed transcription factors as long as 60% of

the Pathway Commons network is retained.

Priori’s improved performance is due to evaluating the direction of transcriptional regulation

We evaluated how Priori’s prediction accuracy was affected by artificial noise. However, it was unclear what enabled Priori to detect aberrant

activity better than other methods. We previously demonstrated that transcription factor expression is a reasonable indicator of gene pertur-

bation. We wanted to understand the extent to which assessment of transcription factor expression enabled Priori to detect perturbed tran-

scription factors. We designed a variant of Priori that only uses transcription factor expression to infer transcription factor activity (Figure 3A).

Like Priori, this method first identifies known transcription factors in an RNA-seq dataset from Pathway Commons. While this alternative

method also deploys rank-based analyses, the activity score is the normalized rank of the expression of a given transcription factor relative

to others in a dataset (Equation 8). We used the decoupleR benchmarking pipeline to evaluate howwell this alternative method detects aber-

rant transcription factor activity using known transcription factors from Pathway Commons. While this alternative method had a higher

AUROC and AUPRC than the other methods, Priori still detected perturbed transcription factors with higher sensitivity and specificity (Fig-

ure 3B). These data imply that while assessment of transcription factor expression is important for detection of aberrant activity, performance

is improved when target gene expression is evaluated as well.

While PathwayCommons does not provide signed relationships, we designed Priori to infer the impact and direction of transcription factor

regulation on its target genes. Priori correlates the expression of transcription factors and their known target genes. Priori subsequently as-

signs the impact and direction of transcriptional regulation as the sign and coefficient of the Spearman correlation, respectively. Using the

sign of the Spearman correlation, we observed that Priori inferred 2,507 more significant up-regulated targets than down-regulated target

genes in the perturbation dataset (Figure 3C). Using the coefficient of the Spearman correlation, we observed that Priori predicted that tran-

scription factors had a significantly greater impact on its up-regulated targets than its down-regulated target genes (Figure 3D). These an-

alyses suggest the relevance of evaluating the regulatory direction of transcription factors on their target genes.
6 iScience 27, 109124, March 15, 2024
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Figure 3. Evaluation of the direction and impact of transcriptional regulation is critical for Priori to detect aberrant transcription factor activity

(A) Schematic showing how transcription factor activity scores were generated using transcription factor expression only (in contrast to both transcription factor

and target gene expression as shown in Figure 1A). The alternative method first identified transcription factors in the perturbation dataset from Pathway

Commons. The method then ranks the transcription factors by expression and reports the normalized rank as the activity score.

(B) Activity scores were generated using the method outlined in (A). Transcriptional relationships from Pathway Commons were used as prior information. Mean

AUPRC and AUROC values across the 100 down-sampling permutations. Mean AUPRC and AUROC values from the methods in Figure 2B are also shown.

(C) Priori identified transcription factor target genes in the perturbation dataset using Pathway Commons transcriptional relationships. The expression of

transcription factors and their target genes were evaluated using Spearman correlation. Statistical significance was determined using the Spearman

correlation p value with an FDR post-test correction. The Spearman correlation coefficient was used to determine down-regulated (R2 < 0) and up-regulated

target genes (R2 > 0).

(D) Absolute Spearman correlation coefficient of the expression of transcription factors and their down-regulated or up-regulated target genes. Statistical

significance was determined by a two-sided Student’s t test. Error bars represent the SEM.

(E) Schematic showing how Priori was altered to assess only the impact of transcriptional regulation (in contrast to both direction and impact of regulation as

shown in Figure 1A).

(F) Using the decoupleR workflow, transcription factor activity scores were generated using the perturbation dataset. Spearman correlation of the activity scores

for each method.

(G) Activity scores were generated using the method outlined in (E). Transcriptional relationships from Pathway Commons were used as prior information. Mean

AUPRC and AUROC values across the 100 down-sampling permutations for Priori using only the impact of transcriptional relationships. Mean AUPRC and

AUROC values from the methods in Figure 2B are also shown.

(H and I) Priori activity scores using absolute and relative transcriptional relationships were z-transformed. Distribution of scaled scores for perturbed transcription

factors across all (H) knockdown and (I) over-expression experiments. Statistical significance was determined by a two-sided Student’s t test. Error bars represent

the SEM.
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To understand how assessment of the direction of transcriptional regulation is important for detecting aberrant transcription factor activ-

ity, we created another variant of Priori that only evaluates the absolute impact of transcriptional regulation (Figure 3E). Like Priori, thismethod

deploys a rank-based analysis to evaluate the expression of transcription factors and their target genes (Equation 9). However, this alternative

method does not delineate target genes by their direction of transcriptional regulation, which is indicated by the sign of the Spearman cor-

relation. We used the decoupleR pipeline to generate activity scores using the Pathway Commons transcriptional relationships as prior infor-

mation. These activity scores were highly dissimilar to the scores generated by Priori that evaluated both the direction and impact of tran-

scriptional regulation (R2 = 0.013; Figure 3F). Moreover, when Priori only uses the impact of transcriptional regulation to detect perturbed

transcription factors, its AUPRC and AUROC values are less than when it uses both the direction and impact (Figure 3G). Accounting for di-

rection of transcriptional regulation likely allows Priori to detect knocked-down and over-expressed transcription factors. We observed an

expected decrease in scaled scores across all knockdown experiments when Priori evaluates both the direction and impact of transcriptional

regulation (Figure 3H). Scaled scores less than zero indicate that the activity of a transcription factor is down-regulated compared to all other

perturbed and unperturbed transcription factors in the dataset (and vice versa). These scaled scores are significantly less than the impact-only

method. Consistently, Priori predicted an expected increase in activity to over-expressed transcription factors (Figure 3I). While these scores

are not statistically different from the scores from the impact-only method, the mean predicted activity from the impact-only scores was less

than zero.Overall, these analyses demonstrate that assessment of the direction and impact of transcriptional regulation allows Priori to detect

aberrant transcription factor activity with improved sensitivity and specificity.

FOXA1 transcription factor activity is a significant determinant of survival among patients with invasive breast ductal

carcinoma

Since wedemonstrated that Priori identifies perturbed regulators with greater sensitivity and specificity than othermethods, we sought to deter-

mine whether Priori could be used to understand transcription factor drivers of disease. We used Priori to generate transcription factor activity

scores for 637 patients with invasive breast ductal carcinoma (BIDC) from the TCGA-BRCA cohort.35 To understand the impact of prior informa-

tion on these scores, we generated scores using transcriptional relationships not only from Pathway Commons, but from DoRothEA and Omni-

path as well. In addition, we compared these predicted scores to activity scores from the three top methods identified in the decoupleR bench-

mark analysis: VIPER, ORA, and Norm WMEAN. Regardless of the prior information, the Priori scores from these patients clustered by breast

cancer subtypes (Figures 4A andS4A‒S4C). Like in theHollandet al. perturbationdataset, weobservedmore up-regulated thandown-regulated

target genes (Figure S4D). However, we did not observe a clear separation of breast cancer subtypes when using activity scores from the other

methods (Figures S4E‒S4G). BIDC is classified into three molecular subtypes: luminal, HER2, and basal cancers.36–40 The most common types,

luminal andbasal breast cancers, aredistinguishedby hormone receptor expression. Luminal breast cancers express estrogen andprogesterone

receptors, whereas basal breast cancers do not. Unsupervised clustering of the Priori Pathway Commons scores revealed that the predicted ac-

tivity of transcription factors that regulate the expression of estrogen receptors (ESR1) and progesterone receptors (NR3C1) were decreased in

the basal breast cancer cluster (Cluster 2; Figure 4B). Moreover, Cluster 2 had decreased predictedGATA3 activity, which is critical to luminal cell

specification, as well as increased predicted MYC activity, which is consistent with previous studies.36,41–43 These analyses show that Priori tran-

scription factor activity scores delineated primary BIDC patients by their molecular subtype.

While the transcription factors associated with luminal and basal breast cancer are likely important in distinguishing BIDC patient samples

by their molecular subtype, the greatest difference in predicted Priori activity between the two clusters was FOXA1 (Figures 4C and 4D;
8 iScience 27, 109124, March 15, 2024



Figure 4. FOXA1 transcription factor activity is a significant determinant of survival for patients with BIDC

(A) Priori scores were generated from RNA-seq of 637 patients with BIDC. UMAP dimensional reduction and projection of Priori scores. Dots are colored by the

breast cancer molecular subtype.

(B) Unsupervised hierarchical clustering of Priori scores generated in (A).

(C) Mean absolute difference of Priori scores from patients in the clusters 1 and 2 defined in (B).

(D) Distribution of FOXA1 Priori scores among patients in clusters 1 and 2 defined in (B). Statistical significance was determined by a two-sided Student’s t test.

Error bars represent the SEM.

(E‒G) Kaplan-Meier survival analysis of patients grouped by (E) molecular subtype, (F) FOXA1 Priori scores, or (G) FOXA1 normalized gene expression counts.

Patients among the top 90% of Priori scores or counts were grouped into ‘‘High’’ and those in the bottom 10% were grouped into ‘‘Low’’. Statistical significance

was determined by a log rank Mantel-Cox test.

(H) Differential gene expression network enrichment between clusters defined in (B). Select significantly enriched nodes are shown.
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Table 2; Table S7). FOXA1 is a forkhead protein associated with mammary gland development. While the difference in FOXA1 activity was

significantly different between the patient clusters defined by the DoRothEA and OmniPath Priori scores, its activity was much less pro-

nounced between the clusters defined by the other methods (Figures S5A‒S5E; Table 2; Table S7). Evaluation of the greatest difference

in predicted activity between the other networks and methods nominated transcription factors other than FOXA1. While FOXA1 was the sec-

ond greatest difference in predicted activity between the Priori DoRothEA and OmniPath scores, these methods instead nominated ESR1

(Figures S5F and S5G). Notably, FOXA1 is a known regulator of ESR1.44 The other methods nominated different transcription factors,

including OR10H2 by VIPER, ACTL6A by ORA, and TGFb2 by NormWMEAN (Figures S5H‒S5J; Table 2; Table S7). Together, these analyses
iScience 27, 109124, March 15, 2024 9



Table 2. The top 5 differences in predicted transcription factor activity between BIDC primary patient sample clusters

Method Network Transcription factor Absolute difference in activity (Cluster 1 vs. 2)

Priori Pathway Commons FOXA1 2.382

ESR1 2.324

PAX2 2.235

GATA3 2.226

XBP1 2.173

Priori DoRothEA ESR1 2.209

FOXA1 2.099

GATA3 2.008

HOXB13 2.007

MYOD1 2.002

Priori OmniPath ESR1 2.279

FOXA1 2.271

GATA2 2.236

GATA3 2.199

TFAP2C 2.027

VIPER ARACNe BRCA OR10H2 3.2

PBRM1 3.136

SAP130 2.979

ELOB 2.79

ZIC2 2.783

ORA Pathway Commons ACTL6A 1.394

RUVBL1 1.394

RUVBL2 1.394

KAT5 1.154

TRRAP 1.048

Norm WMEAN Pathway Commons TGFB2 62.63

RHOA 48.07

EDNRA 46.81

PTHLH 32.89

LEP 22.77
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show that we were able nominate drivers of basal and luminal breast cancer with Priori, identifying that luminal cancer samples are associated

with high predicted FOXA1 activity.

To understand the clinical impact of transcription factor activity in breast cancer, weevaluated survival differences among thepatients in the

BIDC cohort. Patients grouped by their molecular subtypes demonstrated no significant difference in survival (Figure 4E). When we grouped

patients by predicted FOXA1 Priori activity scores, patients with low FOXA1 activity had a significantly decreased chance of survival, which is

consistent with previous reports (Figure 4F).45Wedid not observe a survival differencewhenpatients were instead groupedby FOXA1 expres-

sionorby theFOXA1activity scoresgeneratedbyPriori usingDoRothEAorOmniPathprior networksor theothermethods (Figures 4GandS6).

Additionally, we did not see a survival difference in the transcription factor drivers nominated by Priori usingDoRothEA orOmniPath prior net-

works or the other methods (Figures S7A‒S7E). ORA predicted that ACTL6A activity was either 1.91 or 3.30 in the vast majority of samples

(52.7% and 42.7%, respectively; Figure S7F). As a result, normal quantiles could not be calculated, so all samples were included in the survival

analysis. These data suggest that high FOXA1 transcription factor activity is protective of survival in BIDC.

In order to understand how FOXA1 activity may mediate survival in BIDC, we generated a differential gene regulatory network between the

two patient clusters identified by Priori using Pathway Commons transcriptional relationships (Figure 4H).30,31,46 This analysis suggests two mo-

lecular mechanisms that distinguish luminal samples in Cluster 1 and basal samples in Cluster 2. First, we observed down-regulation of a positive

feedback loopofESR1, FOXA1, XBP1, NF1, and FOS in the basal Cluster 2 samples (Table S8).47 This is consistentwith basal breast cancer, which

is characterized by repression of estrogen receptor encoded by ESR1. Additionally, this analysis also shows thatMYC downregulates FOXA1 cell

cycle target genes,CCND1 andCDKN1B, in basal breast cancer.48 Downregulation of cell proliferation is a knownmechanism of chemotherapy

resistance in basal breast cancer.49 These analyses nominate putative targets in the FOXA1 network that may regulate survival in BIDC.
10 iScience 27, 109124, March 15, 2024



Figure 5. FOXO1 is a critical mediator of response to venetoclax in AML

(A) Priori scores generated from RNA-seq of 859 patients with AML. Spearman correlation of Priori scores and ex vivo drug response AUC data.

(B and C) Spearman correlation of ranked venetoclax AUC and ranked (B) FOXO1 Priori scores or (C) FOXO1 normalized counts. Statistical significance was

determined using the Spearman correlation p value with an FDR post-test correction.

(D and E) THP-1 cells were transduced with lentiviral particles harboring expression cassettes for hSpCas9 and a non-targeting or FOXO1 guide RNA. Cells were

cultured for 3 days along a 7-point curve with venetoclax. Cell viability was assessed by CellTiter Aqueous colorimetric assay. ns = not significant; * = p < 0.05, ** =

p < 0.01, *** = p < 0.001, **** = p < 0.0001.
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FOXO1 transcription factor activity mediates venetoclax resistance in acute myeloid leukemia

Aberrant transcription factor activity is also an important regulator of drug resistance in multiple tumor types.3,50–53 As we have shown that

Priori nominates transcription factor regulation associated with breast cancer survival, we wanted to understand whether Priori could also

be used to identify mediators of drug sensitivity. Since ex vivo drug screening data are not available in the TCGA datasets, we calculated

Priori scores for 859 patients with acutemyeloid leukemia (AML) from the Beat AML cohort.54,55 This dataset provides paired baseline RNA-

seq and ex vivo drug sensitivity data. Once again, we generated activity scores with Priori using transcriptional relationships from Pathway

Commons, DoRothEA, and Omnipath as well three of the top methods from the decoupleR benchmark analysis (VIPER, ORA, and Norm

WMEAN). Consistent with the Holland et al. perturbation and TCGA-BRCA datasets, we observed more up-regulated than down-regu-

lated target genes (Figure S8A). To nominate transcription factors mediators of drug sensitivity, we correlated predicted transcription fac-

tor activity scores from eachmethod to drug response.We found 11,075 significant inhibitor-transcription factor activity relationships using

Priori, 2,934 of which were also identified when using Priori scores that were generated from DoRothEA or OmniPath prior networks

(Figures 5A and S8B; Table S9). In contrast, only 192 of Priori Pathway Commons relationships were identified by VIPER, ORA, and

Norm WMEAN (Figure S8C; Table S9). VIPER likely identified the most significant inhibitor-transcription factor activity relationships

(29,682) because it generated scores for more transcription factors than the other methods (1,363; Figure S8D). Among the strongest cor-

relations from Priori was predicted FOXO1 transcription factor activity with venetoclax resistance (R2 = �0.5895; Figure 5B). This relation-

ship was the 33rd, 16th, and 10th highest correlations among Priori scores that used Pathway Commons, DoRothEA, or OmniPath as prior

networks, respectively (Figures S8E and S8F). Venetoclax resistance is more highly correlated with predicted FOXO1 activity than FOXO1

expression alone (R2 = �0.499; Figure 5C). Notably, while FOXO1 Norm WMEAN activity scores were directly proportional to venetoclax

resistance, the VIPER and ORA activity scores were anti-correlated to venetoclax resistance (Figures S8G‒S8I). These findings nominate

FOXO1 activity as a mediator of venetoclax activity in AML.

Venetoclax induces cancer cell death by restoration of intrinsic mitochondrial apoptosis. Venetoclax blocks BCL2 from sequestering fac-

tors that activate pro-apoptotic BCL2 family proteins, such as BAX.56 In mantle cell lymphoma (MCL), it has been reported that genomic re-

gions of BAX and multiple other pro-apoptotic BCL2 family proteins are bound by FOXO1.57 The authors further demonstrated that
iScience 27, 109124, March 15, 2024 11
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disruption of FOXO1 activity sensitizedMCL cell lines to venetoclax. However, the relationship between FOXO1 activity and venetoclax resis-

tance has not been investigated in AML. Prior work has shown that monocytic AML is intrinsically resistant to venetoclax-based therapy.58

Given the results fromour analysis of transcription factor activity in AMLpatients, wewanted to understand the extent to which FOXO1 knock-

down could sensitize monocytic AML to venetoclax treatment. We used CRISPR-Cas9 to knock-out FOXO1 in THP-1 cells, a cell line model of

monocytic leukemia (Figure S9). Both FOXO1 CRISPR guides significantly increased venetoclax sensitivity in this cell line model of monocytic

AML, suggesting FOXO1 is an important mediator of venetoclax sensitivity (Figures 5D and 5E). These findings were consistent with the pre-

dictions from Priori (regardless of prior network) and Norm WMEAN, demonstrating how Priori can be used to detect transcription factor

mediators of drug resistance.

DISCUSSION

Wehave developed Priori, a computational algorithm that infers transcription factor activity using prior biological knowledge. The results from a

third-party, unbiased benchmarking workflow demonstrate that Priori detects perturbed transcription factors with higher sensitivity and speci-

ficity than 11 other methods. Our analyses show that while accounting for transcription factor expression aids Priori in detecting perturbed tran-

scription factors, Priori’s improved performance over othermethods is likely due to assessment of the direction and impact of transcription factor

regulation on their target genes. Using Priori, we identified FOXA1 activity as a regulator of survival in BIDC and nominated important down-

stream targets that may contribute to this survival difference.45 Importantly, there was no significant survival difference among patients that

were stratified using FOXA1 scores generated by VIPER, ORA, Norm WMEAN, or even Priori that used DoRothEA or OmniPath as prior infor-

mation. Moreover, we used Priori to nominate transcription factor regulators of drug sensitivity in AML.We found that predicted FOXO1 activity

by Priori is highly associated with venetoclax resistance. We validated these findings in a cell line model of monocytic AML, which is resistant to

venetoclax.58 While Priori (regardless of prior information) and Norm WMEAN predicted that FOXO1 activity was associated with venetoclax

resistance, VIPER and ORA FOXO1 activity scores were significantly associated with venetoclax sensitivity.

Priori leverages the Pathway Commons resource to identify known gene regulatory networks in gene expression data. While using these

relationships enables Priori to ground its findings in peer-reviewed literature, thismay limit the discovery of novel transcriptional relationships.

Analyses from other groups suggest that prior-basedmethod tend to replicate prior information.59 Indeed, the analysis of BIDC patient sam-

ples revealed that Priori was able to identify known transcription factor drivers of BIDC from several biological datasets, including Pathway

Commons, DoRothEA, and OmniPath. Our findings also showed that Priori detected a relationship between FOXA1 activity and BIDC sur-

vival. While it has been shown that high FOXA1 expression is associated with improved outcomes in patients with estrogen receptor-positive

disease, these findings reveal a novel relationship between FOXA1 activity in estrogen receptor-positive and receptor-negative dis-

ease.45,60–62 Our analyses provide a novel mechanistic hypothesis that is ready for experimental investigation.

Pathway Commons integrates publicly available RNA, DNA, and protein data sourced from a variety of tissue types. However, Pathway

Commons is not designed to curate tissue-specific transcription factor gene regulatory networks. Cell context influences regulatory interac-

tions between transcription factors and their downstream target genes.4,63 The single-gene perturbation experiments, whose gene expres-

sion data we used to evaluate the transcription factor activity methods, were performed in numerous cell types. The small size of this dataset

precluded a definitive evaluation of tissue-context as a determinant of method performance. However, we designed Priori to allow re-

searchers to include their own regulatory networks for context-specific evaluation of their experiments. Overall, Priori should generate robust

predictions that are generalizable across many cellular contexts.

In our study, we used RNA-seq data from large clinical cohorts to evaluate Priori. While we demonstrated that Priori can be used to identify

determinants of survival and mediators of drug response in this context, more investigation is needed to understand Priori’s ability to predict

transcription factor activity from smaller scale experiments. Notably, in a different study, we have applied a preliminary version of Priori to

investigate the mechanism of combined FLT3 and LSD1 inhibition in FLT3-ITD AML.64 We used Priori to identify important determinants

of the drug combination response and showed that predicted activity of a putative drug combination target, MYC, decreased in six patient

samples. Since Priori scores are normalized across all samples analyzed within the same run, we expect that Priori has more power to identify

differences in transcription factor activity among larger patient cohorts. Researchers can contextualize Priori scores from smaller scale exper-

iments by generating scores from the large and small cohort RNA-seq data in the same run.Of course, this is only possible if the RNA-seq data

has been consistently normalized and batch effects have been mitigated. We encourage researchers to only compare Priori scores that have

been generated in the same run.

In conclusion, results from this study showed that our transcription factor activity method, Priori, detects perturbed transcription factors

with improved sensitivity and specificity over other commonly used methods. Using Priori, we found that predicted FOXA1 activity is a sig-

nificant determinant of survival in BIDC. We nominated putative FOXA1 targets that may be important for this survival difference. Lastly, we

found that predicted FOXO1 activity is highly correlated with venetoclax resistance. We validated these findings in vitro using cell line model

of AML that is intrinsically resistant to venetoclax.

Limitations of the study

The decoupleR benchmarking workflow facilitated a robust and unbiased comparison of numerous transcription factor activity methods.20

Employing the dataset curated by Holland et al., the workflow reported average AUROC and AUPRC values across all down-sampling

runs as well as the transcription factor activity scores generated for each run.32 However, the workflow did not report the positively identified

perturbed transcription factors for each run. Consequently, our ability to investigate the distinctive characteristics of experiments (e.g., cell
12 iScience 27, 109124, March 15, 2024
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type, functional genetic technique, perturbed transcription factor) that might have influenced each method’s predictions was constrained.

Further efforts are warranted to include these reporting metrics, enabling a more comprehensive understanding of the factors underlying

Priori’s proficiency in identifying perturbed transcription factor activity.
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auc.tsv

Database: https://doi.org/10.1101/2022.12.

16.520295

Original source: https://github.com/biodev/

beataml2.0_data/raw/main/beataml_

probit_curve_fits_v4_dbgap.txt

Software and algorithms

Priori This study Github: https://github.com/ohsu-comp-bio/

regulon-enrichment

https://doi.org/10.5281/zenodo.10553601

(Continued on next page)
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decoupleR version 2.0.0 (fork for this study) Badia-i-Mompel et al.20 Github: https://github.com/ohsu-comp-bio/

decoupleR

https://doi.org/10.5281/zenodo.10553605

decoupleRBench version 0.1.0 (fork for this

study)

Badia-i-Mompel et al.20 Github: https://github.com/ohsu-comp-bio/

decoupleRBench

https://doi.org/10.5281/zenodo.10553607

decoupleR workflow This study Github: https://github.com/ohsu-comp-bio/

decoupler_workflow

https://doi.org/10.5281/zenodo.10553605

Pathway Commons Rodchenkov et al.31 https://www.pathwaycommons.org/

Patterns Babur et al.65 https://code.google.com/archive/p/

biopax-pattern/

Univariate Linear Model (ULM) version 1.0.0 Teschendorff and Wang16 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-ulm.R

Multivariate Linear Model (MLM) version 1.0.0 Teschendorff and Wang16 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-mlm.R

Over Representation Analysis (ORA)

version 1.0.0

Badia-i-Mompel et al.20 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-ora.R

Fast Gene Set Enrichment (FGSEA)

version 1.20.0

Korotkevich et al.17 https://github.com/ctlab/fgsea/

Gene Set Variation Analysis (GVSA)

version 1.42.0

Hänzelmann et al.18 https://bioconductor.org/packages/

3.17/bioc/html/GSVA.html

AUCell version 1.16.0 Aibar et al.19 https://github.com/aertslab/AUCell

Virtual Inference of Protein-activity by Enriched

Regulon analysis (VIPER) version 1.28.0

Alvarez et al.24 https://www.bioconductor.org/

packages/release/bioc/html/viper.html

Weighted Mean (WMEAN) version 1.0.0 Badia-i-Mompel et al.20 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-wmean.R

Weighted Sum (WSUM) version 1.0.0 Badia-i-Mompel et al.20 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-wsum.R

Univariate Decision Tree (UDT) version 1.0.0 Badia-i-Mompel et al.20 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-udt.R

Multivariate Decision Trees (MDT) version 1.0.0 Badia-i-Mompel et al.20 https://github.com/ohsu-comp-bio/

decoupleR/blob/master/R/statistic-mdt.R

OmnipathR version 3.6.0 Turei et al.34 https://www.bioconductor.org/packages/

release/bioc/html/OmnipathR.html

dorothea version 1.10.0 Garcia-Alonso et al.33 https://bioconductor.org/packages/release/

data/experiment/html/dorothea.html

ARACNE-AP version 1.0 Lachmann et al.23 https://github.com/califano-lab/ARACNe-AP

arcane.networks version 1.18.0 Lachmann et al.23 https://bioconductor.org/packages/release/

data/experiment/html/aracne.networks.html

Seurat version 4.4.0 Hafemeister, Satija et al.66 https://github.com/satijalab/seurat

CausalPath version 1.8.0 Babur et al.46 https://github.com/PathwayAndDataAnalysis/

causalpath

Geneious Prime Dotmatics https://www.geneious.com/

ICE CRISPR Analysis Tool Synthego https://ice.synthego.com/#/

Experimental models: Cell lines

THP-1 ATCC Cat# TIB-202

Lenti-X 293T cells Clontech Cat# 632180

(Continued on next page)
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Chemicals, peptides, and recombinant proteins

RPMI 1640 Medium Gibco Cat# 11875093

HyClone Characterized FBS Cytiva Life Sciences Cat# SH30071.04

GlutaMAX Gibco Cat# 35050079

2-Mercaptoethanol Sigma Aldrich Cat# M6250

HighPrep PCR Clean-up System MagBio Genomics Cat# AC-60001

Recombinant DNA

FOXO1 gRNA in pLentiCRISPR v2

backbone (#1)

Genscript Sequence: GCTCGTCCCGCCGCAACGCG

FOXO1 gRNA in pLentiCRISPR v2

backbone (#2)

Genscript Sequence: ACAGGTTGCCCCACGCGTTG

Non-targeting pLentiCRISPR v2 Addgene Cat# 169795

psPAX2 Addgene Cat# 12260
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, EmekDemir (demire@ohsu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The sources of the datasets supporting the current study are presented in the key resources table and the method details section.
� All original and forked code have been deposited at GitHub and are publicly available as of the date of publication.
� Any additional information required to re-analyze the data reported in this paper or reproduce the results is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines

THP-1 cells (DSMZ) were cultured in RPMI (Gibco) supplemented with 10% fetal bovine serum (FBS, HyClone), 2 mM GlutaMAX (Gibco), 100

units/mL Penicillin, 100 mg/mL Streptomycin (Gibco), and 0.05mM2-Mercaphightoethanol (SigmaAldrich). Sex of THP-1 cells is male. All cells

were cultured at 5% CO2 and 37�C. Cell lines were tested monthly for mycoplasma contamination.

METHOD DETAILS

Priori algorithm

Pre-processing

Priori normalizes and scales the input RNA-seq data prior to downstream analysis. Priori first filters out counts with a standard deviation less

than 0.1 (controlled by the thresh_filter parameter). Priori linearly shifts the remaining counts by the minimum value and then log2 normalizes

them (xgene). Priori then scales the normalized counts (zgene) using one of four methods: ‘‘standard’’

zgene =

�
xgene � mX

�
sX

(Equation 1)

(where the mean and standard deviation of all normalized counts are indicated by mX and sX , respectively), ‘‘robust’’

zgene =

�
xgene � Xmedian

�
IQR

(Equation 2)

(where the median normalized counts is indicated by Xmedian and the interquartile range is indicated by IQR), ‘‘minmax’’

zgene =

�
xgene � Xmin

�
ðXmax � XminÞ (Equation 3)
18 iScience 27, 109124, March 15, 2024
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(where the minimum and maximum normalized counts are indicated by Xmin and Xmax , respectively), or ‘‘quant’’ where the normalized counts

are scaled using the inverse of the cumulative distribution function, F(x).67

FðxÞ =
1ffiffiffiffiffiffi
2p

p e� x2

2 (Equation 4)

Priori defaults to the ‘‘standard’’ scaling function.

Network

Priori uses knowngene regulatory networks to predict transcription factor activity fromRNA-seqdata. By default, Priori extracts transcriptional

relationships from the Pathway Commons database to generate activity scores.30,31 Users can also generate Priori scores using other gene

regulatory networks with the regulon parameter. The user-defined network must specify the transcription factor (Regulator) and their down-

stream target genes (Target). Pathway relationships in Pathway Commons are represented with the BioPAX language.30,68 BioPAX abstracts

major pathway relationships, including gene regulatory networks, into a standardized format. However, BioPAX representations cannot be

interpreted directly. In order to identify the gene regulatory networks encoded in Pathway Commons, we extracted transcription factors

and their primary targets using Patterns.65 Using the extracted network, Priori removes transcription factors with less than 15 downstream

targets. Users can control the number of targets with the regulon_size parameter.

Activity scores

Once the network is prepared, Priori generates an activity score for each transcription factor in an RNA-seq dataset. To calculate the activity

score for a transcription factor (TFi), Priori first calculates weights for its target genes (wTFi ;targetj ). The target gene weight is the product of the

F-statistic (FTFi ;targetj ) and the Spearman correlation coefficient (rTFi ;targetj ) of the transcription factor TFi and its target gene targetj expression:

wTFi ;targetj = FTFi ;targetj � rTFi ;targetj wTFi ;targetj =
ðzTFi � mTFsÞ �

�
ztargetj � mtargets

�
sTFi � stargets

�
cov

�
rTFi ; rtargetj

�
srTFi

� srtargetj

(Equation 5)

where i represents the range of transcription factors in a dataset, j represents the range of target genes for a given transcription factor TFi,

and r represents the rank of the scaled counts relative to all features in the dataset. The non-negative, log2-normalized counts are used to

calculate the F-statistic.

Priori first uses the transcription factor-target gene weights to determine the direction of regulation. Priori defines k down-regulated tar-

gets among all j target genes as those with wTFi ;targetj < 0. Priori also identifies l up-regulated targets among all j target genes as those with

wTFi ;targetj > 0. Priori then ranks the scaled target counts for each transcription factor grouped by their direction of regulation (rtargetj ;targetsk or

rtargetj ;targetsl ). Priori weighs the ranks of the scaled counts using the target gene weight wTFi ;targetj :

r 0targetj ;targetsk = wTFi ;targetj � rtargetj ;targetsk
r 0targetj ;targetsl = wTFi ;targetj � rtargetj ;targetsl (Equation 6)

The resulting activity score for a given transcription factor (ActivityTFi ) is the summation of the weighted ranks:

ActivityTFi = � 1

 Xdown� regulated

k

r 0targetj ;targetsk

!
+

 Xup� regulated

l

r 0targetj ;targetsl

!
(Equation 7)

where downregulated genes are scaled by�1 prior to summation. Finally, the activity scores for each transcription factor are z-transformed

relative to all other transcription factors and then again to all other samples in the dataset.
Alternative method: Evaluation of transcription factor expression only

We wanted to understand the extent to which assessment of transcription factor expression enabled Priori to detect perturbed transcription

factors. We designed an alternative method that only uses the transcription factor expression to infer transcription factor activity. To infer the

activity for a transcription factor TFi, this alternative method first ranks the transcription factor scaled counts relative to other transcription

factors in the dataset, rTFi ;TFs. The metho then scales these ranks by the total number of transcription factors, nTF , and normalizes them using

a normal distribution:

rTFi =
1ffiffiffiffiffiffi
2p

p e�

rTFi ;TFs
nTF+1

2

2 (Equation 8)
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Alternative method: Impact of transcriptional regulation only

We wanted to understand the extent to which assessment of transcriptional regulation on target genes enabled Priori to detect perturbed

transcription factors. We designed an alternative method that only uses the impact of transcriptional regulation to infer transcription factor

activity. The alternative method uses the same values of the weighted ranks (r 0targetj ;targetsk or r
0
targetj ;targetsl

) as calculated above. However, the

resulting activity score for a given transcription factor (ActivityTFi ) is the summation of the weighted ranks, but the down-regulated genes are

not scaled by �1 prior to summation:

ActivityTFi =

 Xdown� regulated

k

r 0targetj ;targetsk

!
+

 Xup� regulated

l

r 0targetj ;targetsl

!
(Equation 9)

The activity scores for each transcription factor are z-transformed relative to all other transcription factors and then again to all other

samples in the dataset.
Benchmarking workflow

Pre-processing

The decoupleR benchmarking workflow has been previously described.20 The Holland et al. normalized gene expression counts and

metadata for were downloaded Zenodo (https://zenodo.org/record/5645208).20 The normalized RNA-seq data was linearly shifted by the

minimum value so all values were non-negative.32

Transcription factor activity scores and p Values

With the decoupleR workflow (version 2.0.0), we generated transcription factor activity scores for 11 methods including Priori: AUCell (version

1.16.0), FGSEA (version 1.20.0), GSVA (version 1.42.0), MDT (version 1.0.0), ORA (version 1.0.0), UDT (version 1.0.0), ULM (version 1.0.0), VIPER

(version 1.28.0), WMEAN (version 1.0.0), and WSUM (version 1.0.0). decoupleR also generated normalized transcription factor activity scores

for FGSEA, WMEAN, and WSUM as well as corrected scores for WMEAN and WSUM.20 We generated transcription factor activity scores for

each method using the default parameters. OmniPath (downloaded using OmipathR package version 3.6.0) and DoRothEA (downloaded

usingDorothea package version 1.10.0), which assign confidence scores to their transcriptional relationships, were filtered for high confidence

relationships (A, B, or C). We also calculated p values for the Priori activity scores using a Student’s two-sided t-test with an FDR post-test

correction.

Area under the receiver operating characteristic and precision recall curves

Using the decoupleRBench package (version 0.1.0), we generated AUROC and AUPRC values. Briefly, we ranked the absolute value of the

activity scores from the decoupleR workflow for each experiment.20 The activity scores were ranked separately for each method. We deter-

mined whether the perturbed transcription factors were among the top ‘‘n’’ scores. ‘‘n’’ was defined as the number of unique perturbed tran-

scription factors in the dataset. There are 62 unique transcription factors in the Holland et al. perturbation dataset, which is the dataset that we

used to compare the prediction accuracy of Priori to other methods.32 Therefore, a true positive is assigned to a method whose perturbed

transcription factor ranks among the top 62 activity scores. For methods that use the Pathway Commons transcriptional relationships (a total

of 610 transcription factors), this is the top 10.2% of features. As the number of unperturbed transcription factors in the dataset substantially

outnumbered the perturbed factors, we deployed a down-sampling strategy to compare an equal number. We calculated AUROC and

AUPRC values for 100 down-sampling permutations.

ARACNe network

In order to better understandwhether Priori’s performance advantages depend on the design of its input transcription factor network, we gener-

ated VIPER activity scores using transcriptional relationships from TCGAARACNe networks and an alternative network using ARACNe-AP.23We

downloaded the TCGA ARACNe networks using the arcane.networks package (version 1.18.0). For the ARACNe-AP network, we computed it

from theHolland et al. perturbation dataset.32 ARACNe-AP requires a list of transcription factors in order to generate a gene regulatory network.

We used a list of transcription factors from the Alvarez et al. 2016 publication that was provided byDr. Mariano Alvarez on September 25, 2019.24

Weexcluded transcription factors that were not present in theHollandet al. dataset, resulting in an input list of 1,726 transcription factors.We ran

ARACNe-AP (version 1.0, created with java 1.8.0_171-b11) with 100 bootstraps, –p-value = 1E-8, and –random seeds= TRUE.23 The consolidated

interactome included 1,726 transcription factors and 302,444 interactions.

Noise

In order to investigate the robustness transcription factor activity scores to noise, we artificially altered the input data, including the gene

expression data from the Holland et al. perturbation dataset and the transcriptional relationships from Pathway Commons, to each method.

First, we added zero-centered, Gaussian-distributed noise to the gene expression data using the stats package (R base version 4.1.3).

We increased the amount of noise by altering the standard deviation of the Gaussian distribution. Next, we evaluated activity scores by

artificially altering the Pathway Commons transcriptional relationships. We tested this in two ways. First, we randomly removed transcription
20 iScience 27, 109124, March 15, 2024
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factor-target gene pairs in the Pathway Commons prior network using the stats package (R base version 4.1.3). Second, we randomized the

transcription factor-target gene pairs by sampling genes in the Holland et al. dataset with replacement. We replaced these selected genes as

the target genes of randomly selected transcription factors using the stats package (R base version 4.1.3).

Data analysis

Benchmarking workflow

Custom scripts were used to evaluate the results of the decoupleR benchmarking workflow. In order to compare the scores across the

different methods, we z-transformed the transcription factor activity scores. We calculated the Spearman correlation between the activity

scores and p values of each method.

TCGA BRCA

Thenormalizedgeneexpressioncountsandmetadata fromtheBreast InvasiveCarcinoma (TCGA,PanCancerAtlas) studyweredownloaded from

cBioPortal (https://www.cbioportal.org).35,69 Priori scores were generated from the normalized gene expression counts linearly shifted by the

minimum value using the same Pathway Commons, DoRothEA, or OmniPath relationships that were evaluated in the decoupleR benchmarking

workflow. VIPER scores were generated using the ARACNe BRCA network, –pleiotropy = TRUE, and –eset.filter = FALSE.23,24 Norm WMEAN

scores were generated using Pathway Commons transcriptional relationships, –times = 100, –sparse = TRUE, and –randomize_type = rows.20

ORA scores were generated using Pathway Commons transcriptional relationships, –n_up = 300, –n_down = 300, –n_background = 20000,

and –with_ties = TRUE. Custom scripts were used to exclude patients without basal or luminal BIDC. The Seurat package (version 4.4.0) was

used to perform dimensional reduction on the Priori scores by PCA and UMAP.66 Survival data was analyzed for significance using a log rank

Mantel-Cox test. We assigned patients to ‘‘High’’ or ‘‘Low’’ groups depending on whether they were among the top 90% or bottom 10% of

the value of interest. Differential gene expression networks were generated from the normalizedgene expression data usingCausalPath (version

1.18.0).46 An FDR threshold of 0.001 was used to evaluate significant relationships following 100 permutations.

Beat AML

The normalized gene expression counts and inhibitor AUC values from the Beat AML study were downloaded from GitHub (https://github.

com/biodev/beataml2.0_data).54,55 Priori scores were generated from the normalized gene expression counts of baseline AML patient sam-

ples from the Beat AML cohort using the same Pathway Commons, DoRothEA, or OmniPath relationships that were evaluated in the decou-

pleR benchmarking workflow. These counts were also linearly shifted by the minimum value. VIPER scores were generated using a trained

ARACNe-AP network, –pleiotropy = TRUE, and –eset.filter = FALSE.23,24 For the ARACNe-AP network, we computed it from the normalized

RNA-seqdata fromBeat AML.54,55 ARACNe-AP requires a list of transcription factors in order to generate a gene regulatory network.We used

a list of transcription factors from the Alvarez et al. 2016 publication that was provided by Dr. Mariano Alvarez on September 25, 2019.24 We

excluded transcription factors that were not present in the Holland et al. dataset, resulting in an input list of 1,408 transcription factors.We ran

ARACNe-AP (version 1.0, created with java 1.8.0_171-b11) with 100 bootstraps, –p-value = 1E-8, and –random seeds = TRUE.23 The consol-

idated interactome included 1,402 transcription factors and 320,632 interactions. NormWMEAN scores were generated using Pathway Com-

mons transcriptional relationships, –times = 100, –sparse = TRUE, and –randomize_type = rows.20 ORA scores were generated using Pathway

Commons transcriptional relationships, –n_up = 300, –n_down = 300, –n_background = 20000, and –with_ties = TRUE. Custom scripts were

used to exclude patients without a diagnosis of AML or those with a prior myeloproliferative neoplasm. Priori scores and single-inhibitor drug

AUC values on the same patient sample were evaluated using a Spearman correlation. Significant correlations were those with an FDR <0.05.

Cell culture

CRISPR

Two FOXO1 CRISPR guide RNAs in a pLentiCRISPR v2 backbone were obtained from GenScript.70 The target sequence for guide RNA

(gRNA) 1 is GCTCGTCCCGCCGCAACGCG and the sequence for gRNA 2 is ACAGGTTGCCCCACGCGTTG. Additionally, a non-targeting

CRISPR guide RNA (target sequenceCCTGGGTTAGAGCTACCGCA) generatedby scrambling the target sequence of LentiCRISPRv2-ACTB-

C1 in a pLentiCRISPR v2 backbone was obtained from Addgene (Cat# 169795). Lentivirus was produced by transfecting Lenti-X 293T cells

(Clontech) with the SMARTvector transfer plasmid and packaging/pseudotyping plasmids. psPAX2 was a gift from Didier Trono (Addgene

plasmid #12260; http://n2t.net/addgene:12260; RRID:Addgene_12260). The supernatant containing lentivirus was collected after 48 h of

culture and filtered with a 0.45 mm filter. THP-1 cells were transduced with virus via spinnoculation in the presence of polybrene. Transduced

cells were selected with 1 mg/mL puromycin to produce a stable cell line.

CRISPR validation

FOXO1 knockdown was validated using Tracking of Indels by Decomposition (TIDE).71 Briefly, cellular DNA was PCR-amplified using primers

upstream (sequence AAGTAGGGCACGCTCTTGAC) and downstream (sequence CGTTCCCCCAAATCTCGGAC) of the FOXO1 gRNA

target sequences. The primers were designed in Geneious Prime and synthesized by Integrated DNA Technologies. Paramagnetic beads

were used to purify the PCR DNA fragments (MagBio Ref #AC-60001) and subsequently sequenced by EuroFins. Inference of CRISPR Edits

(ICE) was performed using the Synthego web tool (https://ice.synthego.com/#/).
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Drug sensitivity assay

Cells were cultured for 72 h along a 7-point dose curve with venetoclax. Cell viability was assessed by CellTiter Aqueous colorimetric assay.
QUANTIFICATION AND STATISTICAL ANALYSIS

Values are represented as the mean and error bars are the SEM unless otherwise stated. Python and R were used to perform statistical

analyses. Significance was tested using two-sided Student’s t test. Correlations were performed using Spearman’s rank method. Statistical

significance in the survival analyses was determined by a log rank Mantel-Cox test. Where appropriate, p values were adjusted for repeated

testing using the Benjamini–Hochberg method.
22 iScience 27, 109124, March 15, 2024
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