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Abstract

Background: Clinical research and medical practice can be advanced through the prediction of an individual’s
health state, trajectory, and responses to treatments. However, the majority of current clinical risk prediction models
are based on regression approaches or machine learning algorithms that are static, rather than dynamic. To benefit
from the increasing emergence of large, heterogeneous data sets, such as electronic health records (EHRs), novel tools
to support improved clinical decision making through methods for individual-level risk prediction that can handle
multiple variables, their interactions, and time-varying values are necessary.

Methods: We introduce a novel dynamic approach to clinical risk prediction for survival, longitudinal, and
multivariate (SLAM) outcomes, called random forest for SLAM data analysis (RF-SLAM). RF-SLAM is a continuous-time,
random forest method for survival analysis that combines the strengths of existing statistical and machine learning
methods to produce individualized Bayes estimates of piecewise-constant hazard rates. We also present a
method-agnostic approach for time-varying evaluation of model performance.

Results: We derive and illustrate the method by predicting sudden cardiac arrest (SCA) in the Left Ventricular
Structural (LV) Predictors of Sudden Cardiac Death (SCD) Registry. We demonstrate superior performance relative to
standard random forest methods for survival data. We illustrate the importance of the number of preceding heart
failure hospitalizations as a time-dependent predictor in SCA risk assessment.

Conclusions: RF-SLAM is a novel statistical and machine learning method that improves risk prediction by
incorporating time-varying information and accommodating a large number of predictors, their interactions, and
missing values. RF-SLAM is designed to easily extend to simultaneous predictions of multiple, possibly competing,
events and/or repeated measurements of discrete or continuous variables over time.
Trial registration: LV Structural Predictors of SCD Registry (clinicaltrials.gov, NCT01076660), retrospectively registered
25 February 2010
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Background
Clinical risk assessment has been a long-standing chal-
lenge in medicine, particularly at the individual level [1].
Questions such as “what is the probability that this patient
has a particular disease?” or “what is the probability that
this patient will benefit from a particular treatment?” are
difficult to answer objectively but are essential in order to
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realize the promise of precision medicine. Accurate clini-
cal risk prediction can help guide decision making about
health status, disease trajectory, and optimal treatment
plans.
Recent advances in biomedical, information, and

communication technologies increase the potential to
substantially improve clinical risk prediction. Modern
statistical and machine learning methods are increas-
ing our capacity to learn from a wide variety of data
sources, including those that are complex, heterogeneous,
and temporally-varying in nature [2–11]. Currently, most
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approaches to clinical risk prediction employ a small frac-
tion of the available data. Specifically, even when variables
are repeatedly measured on the same individual over time,
it is common to base the patient’s risk score only on the
last available measurement rather than the full history
of measurements. This practice is inconsistent with the
inherently dynamic nature of human health and disease; it
discards valuable information from the history of the pre-
dictors, such as the rate of change of the variables or the
occurrence of prior events [1].
Our work is motivated by the challenge of develop-

ing tools for clinical risk prediction that can simultane-
ously handle time-to-event data, repeated measurements
of covariates, and repeated/multiple outcomes. We will
refer to these as survival, longitudinal, and multivariate
(SLAM) data. The clinical motivation for our approach is
sudden cardiac arrest (SCA), a leading cause of death with
complex pathophysiology that currently lacks effective
tools for prediction and could benefit from methodologi-
cal advances in risk assessment using SLAM data.
In this paper, we first review clinical risk prediction

approaches and identify limitations of current methods.
Next, we formulate the learning problem in terms of the
analysis of SLAM data. Afterwards, we introduce our
methodology called Random Forest for Survival, Longi-
tudinal, and Multivariate data analysis (RF-SLAM). We
then illustrate the RF-SLAM approach using the Left
Ventricular (LV) Structural Predictors of Sudden Car-
diac Death (SCD) Registry for SCA risk prediction and
describe methodology for assessing and reporting model
performance. We end with a discussion of the potential
applications and extensions of RF-SLAM.

Learning from data for clinical risk prediction
To date, most clinical risk prediction methods are based
on regression approaches [1]. For example, the Cox
regression model was used to develop the Framingham
Risk Score [12] and logistic regression was used to develop
the 30-day mortality risk prediction for patients with
ST-elevation myocardial infarction [13].
Traditional regression strategies for risk prediction suf-

fer from a number of limitations. These methods can typ-
ically only handle a small number of predictors, disregard
potential interactions with time, and assume constant pre-
dictor effects throughout their entire range. As a result,
the challenges not well handled by typical regressionmod-
eling strategies include: non-linearities, heterogeneity of
effects (interactions), and consideration of many potential
predictors. The basic assumption of a regression model
is that there is a linear relationship between the risk fac-
tor and outcome. Although this can be an appropriate
approximation for some risk factors, in many cases, pre-
dictors have non-linear relationships with the outcome.
For example, the risk of death sharply rises with increasing

age. In other cases, values both above and below the
normal ranges are indicative of high risk (e.g. hypogly-
caemia and hyperglycaemia, BMI for underweight and
overweight individuals).
Basic regression methods also tend to assume additive

relationships unless special efforts are made to identify
important interactions. Nevertheless, a variable’s impact
on the prediction can be influenced by another variable
(e.g. gene-environment interactions, treatment-race inter-
actions). In standard regression approaches, interactions
need to be prespecified, requiring the individual develop-
ing the model to a priori include the interaction term in
the model.
In addition, with a large number of potential predic-

tor variables to consider, it is challenging to determine
which to include in the model and strategies must also
be taken to avoid overfitting. In the setting of missing
data and many candidate predictor variables, traditional
regression methods must also be paired with variable
selection and missing data algorithms to accommodate
large numbers of predictors and their incomplete records.
When clinical risk prediction requires the consideration
of a large number of predictors as well as interactions and
non-linear predictor effects and missing values, moving
beyond traditional regression approaches offer the poten-
tial to improve predictive performance [1]. The increasing
emergence of large, heterogeneous data sets, such as elec-
tronic health records (EHRs), require novel tools for risk
prediction to support improved clinical decisions. Further
development of statistical machine learning approaches to
address the needs of clinical risk prediction has potential
to accelerate the progress towards precision medicine [1].

Motivating Example: Sudden Cardiac Arrest (SCA)
Prediction
Our work is motivated by the challenge of predicting sud-
den cardiac arrest (SCA), a leading cause of death with
complex pathophysiology [14–17]. In the United States,
each year, there are approximately 400,000 SCAs resulting
in death [18]. Approximately 50% of victims do not have a
prior diagnosis of cardiovascular disease and hence have
limited opportunities for prevention [18]. As a result, the
ability of clinicians to predict and prevent SCD remains
limited.
Although the implantable cardioverter defibrillator

(ICD) is considered the “cornerstone” therapy for SCD
primary prevention in high risk individuals with ischemic
or non-ischemic cardiomyopathy, guidelines directing
their use are based upon findings of several randomized
trials that have focused on dichotomizing risk based upon
left ventricular ejection fraction (LVEF) [18–23]. Current
guidelines define high risk as having an LVEF below 30
to 35% [18, 19]. However, LVEF is neither sensitive nor
specific as an indicator for SCA. Consequently, the use
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of LVEF as a guide for ICD placement has resulted in
poor identification of those patients most likely to benefit
from implantation of an ICD and poor risk/benefit bal-
ancing of significant short and long-term complications
[24]. Furthermore, applying summary results of clinical
trials to individual patients can “give misleading results to
physicians who care for individual, not average, patients”
[25]. In fact, the rate of appropriate device firings is low
(approximately 1.1 to 5.1% per year) [23, 26]. Hence, many
patients are subjected to the short and long term risks of
an ICD but may never require therapy and hence, receive
no benefit [27].
The current limitations in methods to effectively pre-

dict and prevent SCD have been summarized in the
National Heart, Lung, and Blood Institute (NHLBI)Work-
ing Group on SCD Prevention’s statement that “there is
an urgent need to develop effective preventive strategies
for the general population” of which effective SCA risk
assessment is one important component [28, 29]. Specif-
ically, there is a need to develop and validate SCA risk
scores using phenotypic, biological, and modern biomark-
ers such as cardiac magnetic resonance (CMR) imaging
with late gadolinium enhancement (LGE) that yields both
structural and functional indices of the heart [19, 24, 30].
SCA pathophysiology is complex and requires the inter-

action of a vulnerable substrate and one or more dynamic
triggering mechanisms to initiate and sustain a reen-
trant ventricular arrhythmia [30]. Accurate and precise
SCA risk assessment thus requires prediction methods
that handle the dynamic interplay among SCAs, trig-
gers such as heart failure hospitalizations (HF), and other
time-varying factors. Nevertheless, commonly usedmeth-
ods for SCA risk prediction, Cox proportional hazards
model and logistic regression, do not facilitate the inclu-
sion of nonlinear relationships or interactions among
predictors when modeling with a large number of predic-
tors [31]. Novel methods that automatically incorporate
nonlinear/interaction effects and the interplay of SCA,
HF, and survival (or death) could improve the accuracy
and precision of SCA prediction. In particular, random
forests, a decision-tree based approach, offer the advan-
tage of relatively lower prediction error than traditional
modeling approaches because of their capacity to iden-
tify complex interactions and nonlinearities of predictor
effects [32–35]. However, two main disadvantages of ran-
dom forests are 1) their limited interpretability and 2)
to the extent of our knowledge, the inability of current
random forest implementations to simultaneously han-
dle survival, longitudinal, and multivariate (SLAM) out-
comes. This research addresses these limitations through
the extension of random forests for SLAM data analy-
sis (RF-SLAM). We first begin with a description of the
RF-SLAM methodology. Then, to illustrate the potential
impact of RF-SLAM in clinical and translational research,

we apply our approach to data from the LV Struc-
tural Predictors of SCD prospective observational registry
[24, 36–41], and demonstrate the use and model perfor-
mance of RF-SLAM for determining population risk as
well as for predicting individualized SCA risk to guide
treatment decisions.

Methods
Methods: random forest for survival, longitudinal, and
multivariate (RF-SLAM) data analysis
To overcome the limitations of current SCA risk model-
ing approaches, we develop Random Forest for Survival,
Longitudinal, and Multivariate (RF-SLAM) data analy-
sis, a method that builds upon the concept of decision
trees for risk stratification. Decision trees that stratify
the population into strata of low and high risk based
on patient characteristics are popular in medicine due
to their intuitiveness and comparability to how clinicians
think through clinical decisions. Nevertheless, the deci-
sion tree may “overfit” the data used to construct the tree
and consequently, poorly generalize for predictions for
new observations [34].
To address these issues, random forests were developed

as an ensemble learning method based on a collection of
decision trees, where the overall random forest prediction
is the ensemble average or majority vote. Overfitting is
minimized through the introduction of random selection
of subjects and of predictor variables during the construc-
tion of trees in the random forest. Random sampling of
predictor variables at each decision tree node decreases
the correlation among the trees in the forest, and thereby
improves the precision of the ensemble predictions [32].
Random forests were originally developed for regression
and classification problems, but more recently, random
survival forests (RSFs) have been developed for the analy-
sis of right-censored survival data [33, 42].

Random survival forests (RSFs)
In this work, we expand upon randomForestSRC (random
forests for survival, regression, and classification), which
has previously been described [33, 42]. The key aspects of
the RSF algorithm are:

1. Bootstrap the original data set to create B bootstrap
samples.

2. On each of the B bootstrap samples, grow a survival
tree where at each node randomly selectm ≤ p
predictors as candidate splitting variables, where m is
the number of candidate splitting variables
considered and p is the total number of predictors.
Among the m variables, determine the optimal
splitting variable and split point to maximize the
difference between the estimated survival curves in
the resulting children nodes. For RSF, the split
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criteria is typically based upon the log-rank statistic.
Additional details are provided in the Additional
file 1.

3. Continue the recursive partitioning algorithm as long
as the node has no less than d0 > 0 unique deaths.

4. Calculate the cumulative hazard function for the
terminal nodes for each tree and obtain an ensemble
cumulative hazard function by averaging across the B
trees.

Despite the benefits of RSF, limitations remain regard-
ing the challenge of handling time-varying risk factors
(e.g. heart failure exacerbations) and the interpretability
of RSF predictions in the case of time-dependent outcome
data. Additionally, the recent literature has expressed con-
cerns regarding the log-rank split statistic since this is
based upon the proportional hazards assumption and
may suffer from significant loss of power in situations in
which covariates violate the proportional hazards assump-
tion, especially when the hazard/survival functions cross
for the groups being compared [43, 44]. As a result, we
introduce an extension of the random forest methodol-
ogy, which we call RF-SLAM, based upon the Poisson
regression log-likelihood as the split statistic to allow for
the inclusion of time-varying predictors and the analy-
sis of survival data without the restrictive proportional
hazards assumption. Here, we introduce our RF-SLAM
methodology for predicting survival outcomes.

RF-SLAMmethodology
For RF-SLAM, a large number of trees (e.g. 1000) are
grown to create the random forest. However, unlike with
the RSF approach where the individual is the unit of anal-
ysis, RF-SLAM builds trees using data binned according
to user-specified lengths of time in a format we call count-
ing process information units (CPIUs). Each individual
can have many CPIUs during the period of follow-up. For
example, in the motivating SCA risk prediction problem
using the LV Structural Predictors of SCD Registry, we
consider follow-up time of 8 years and specify the time
intervals to be 6 months long so that each individual has
a CPIU representing each half-year of observation. We
assume that a person’s event hazard is constant within
each CPIU. This strategy allows predictor variables to
change from one interval to the next. Given the parti-
tion of the follow-up time into CPIUs, we use a Poisson
regression splitting criterion that does not impose the pro-
portional hazards assumption that the predictors have a
common effect across the entire follow-up time. The key
aspects involved in the random forest construction using
RF-SLAM are detailed below and additional information
is provided in the Additional file 1:

• Counting Process Information Units (CPIUs):
The RF-SLAM approach includes a pre-processing

step where the follow-up information for each
individual is partitioned into discrete segments that
we refer to as counting process information units
(CPIUs), as shown in Fig. 1. Specifically, each CPIU
contains the following data for a prespecified bin of
time: person indicator, interval indicator,
multivariate outcome values (e.g. SCA and HF; 0
denoting that the event did not occur, 1 denoting that
the event did occur), summary function values of
outcome history, predictor values, and the length of
the interval. We partition the data for each of the N
subjects into CPIUs, which is similar to the concept
of the “person-period data set” [45], to account for
time-varying covariates and outcomes.
CPIUs are named after the formulation of a counting
process which is denoted by Ne = Ne(t), t ≥ 0,
where the value of Ne at time t indicates the number
of events that have occurred in the interval of time
(0, t], where Ne(0) = 0. Ne is nondecreasing and
increases in a stepwise manner as events accumulate
(i.e. Ne as a function of time can be modeled as a step
function) [46].
We introduce the CPIU data format and the
corresponding terminology to broaden the
generalizability of our approach to time-to-event
analysis. The CPIU formulation of the data allows for
the handling of time-varying covariates as well as
multivariate count data (i.e. the counting process
could be the occurrence of a single event, repeated
events, or events of different types).
Additionally, rather than considering the
times-to-event as discrete times, we allow the event
times to be continuous, occurring within the discrete
CPIU intervals. For instance, CPIUs can be created
with half-year intervals. However, the observed event
times can be represented more precisely as the time
at which the event occurs within the CPIU. Thus,
each CPIU can potentially be of differing lengths and
the length of the CPIU is recorded as the risk time. In
the reformulation of the data set into the CPIU
format, each subject’s data is represented as a
separate record for each period of observation.
Rather than having only one record per subject, the
CPIU data format could result in multiple records per
subject depending on the subject’s survival time and
the length(s) of the observation periods defined.
To predict the probability of an event of interest
during each CPIU, we model the event probability as
a Poisson process, which is a counting process that
can be used to count the occurrences of the event of
interest [46]. For the Poisson process, we denote Y (r)
as the number of events that occurs within a time
period of length r. Thus, Y (r) ∼ Poisson(μ), where
μ = λr where λ is the event rate per unit time and r
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Fig. 1 Random Forests for Survival, Longitudinal, and Multivariate (RF-SLAM) Data Analysis Overview. The Random Forests for Survival, Longitudinal,
and Multivariate (RF-SLAM) data analysis approach begins with a pre-processing step to create counting process information units (CPIUs) within
which we can model the possibly multivariate outcomes of interest (e.g. SCA, HF) and accommodate time-dependent covariates. For the LV
Structural Predictors Registry, the time-varying covariates of interest relate to heart failure hospitalizations (HFs), indicated by the blue diamonds. In
this case, CPIUs are created from the Survival, Longitudinal, and Multivariate (SLAM) data by creating a new CPIU every half year, corresponding to
the frequency of follow up. The variable int.n represents the interval number indicating time since study enrollment in half-years. The time-varying
covariates are int.n and pHF (total number of previous heart failure hospitalizations since study enrollment). Then, these CPIUs (containing the
time-varying covariates along with the baseline predictors) are used as inputs in the RF-SLAM algorithm to generate the predicted probability of an
SCA. The SCA event indicator is denoted with iSCA (0 if no event within CPIU, 1 if the event occurs within CPIU) and the heart failure hospitalization
event indicator is iHF (0 if no event within CPIU, 1 if the event occurs within CPIU)

is the length of the time interval. We use this
distributional assumption for the event probability
within each CPIU as the basis for our RF-SLAM
approach, which is an ensemble method based on
Poisson regression trees.

• Control of Bootstrapping:
Because we create CPIUs, each individual can have
multiple observation intervals rather than only one as
in a traditional random forest analysis. Rather than
bootstrapping CPIUs, we bootstrap individuals to
preserve the integrity of the original data structure.
Then, we assemble together the predictions for each
of the CPIUs for an individual to obtain the
piecewise-constant hazard function for each
bootstrap replication. This function, or the
corresponding piecewise-exponential survival
function, will be the basis for visualization of the risk
trajectory and post-hoc analyses of how changes in
different predictor variables impact an individual’s
risk. By bootstrapping people rather than CPIUs and
controlling the specification of the bootstrap samples
on which to construct the random forest, this

method also allows for the fair comparison between
different random forest approaches. For example, our
RF-SLAMmethod can be compared with RSF trained
on comparable bootstrap samples, where the
bootstrap samples for RF-SLAM would consist of
CPIUs and the bootstrap samples for RSF would
correspond to the same individuals who contributed
CPIUs to the bootstrap sample.

• RF-SLAM Splitting Criteria:
The RF-SLAM splitting criteria is based upon the
Poisson log-likelihood below. Note, it is not necessary
to directly assume that the CPIUs are independent.
Rather, the process of conditioning on the past events
results in a likelihood function for the discrete time
hazard model under non-informative censoring that
coincides with the likelihood obtained when treating
the event indicators as binomial or Poisson [45].
We use the following notation: i = 1, 2, . . . ,N
indicates the individual, j = 1, 2, . . . , Ji indicates the
interval for individual i, where Ji is the maximum
interval number for individual i, μij = λijrij is the
expected number of events where λij is the event rate
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for individual i during time period j, rij is the risk
time or length of the jth interval for individual i, yij is
the number of observed events for the jth interval for
individual i, Nj is the total number of individuals in
the risk set at the jth interval, and N is the total
number of individuals in the study.
The RF-SLAM Poisson log-likelihood split statistic is:

∑

i∈L

Ji∑

j=1

[
−μ̂L

ij + yij ∗ log
(
μ̂L
ij

)]
+

∑

i∈R

Ji∑

j=1

[
−μ̂R

ij + yij ∗ log
(
μ̂R
ij

)]

−
∑

i∈P

Ji∑

j=1

[
−μ̂P

ij + yij ∗ log
(
μ̂P
ij

)]
,

(1)

where μ̂S
ij is the estimate for expected number of

events for jth interval for individual i for node S,
where S = L,R,P indicating the left, right, and parent
nodes, respectively. The estimate μ̂S

ij is:

μ̂S
ij = λ̂Sijrij, (2)

where λ̂Sij is the estimate of the event rate for
individual i during interval j.
Since all CPIUs within a certain node share the same
event rate estimate at a given time, the Bayes estimate
of the event rate for each node is defined as follows:

λ̂Sj = α + ∑
i∈S yij

β + ∑
i∈S rij

, (3)

where α = 1/
(
k2

)
, where k can be specified by the

user (we set k = 2 as the default so the standard
deviation is greater than the mean in order to capture
the prior uncertainty in the estimate for λ̂) and
β = α/λ̂, where λ̂ is the overall event rate (i.e. total
number of events in the entire data set / total risk
time in the entire data set) [47]. The rationale for the
Bayes estimate of the event rate is provided below in
the following section on the Ensemble Hazard Rate
Estimates. Further details are provided in the
Additional file 1.

• Ensemble Hazard Rate Estimates:
Because classical approaches to estimate event rates
have poor performance when there are few events
(e.g. maximum likelihood estimators give overly
optimistic rate estimates of zero) [48], we instead
employ a Bayes estimate of the event rate. The Bayes
estimate for the event rates are derived by assuming a
Gamma prior for the event rates combined with a
Poisson distribution for the likelihood function.
Using Bayes rule, a Gamma posterior is obtained [49].
For an observation of interest, the hazard rate
estimate from each tree is obtained by sending the

observation down the tree, following the branches to
the left or right based upon the covariate values and
decision rule at each encountered branch until the
observation reaches a terminal node. Each terminal
node is assigned an estimated hazard rate based upon
the in-bag training data and the Bayes estimate of the
event rates.
The out-of-bag (OOB) ensemble estimate for the
CPIU for individual i for time period j is obtained by
averaging the estimates across the OOB trees as
follows:

λ̂OOB
e (j|xi) =

∑B
b=1 Ii,bλ̂b(j|xi)∑B

b=1 Ii,b
, (4)

where Ii,b = 1 if i is OOB for tree Tb and 0 otherwise.
For a new observation not used in training, the
estimate is based upon averaging across all the trees
in the forest:

λ̂e(j|xi) =
∑B

b=1 λ̂b(j|xi)
B

. (5)

• Missing Data:
Because most real data sets contain missing values,
various methods for handling missing data with
tree-based methods have been developed including
surrogate splitting and imputing data using the
proximity weighted average of nonmissing data
[50–52]. Although surrogate splits can be a solution
for trees, it is computationally intensive and may be
infeasible when considering an ensemble of trees.
With the proximity approach to data imputation, the
forest is unable to predict on test data with missing
values. Due to these limitations, for RF-SLAM, we
adopt an adaptive tree imputation method to handle
missing data based upon the approach previously
introduced for RSF [33]. Overall, the idea is to impute
the missing data during the tree growing process by
randomly drawing from the nonmissing in-bag data
within the current node. The key steps are as follows:

1. Impute missing data prior to splitting node h
based upon randomly drawing from the
nonmissing in-bag data within node h.

2. Split node h into two children nodes based upon
the split rule.

3. Reset the imputed data values to missing in the
resulting children nodes.

4. Repeat from Step 1 until the tree reaches the
stopping criterion.

• Data Imbalance and Terminal Node Size:
An additional challenge that is typical to survival data
is data imbalance, where there are extreme differences
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between the number of censored and noncensored
individuals in the study. In our situation of creating
discrete CPIUs from the original survival data, the
data imbalance can be seen as the predominance of
yij = 0, corresponding to CPIUs with no events. As
was proposed in Breiman’s original random forest
algorithm for classification random forests, it is
common to grow the trees to purity of the terminal
nodes [32]. In our situation, the trees should not be
grown to purity since the goal is to obtain an estimate
of the hazard, or conditional probability. If the trees
are grown to purity, each tree probability estimate
would be 0 or 1. Instead, for hazard estimates, we
retain heterogeneity in the terminal nodes by setting
the default terminal node size as 10% of the total
sample size based upon prior research [53, 54].

Evaluating performance
In the era of promoting individualized health, there
is growing interest in clinical prediction models that
provide absolute risk estimates for individual patients.
When accurate predictions are made available, they
can inform clinical decisions by guiding timely action
for high risk individuals who may benefit from spe-
cific preventive strategies or aggressive interventions
and sparing low risk individuals from the burden of
unnecessary or inappropriate interventions. Before such
models are used by clinicians and patients, rigorous
evaluation of their validity is essential but is often not
quantified [55–59].
To characterize a model’s performance, we consider

both its discrimination and calibration. For models of
SLAM data, special considerations are necessary for
assessing model performance. In comparison to mod-
els that are constructed to provide a prediction in a
static manner (i.e. only provide a prediction for a partic-
ular time point), models fit to SLAM data are designed
to be used in a dynamic manner. For instance, prog-
nostic models are often employed for evaluating clin-
ical risk at multiple points in time as patients return
for follow-up visits and are reassessed. Naturally, the
model’s performance over time may change and thus,
time-varying measures of performance are necessary to
assess its potential ability to serve as a clinical decision
making tool [60].

Time-Varying AUC
The time-varying AUC is based upon time-dependent
definitions of the sensitivity and specificity, as described
previously [60]. These definitions take into account the
dynamic risk sets. At each evaluation time there are differ-
ing CPIUs at risk for the event. The time-dependent AUC
is defined as the area under the time-specific ROC curve,
ROCt , across all thresholds p given by:

AUC(t) =
∫

ROCt(p)dp, (6)

which is equivalent to:

AUC(t) = P(Ml > Mk|Tl = t,Tk > t), (7)

the probability that a random CPIU that experiences an
event at time t (i.e. case) has a larger predicted value than
a random CPIU that is event free (i.e. control) and also at
risk at that time t.
We extend the approach for time-varying discrimina-

tion previously described to obtain a smooth AUC curve
representing the model performance across the duration
of time under consideration. Our approach consists of the
following steps:
1. Calculate the ˆAUC(t) at each time interval where∑

i∈Nt

yij > 0, where Nt denotes the risk set at time t.

2. Calculate the estimate of the maximum variance of
the ˆAUC(t) at each of the times considered in Step 1
using the following equation:

σ 2
max(t) = ˆAUC(t)(1 − ˆAUC(t))

min{m(t), n(t)} , (8)

wherem(t) is the number of cases at time t and n(t)
is the number of controls at time t [61].

3. Fit a smooth curve to model the relationship between
ˆAUC(t) and time, weighted by the inverse of the

variance:

w(t) = 1/σ 2
max(t). (9)

Our approach for confidence intervals for ˆAUC(t) is
based upon the non-parametric bootstrap and bootstrap
principle [62], which allows us to approximate how much
the distribution of our AUC estimate varies around the
true AUC using the distribution of how the bootstrapped
AUC values vary around our estimated AUC.

Clinically-Relevant visualizations of discriminative ability
through plots of the survival or hazard functions
In addition to plots of ˆAUC(t) versus time, for models of
SLAM data that give predictions of the hazard or survival
functions, the discriminative ability of the model can also
be visualized by plotting the predicted hazard or survival
function versus time and color-coding the trajectory of the
hazards by the observed outcomes (e.g. color-code indi-
viduals who experience the event during the study in red
and all other individuals in green). The greater the sepa-
ration between the predicted hazard or survival functions
for individuals who experience versus do not experience
the outcome, the greater themodel’s discriminative ability.

Calibration of predicted hazard rates
Calibrating predicted hazard rates for CPIUs from SLAM
data requires special consideration to account for the
potential differences in risk time for each CPIU. We use
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two approaches to check for calibration. The first is based
upon creating discrete risk groups and assessing the cali-
bration by group. The second is based upon the Spiegel-
halter’s z-statistic and does not require discretizing the
data into bins.
In the first approach, to assess calibration by risk groups,

groups are defined by deciles of the predicted values.
For each decile, the mean predicted value is compared
with the observed value. When the predicted values are
hazard rates, it is important to consider the observed
risk time when assessing calibration. To determine the
observed hazard rate, the total number of events observed
in the decile is divided by the total observed risk time
for that decile. Afterwards, calibration plots with the
observed versus the predicted rates can be created. In
the second approach, for a formal assessment of cali-
bration without discretizing the data into bins, we use
Spiegelhalter’s z-statistic [63, 64], described further in the
Additional file 1.
Confidence intervals for calibration can be formed by

the non-parametric bootstrap and bootstrap principle
[62]. To include confidence intervals for the calibration
plots, we present the calibration results as the differ-
ence between the observed and predicted risks. Because
both the predicted and observed risk for each decile can
differ across bootstrap replications, rather than plotting
the predicted versus observed risk, we take the differ-
ence between the predicted and observed risk and plot
this difference against the corresponding decile. For well
calibrated models, the confidence intervals for these dif-
ferences should overlap 0, suggesting agreement between
the predicted and observed values.

Clinically-Relevant visualizations of discrimination and
calibration through plots of the survival or hazard functions
To visualize the model performance in terms of both dis-
crimination and calibration in a clinically-relevant man-
ner, we introduce an approach to compare the model
predictions to the actually observed time-to-event data.
First, we stratify patients into tertiles of predicted risk.
For each group (i.e. high, intermediate, and low risk), we
plot a Kaplan-Meier curve based on the observed data and
compare the Kaplan-Meier curve to the predicted survival
curves for individuals in the group under consideration.

Illustrating example: sudden cardiac arrest (SCA)
prediction with SLAM data
The Left Ventricular (LV) Structural Predictors of Sudden
Cardiac Death (SCD) Registry is a prospective obser-
vational registry (clinicaltrials.gov, NCT01076660) that
enrolled patients between November 2003 and April 2015
at three sites: Johns Hopkins Medical Institutions (Bal-
timore, MD), Christiana Care Health System (Newark,
DE), and the University of Maryland (Baltimore, MD).

Patients meeting the clinical criteria for primary preven-
tion ICD insertion (LVEF ≤ 35%) were approached for
enrollment and underwent cardiac magnetic resonance
imaging (CMR) before device placement. This registry
allows for the analysis of SCA risk in a clinical popu-
lation with elevated SCA risk but in whom it is known
that many patients will not require or benefit from ICD
therapy. The design and methods of this study have been
previously published, as have interim results of multivari-
able risk models using traditional regression approaches
[24, 36–41]. The goal of the study was to identify risk
factors that predispose patients to arrhythmic death. 382
patients were enrolled. The primary SCA endpoint was
the occurrence of an adjudicated appropriate ICD fir-
ing for ventricular tachycardia or ventricular fibrillation
or sudden arrhythmic cardiac arrest not aborted by the
device. In the 8-years of follow-up, 75 individuals had the
primary SCA outcome. A summary of the data is available
in Additional file 1: Table S1 as well as in the published
literature [24, 36–41].
Briefly, the baseline variables include information

regarding demographics and clinical characteristics, risk
factors, medication usage, electrophysiologic variables,
laboratory values and biomarkers, LVEF by echocardio-
graphy, and CMR structural and functional indices. The
time-varying covariates are the number of previous adju-
dicated heart failure hospitalizations and number of half-
year intervals that have passed since study enrollment.
To assess the performance of our random forest method

(RF-SLAM), we compare our method to the random
survival forest (RSF) method currently available in the
randomForestSRC (random forests for survival, regres-
sion, and classification) R package [42]. Briefly, in contrast
to the RSF method, RF-SLAM can handle time-varying
covariates and directly provide piecewise-constant haz-
ard estimates (i.e. the probability of an event in a certain
period of time). In our analysis of the LV Structural
Predictors of SCD Registry, we compare three methods
(RF-SLAM using both baseline and time-varying covari-
ates, RF-SLAM using only baseline covariates, and RSF)
for predicting SCA. Additional file 1: Table S2 provides a
summary of the key differences between the three differ-
ent approaches.

RF-SLAM
As diagrammed in Fig. 1, the first step to constructing
the two RF-SLAM models is data pre-processing to cre-
ate counting processing information units (CPIUs). CPIUs
of half-year intervals are created since patients in this
registry are followed up every six months. Thus, the max-
imum interval length (i.e. risk time) for the CPIUs is 0.5
years. However, if censoring or SCA occurs prior to the
end of the half-year interval, the risk time is the amount
of time from the start of the CPIU interval to the time of
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censoring or SCA. With the CPIU data format, two differ-
ent random forests are constructed using RF-SLAM: one
with both baseline and time-varying covariates, and a sec-
ond with only baseline covariates. The parameters for the
number of trees, node size, and number of variables to try
at each potential split are set to be the same for both ran-
dom forests. We use the typical default values of 1000 as
the number of trees, 10% of the number of CPIUs as the
minimum terminal node size, and the number of variables
to try as the square root of the number of predictors in the
model.

Random survival forest (RSF)
For the RSF method, we also use the default settings for
the number of trees (1000), node size (15), and number
of variables to try at each potential split (square root of
the number of predictors in the model). After building a
random forest with the RSF approach, the survival and
cumulative hazard estimates can be obtained. Although
the RSFmethod does not provide piecewise-constant haz-
ard predictions, we develop an approach to obtain the
discrete-time hazard estimates to facilitate comparisons
between the methods. Specifically, the survival predic-
tions are obtained from the RSF method and a smooth
curve is fit to the predictions to obtain an estimate of the
survival function. Afterwards, the value of the derivative
of the log of the estimated survival function is obtained
every half-year (i.e. 0.5, 1, 1.5 years, etc.) to obtain compa-
rable hazard estimates to the RF-SLAM approach.
For all three methods, we assess the performance as

described in theMethods section onmodel evaluation. To
ensure the comparability of the bootstrap data set across
the three methods, we use the same L boostrapped data
set for all three methods and within each of the L boos-
trapped data set, we control bootstrapping by specifying
a user controlled bootstrap array to ensure that the same
data are used for comparable trees in the three different
random forests. For the analysis presented below, we use
L = 500.

Results
With data from the LV Structural Predictors of SCD Reg-
istry, we demonstrate a proof of concept of the RF-SLAM
approach.
Figure 2 (panels A, B, and C) shows the ˆAUC(t) for the

three different approaches. Figure 2a displays the worst
performance corresponding to RSF, the random survival
forest model with the log-rank split statistic and baseline
covariates only. Figure 2b shows an improvement in per-
formance with the RF-SLAM approach using the Poisson
split statistic and baseline covariates only. With the inclu-
sion of time-varying predictors in the model and the use
of the Poisson split statistic, there is further improvement
in model performance as measured by the ˆAUC(t). The

plots of the pairwise ˆAUC(t) comparison between the
different models along with the confidence intervals gen-
erated from the non-parametric bootstrap approach with
500 bootstrap samples are provided in Additional file 1:
Figure S1.
To visualize the difference between the predictions from

the different approaches, Fig. 2 (panels c, d, and e) shows
the predicted survival curves, color-coded by the actual
outcome. As shown in the figure, the RF-SLAM approach
with both baseline and time-varying covariates (Fig. 2e)
provides the best visual separation between individuals
who experienced an SCA (color-coded in red) and those
who did not (color-coded in green) when compared with
the predicted survival curves from RF-SLAM with base-
line covariates only (Fig. 2e) and RSF (Fig. 2d).
To further assess performance, we determine the

calibration. The calibration plots with the confidence
intervals generated from the non-parametric bootstrap
approach with 500 bootstrap samples for the three models
are shown in Fig. 3. To assess calibration without dis-
cretizing into deciles, the density plot for Spiegelhalter’s
z-statistic across 500 non-parametric bootstrap samples
is shown in Additional file 1: Figure S2. Overall, the
calibration plots suggest that the three models are well
calibrated.
To visualize both the discrimination and calibration

of the predictions from RF-SLAM (with both baseline
and time-varying covariates), we categorize patients into
different groups based upon the tertile of the average pre-
dicted risk for the individual and plot the predicted sur-
vival curves in comparison to the group’s Kaplan-Meier
curve based on the actual time-to-event data observed, as
shown in Additional file 1: Figure S3. These plots indicate
close agreement between the predictions from RF-SLAM
(with both baseline and time-varying covariates) and the
observed time-to-event data as well as separation between
individuals with and without the event.

Discussion
There is growing emphasis on individualizing care based
on patient-specific characteristics. The availability of large
amounts of patient data and advances in computer-driven
data science afford unique opportunities to implement
machine learning algorithms to inform clinical decision
making based on individual time-varying health trajecto-
ries and patient-specific risk profiles. With the upsurge in
machine learning applications to medicine, it is impera-
tive that such models are validated rigorously to justify
clinical use.
Although the analysis of survival data for most real

world applications utilize the Cox proportional hazard
model, there are numerous limitations to this approach,
including the restrictive assumption of proportional
hazards, the need to estimate the baseline hazard to obtain
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Fig. 2 Comparison of Discrimination for Sudden Cardiac Arrest (SCA) Prediction with Different Random Forests Approaches. a, b, c Time-varying
AUC curves for the RSF approach which uses only baseline covariates (panel a), RF-SLAM approach with only baseline covariates (panel b), RF-SLAM
approach with both baseline and time-varying covariates (panel c). d, e, f Predicted survival curves from RSF (panel d), RF-SLAM approach with only
baseline covariates (panel e), and RF-SLAM approach with both baseline and time-varying covariates (panel f). Individuals who experienced an SCA
are colored-coded in red and all others are colored-coded in green. Note each column of plots corresponds to the same model (i.e. the left column
corresponds to the RSF approach, center column corresponds to the RF-SLAM approach with only baseline covariate, and the right column
corresponds to the RF-SLAM approach with both baseline and time-varying covariates)

hazard predictions, and the difficultly in handling a large
number of variables, non-linearities, and missing predic-
tor values. While more recently developed approaches,
such as random survival forests, offer ways to overcome
some of these challenges, limitations remain in areas such
as handling data where predictor variables are measured
longitudinally as time-varying covariates, addressing data
imbalance issues, and expressing uncertainty about the
predictions. To address these limitations, we intro-
duce RF-SLAM as a piecewise-constant hazard survival

analysis approach to extend the utility of random survival
forests. Specifically, we develop a splitting function based
upon the Poisson regression log-likelihood and Bayes esti-
mate of the hazard rate. A comparison between RSF and
RF-SLAM is provided in Additional file 1: Table S3. RF-
SLAM allows for the handling of time-varying predictors
and time-varying effects through the CPIU formulation of
the data and the split rule based upon the Poisson log-
likelihood. Additionally, since the split rule is based upon
Poisson regression rather than the log-rank statistic, the
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Fig. 3 Comparison of Calibration for Sudden Cardiac Arrest (SCA) Prediction with Different Random Forests Approaches. a Calibration curves by
decile of predicted risk for the RSF approach which uses only baseline covariates, b RF-SLAM approach with only baseline covariates, c RF-SLAM
approach with both baseline and time-varying covariates. For each panel, the difference between the predicted and observed rates are plotted for
each decile. The black points indicate the estimates from the original data set. The mean predicted risk (%/year) for each decile are presented at the
bottom of the plot. The gray bars indicate the 95% confidence intervals from 500 bootstrapped data sets

splitting does not depend upon the proportional hazards
assumption, which is often inappropriate or an oversim-
plification in the analysis of real life data. Because RSF
employs the log-rank statistic for its split rule, it is possi-
ble that RSF will be unable to select potentially beneficial
splits if the proportional hazards assumption is violated
since the key requirement for the log-rank test optimality
is proportional hazards [43, 44, 65–68].
To characterize model performance, we consider both

discrimination and calibration since both are important
aspects of model performance to consider in developing
and evaluating a model for clinical risk prediction. When
the model is intended for clinical applications, a useful
model not only discriminates between individuals with
and without the outcome of interest, but also provides a
risk estimate that can be interpreted as a probability or
a predicted rate of event occurrence (e.g. a probability
of disease of 0.9 should correspond to 9 individuals hav-
ing the disease out of 10 individuals who are similar to
the patient under consideration, and a predicted rate of
1 event/5 years should correspond to an observation of 1
event occurring in 5 years). A highly discriminating model
can be poorly calibrated and limit the clinical utility of
the model when the objective is to obtain an accurate pre-
diction of the individual’s absolute risk. Thus, appropriate
model assessment is essential for the clinical impact of
these prediction tools [55, 60, 69].
For demonstrating the development of RF-SLAM and

its application to SCA prediction, we introduce the RF-
SLAM methodology with a single time-to-event outcome
(i.e. time to SCA) and both static and dynamic predictors

(i.e. baseline and time-varying covariates). Although not
presented here, the extensions of this fundamental RF-
SLAM formulation are manifold and include the consid-
eration of multiple recurrent or competing events (e.g.
repeat occurrences of SCA or the occurrences of SCA,
HF, and/or death). In this work, we focus on model-
ing the conditional distribution of SCA given baseline
information (i.e. patient demographics) and longitudinal
covariates (i.e. number of previous HF hospitalizations).
To handle multiple time-to-event outcomes, RF-SLAM
can be extended to consider the joint distribution of these
multiple outcomes through a modification of the splitting
criteria of the tree construction. Furthermore, our CPIU
data formulation, while used here to allow for piecewise-
constant hazard survival analysis (in which the hazard is
considered to be constant within each CPIU), can be easily
applied to other types of analyses. For instance, for longi-
tudinal data analysis where the outcome is a continuous
variable (e.g. modeling a patient’s blood pressure trajec-
tory over time) can be performed using the mean-squared
error split function. Additionally, RF-SLAM could be used
for longitudinal classification and analysis of multivari-
ate outcomes (e.g. competing risks). Since RF-SLAM is
an extension of the publicly available R package for sur-
vival, regression, and classification (randomForestSRC)
[42], split functions for regression and classification are
also available for RF-SLAM.
In our analysis of the LV Structural Predictors of SCD

Registry, we demonstrate the best performance for SCA
prediction with RF-SLAM using both baseline and time-
varying covariates. Using our RF-SLAM approach with
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just baseline covariates also demonstrates improved pre-
dictive performance compared with RSF. While this is
a univariate prediction problem and further research is
required to understand the general properties of RF-
SLAM, we hypothesize that the improvement in per-
formance is due in part to the fact that our Poisson
log-likelihood split function is not based upon a propor-
tional hazards assumption and can naturally handle time-
varying effects. In contrast, RSF uses the log-rank statistic,
which has the key requirement of proportional hazards
to achieve optimality [65–68]. In our proof-of-concept
example, we demonstrate that while all three methods are
well calibrated overall, the best discrimination between
individuals with and without SCA is achieved with RF-
SLAM using both baseline and time-varying covariates.
We also express estimates of model performance with

confidence intervals through the non-parametric boot-
strap [62]. Since this approach does not apply naturally
to the case of expression of uncertainty for individual-
level predictions because the bootstrap sample on which
each forest is constructed varies, we also describe in the
Additional file 1 the parametric bootstrap approach. With
the parametric bootstrap approach, we develop the frame-
work for utilizing extended data and simulated outcomes
to create synthetic data sets for the quantification of the
degree to which the RF-SLAM predictions might vary
by training the forest on a new training set. Although
other approaches, such as the jackknife and infinitesimal
jackknife approaches have been applied to generate con-
fidence intervals for random forests estimates [70], our
method has utility beyond confidence interval generation.
Our parametric bootstrap approach which is based upon
simulating alternate training data sets can also be used
in simulation studies to examine the impact of different
properties of the data set on the overall predictions (e.g.
the number of events, strength of the predictors, degree of
data imbalance in the outcomes of interest, etc.).
Although RF-SLAM provides a new approach to the

analysis of SLAM data, further research is necessary to
fully understand its strengths and limitations. The data
set analyzed in the proof-of-concept example is represen-
tative of the sample size and corresponding challenges
often encountered in the analysis of clinical data. The
width of the confidence intervals for ˆAUC(t) (Additional
file 1 Figure S1) reflect the low number of events and
overall observations in the small cohort considered (75
SCA events and 382 individuals). While machine learn-
ing methods are often expected to require “big data” since
they can perform well on high dimensional prediction
problems with large sample sizes and large number of
predictors [1], here we demonstrate that it is also pos-
sible to apply RF-SLAM to a smaller sized data set. To
better understand the characteristics of RF-SLAM, its
performance in data sets of varying number of patients,

events, and predictors requires further analysis. Other
potential areas of future work include: examining other
terminal node estimates for the hazard to compare with
the Bayes estimate of the hazard; comparing the perfor-
mance with different node sizes, number of trees, and
potential variables to consider for splitting at each node;
studying the robustness of the RF-SLAM predictions to
missing data; and implementing sampling methods to cre-
ate balanced training data sets and determining how dif-
ferent implementations impact predictive performance.
Other areas of work include comparing the performance
of RF-SLAM with joint modeling approaches for lon-
gitudinal and time-to-event data [71–74]. Additionally,
through the inclusion of error terms, joint models can
account for measurement error in the covariates [71].
Future extensions of RF-SLAM that account for measure-
ment error may be required when working with noisy
data where there is high concern regarding data qual-
ity (e.g. patient generated data from self-tracking through
smartphones or wearable devices).

Conclusion
We introduce a new approach to clinical risk prediction
with SLAM data that builds upon prior methods for sur-
vival analysis and tree-based strategies. RF-SLAM is a
Poisson regression forest that utilizes a Poisson split rule
and a Bayes estimate of the hazard rates. Our approach
is distinct from the previously developed RSF for survival
analysis in that RF-SLAM can handle time-varying predic-
tors, provide a predicted probability of failure in each time
interval in consideration, and quantify the uncertainty
in the predictions. We also present a method-agnostic
approach for time-varying evaluation of model perfor-
mance. We illustrate the methods using three different
proof-of-concept approaches utilizing random forests for
SCA prediction in the LV Structural Predictors of SCD
Registry and demonstrate the improvement in perfor-
mance that can be achieved using the RF-SLAM approach
with time-varying covariates. Overall, the applications
and future directions of RF-SLAM are numerous and have
potential to improve the analysis of data in medicine and
beyond.
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