
Coal Identification Based on Reflection Spectroscopy and Deep
Learning: Paving the Way for Efficient Coal Combustion and
Pyrolysis
Dong Xiao,* Zelin Yan, Jian Li, Yanhua Fu, Zhenni Li, and Boyan Li

Cite This: ACS Omega 2022, 7, 23919−23928 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Coal plays an indispensable role in the world’s
energy structure. Coal converts chemical energy into energy such as
electricity, heat, and internal energy through combustion. To
realize the energy conversion of coal more efficiently, coal needs to
be identified during the stages of mining, combustion, and
pyrolysis. On this basis, different categories of coal are used
according to industrial needs, or different pyrolysis processes are
selected according to the category of coal. This paper proposes an
approach combining deep learning with reflection spectroscopy for
rapid coal identification in mining, combustion, and pyrolysis
scenarios. First, spectral data of different coal samples were
collected in the field and these spectral data were preprocessed.
Then, an identification model combining a multiscale convolutional neural network (CNN) and an extreme learning machine
(ELM), named RS_PSOTELM, is proposed. The effective features in the spectral data are extracted by the CNN, and the feature
classification is realized utilizing the ELM. To enhance the identification performance of the model, we utilize a particle swarm
optimization algorithm to optimize the parameters of the ELM. Experimental results show that RS_PSOTELM achieves 98.3%
accuracy on the coal identification task and is able to identify coal quickly and accurately, providing a low-cost, efficient, and reliable
approach for coal identification during the mining and application phases, as well as paving the way for efficient combustion and
pyrolysis of coal.

1. INTRODUCTION

Coal is an essential energy source and industrial raw material
and is the energy source with the largest number of varieties
and the longest history of exploitation in the fossil energy
family, which has made an extremely significant contribution to
the development of human civilization. Coal can be classified
into three main categories according to its genesis,
composition, and organization: anthracite, bituminous coal,
and lignite.1 As China is the world’s largest coal producer and
consumer, the accurate identification of coal is of great
significance to improve the efficiency of coal utilization. Chen1

took 1100 coal samples from major coal mines in China and
performed proximate, final, coal petrographic and calorific
analyses, which showed that the properties of different
categories of coal varied widely. Taking combustion as an
example, anthracite is highly carbonized and has a high ignition
point, which makes it difficult to ensure the stability of
combustion, so it is not suitable for power plant boilers;
bituminous coal is moderately carbonized and is mainly
utilized as a boiler fuel and raw material for coking; lignite is
the least carbonized and easily weathered, so it is mainly used
as a boiler fuel for power plants near its origin. Coal grading

conversion is one of the means for efficient, clean utilization
and sustainable development of coal, while pyrolysis is the
initial stage of coal conversion. In the coal pyrolysis stage, the
lignite mainly adopts the method of low-temperature dry
distillation, while the bituminous coal mainly adopts the
method of high-temperature dry distillation, and the products
mainly include gas, tar, semicoke, or coke. The products of
pyrolysis are closely related to the category of coal and the
pyrolysis process. Different pyrolysis processes are applicable
to different categories of coal, and the ingredients of different
categories of coal vary significantly, resulting in different
contents and quality of pyrolysis products. As can be seen,
applications such as combustion and pyrolysis of coal are
closely related to the category of coal, so accurate identification
of coal is particularly necessary. The current approaches for

Received: April 29, 2022
Accepted: June 17, 2022
Published: June 29, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

23919
https://doi.org/10.1021/acsomega.2c02665

ACS Omega 2022, 7, 23919−23928

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dong+Xiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zelin+Yan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jian+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yanhua+Fu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhenni+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Boyan+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c02665&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/27?ref=pdf
https://pubs.acs.org/toc/acsodf/7/27?ref=pdf
https://pubs.acs.org/toc/acsodf/7/27?ref=pdf
https://pubs.acs.org/toc/acsodf/7/27?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c02665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


coal identification mainly include the artificial empirical
method, weighing method, and chemical analysis method.
Among them, the artificial empirical method and the weighing
method have the disadvantage of unreliable accuracy, and the
chemical analysis method has high accuracy but has the
shortcomings of a long detection cycle and high detection
cost.2 Therefore, proposing a low-cost, high-efficiency, and
high-reliability coal identification method is of great signifi-
cance for developing the economy, protecting the ecological
environment, and achieving sustainable development goals.
The spectral analysis technique has advantages such as high

efficiency and low expense. The timely measurement
information it provides can provide the basis for the
identification of coal before combustion and pyrolysis, which
can significantly improve efficiency and reduce the con-
sumption of time and resources. In recent years, spectral
analysis techniques have been extensively applied in the fields
of soil, minerals, food, and so on.3−8 For coal, spectroscopy is
used to analyze and identify the category, composition,
structure, and other characteristics of coal. Zhang et al.9

combined the laser-induced breakdown spectra (LIBS) and
independent component analysis-wavelet neural network for
coal ash classification and achieved excellent performance,
promoting the recovery and reuse of metallurgical waste. Lei et
al.10 proposed a coal classification model combining
generalized learning and the particle swarm optimization
(PSO) algorithm, which overcomes the problems of data
redundancy in the original spectral data and obtained 97.05%
accuracy. Zhang et al.11 utilized the support vector machine
(SVM) optimized by the genetic algorithm to categorize coal
samples and utilized partial least-squares (PLS) regression to
model each category of coal samples to obtain precise
measurements of ash, volatile content, and calorific value.
Yan et al.12 utilized an approach that combined wavelet
transform and mean impact value to abstract valuable
information from LIBS, which effectively reduced computation
time and improved model performance. Begum et al.13 first
improved the signal-to-noise ratio of the spectrum by
preprocessing and then used the least-squares method, random
forest (RF), and extreme gradient boosting to predict the coal
composition and obtained the best accuracy for different
compositions, respectively. Yao et al.14 used LIBS and near-
infrared spectroscopy (NIRS) to optimize coal characteristics
and established an analytical model and achieved accurate
predictions for volatiles, ash, and moisture content. Sun et al.15

predicted the cutoff value of T-2 spectra representing the pore
structure of coal by a back-propagation (BP) network model
and obtained a better prediction, which provides a reliable
approach for coal structure detection.
Because of the high dimension, strong correlation, and noise

interference of spectral data, the current methods mainly use
preprocessing such as principal component analysis to reduce
dimensionality and denoise the spectral data and use the PLS
or SVM algorithm for modeling. If the improper preprocessing
method is adopted, it is not conducive to the improvement of
the model performance, but also leads to the unreliable
prediction accuracy of the subsequent model. Deep learning
(DL) has been extensively applied in various fields.16−18 DL is
capable of building end-to-end analytical models without
relying on preprocessing.19,20 Xiao et al.21 extracted spectral
data features through a deep belief network and then
constructed the coal analysis model using a derivative function
with a regularization two-layer extreme learning machine (DF-

RTELM) algorithm. Le et al.22 proposed a method combining
the convolutional neural network (CNN), extreme learning
machine (ELM), and visible and near-infrared spectroscopy for
coal identification, achieving 96.51% classification accuracy,
demonstrating the effectiveness of the feature extractor and
classifier in the CNN-ELM model. Azimi et al.23 presented an
approach for beta-gamma coincidence radioxenon spectra
using the CNN and achieved high classification accuracy.
Zhang et al.24 integrated the one-dimensional CNN and long
short-term memory networks for the detection of soil water
content. Machado et al.25 utilized a deep neural network to
remove the noise in the spectrum, and the spectral resolution
was effectively improved.
The ELM is a model with a structure of one-hidden layer

feedforward neural network.26 The model runs rapidly and has
a simple structure, and a lot of scholars have applied and
improved it.27−29 In spectroscopy, the ELM is extensively
applied in the construction of analytical and classification
models. Mao et al.30 established a multilayer ELM model for
coal identification, and the experimental results show that it
can achieve an identification accuracy of 92.25% while taking
into account the speed. Yan et al.31 proposed a method
combining the kernel-based ELM (K-ELM) with LIBS for
detecting carbon and sulfur content in coal and finally achieved
an R2 of 0.994 and an RMSE of 0.3762%. Because carbon
content is an important basis for coal identification, accurate
detection of carbon content is also helpful for coal
identification and utilization. Chen et al.32 proposed the
ensemble window ELM (EWELM) algorithm to detect the
content of impurities in drugs. The experiments show that the
EWELM is better than PLS and the full-spectrum ELM
algorithm. Liang et al.33 combined laser-induced breakdown
spectroscopy and a particle swarm-optimized K-ELM algo-
rithm to classify six species of Salvia miltiorrhiza in different
regions. The experimental results show that the identification
accuracy of this classification model is better than that of
particle swarm optimization-least-squares support vector
machines (PSO-LSSVM) and particle swarm optimization-
random forest (PSO-RF) models, with an accuracy of 94.87%.
Chen et al.34 proposed an ensemble ELM algorithm, which can
achieve multivariate calibration of NIRS, and the experimental
results are better than those of the PLS algorithm.
The ELM is an effective spectral modeling method, but

spectral data are generally highly interrelated. Modeling is
often poor while the ELM is applied directly on the basis of
raw spectral data. Compared with the ELM, DL is more
capable of processing complex data. This paper combines the
CNN and ELM, leverages the advantages of both algorithms,
and establishes a high-performance coal identification model,
which is named RS_PSOTELM. To further strengthen the
predictive capability and stability of the model, we optimize the
classifier parameters using the PSO algorithm. Finally,
comparative experiments demonstrate the excellent perform-
ance of the RS_PSOTELM model.

2. THEORY AND METHODOLOGY
2.1. Application of DL in Coal Identification. Because

different categories of coal have different products during
combustion and pyrolysis, the application scenarios of different
categories of coal are also different. To utilize the chemical
energy in coal efficiently, it is necessary to identify the coal. In
this paper, we apply a DL approach to identify coal spectral
data, and the detailed application process is shown in Figure 1.
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The first part is the data part. High-quality data are the basis
for the excellent performance of the identification model. The
forms of data are mainly divided into reflectance spectra,
hyperspectral, and remote sensing images.
Reflectance spectra are mainly measured by spectrometers,

and hyperspectral and remote sensing images are obtained by
satellites. The second part is the DL part. The obtained
spectral data are divided randomly in the ratio of 3:1, and 75%
of the samples are regarded as the training set and the rest as
the test set.
Among them, the training set is used for model training, and

through multiple iterations of training, the model is made to
learn the features in the spectral data. At the same time, using
the preset labels to reversely correct the model parameters,
continuously optimize the model parameters, and finally, build
a model for coal identification. The test set is utilized to
evaluate the identification model obtained from training. The
data from the test set are fed into the model, and the model
predicts an output based on the parameters obtained from
previous training. The performance evaluation of the model
can be completed by comparing the output value with the
preset labels. The third part is the evaluation of the predicted
results. In classification problems, accuracy is often used as an
evaluation indicator, while in regression problems, RMSE and
R2 indicators are more inclined to measure the performance of
the model. Coal identification is a classification problem, and
the final output includes anthracite, bituminous, and lignite.
Therefore, this paper adopted accuracy as the evaluation index.
2.2. Convolutional Neural Network. The CNN is the

most effective approach to extract features in the image
processing domain currently.35,36 Many classical networks, for
instance, FCN,37 DenseNet,38 and U-Net,39 utilized the CNN
for image feature extraction and achieved satisfactory results.
The structure of a typical CNN is composed mainly of
convolutional, pooling, and fully connected (FC) layers.40,41

A CNN usually includes multiple convolutional layers, and
feature extraction is achieved by utilizing the sliding of
convolutional kernels in each convolutional layer. Assuming
that the spectral data size is 4 × 4, the convolution kernel is 3
× 3, and the stride is 1, the convolution process is shown in
Figure 2a. After convolution processing, the dimension of the
spectral data is reduced from 4 × 4 to 2 × 2, the data are more
compact, and the information in the original spectral data is
included.

The pooling layer in the CNN mainly includes two
methods: maximum pooling and average pooling. The pooling
process is shown in Figure 2b. In the max pooling operation,
the network selects the largest number in the filter as the
output. In the average pooling operation, the network selects
the mean of all numbers within the filter range as the output.
After processing by the pooling layer, not only the
dimensionality reduction and denoising of the data can be
achieved, but also overfitting can be avoided.
The FC layer in the CNN is usually located in the last layer

of the network. After processing by convolution, pooling, and
activation function, the features in the original data are mapped
to the hidden layer feature space. The FC layer acts as a
classifier, mapping the previously learned features to the
sample label space, and then obtaining the final classification
result. In practical applications, the FC layer can be
implemented by convolutions of different sizes according to
the specific composition of the previous layer.

2.3. Residual Network. As the application scenarios of
models become more and more complex, the requirements for
model performance are gradually increasing. To obtain more
refined features, the depth of the network is also deepening.
When the network reaches a certain depth, simply adding
convolutional layers does not reduce the training error. As the
depth of the network increases, there may be problems such as
overfitting, vanishing gradients, exploding gradients, and
degradation. In addition, model deepening may also cause a
decrease in the learning capability of certain shallow networks,
thus limiting the learning of deeper networks. To address this
problem, He et al.42 proposed a residual network, which has
few parameters, high efficiency, and enhanced feature transfer

Figure 1. Application process of DL.

Figure 2. Process of (a) convolution and (b) pooling.
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between layers. A comparison of the residual network and the
normal network structure is shown in Figure 3.

By adding a constant mapping branch to the original
network, the residual network is able to map the input to the
next layer through a function, while transferring the input
directly to the next layer through a constant mapping. Finally,
the two sets of features are summed element by element for
integration, ensuring that the model performance does not
degrade as the network depth increases. The connection
between the input and output of the residual network is
represented as eq 1.

ω= +y f F x x( ( ) ) (1)

where F(x) represents the mapping relationship between
residual units; ω represents the linear mapping used for
dimension matching; x represents the input; y represents the
output; f(x) represents the activation function.
2.4. Extreme Learning Machine. The ELM is a

feedforward neural network, and the network structure is
shown in Figure 4a. The model randomly generates weights
and thresholds between the input layer and the first hidden
layer and obtains the optimal output matrix through the least-
squares method after obtaining the output value. Because the
model does not require back-propagation to correct parame-
ters, the computation speed is significantly improved. The
calculation steps are as follows.
(1) Multiply the input matrix by the weight matrix;
(2) Add to the bias matrix;
(3) Calculate the activation function;
(4) Calculate the output value;

(5) Calculate the output matrix using the least-squares
method.
The two-layer extreme learning machine (TELM) algorithm

adds a second hidden layer to the ELM algorithm. Compared
with the calculation steps of the ELM, the calculation steps of
the TELM additionally need to combine the inverse function
and Moore Penrose matrix to calculate the output weight of
the second hidden layer. The network structure is shown in
Figure 4b.

2.5. Particle Swarm Optimization. The PSO algorithm is
proposed inspired by the foraging behavior of bird flocks. It has
the advantages of rapid convergence, few parameters, and
convenient realization. The effect of the algorithm is shown in
Figure 5. The optimal position is at the yellow circle, and after

N iterations, the flock tends to the optimal position from the
scattered state. In the PSO algorithm, only two properties,
velocity and position, are given to all particles. Velocity
represents the speed of movement, and position represents the
movement orientation. The algorithm mainly includes the
following four parts.

2.5.1. Initialization. First, the parameters in the algorithm
are initialized. The particle group size is set to 40 and the
number of maximum iterations to 50, the number of objective
function arguments to 2, the speed interval to [−1, 1], and the
search space to [−1, 1]. All particles are randomly given an
initial velocity and position.

2.5.2. Finding Individual Extremum and Global Optimal
Value. The individual extremums are the optimal values found
for each particle. According to the fitness function, a globally
optimal value is found from these optimal values. Velocity and
position are updated by comparison with the previous global
optimal value.

2.5.3. Update Velocity and Position. The velocity of the
particle is updated based on eq 2.

= + −

+ +

V wV C P X

C P X

random(0, 1)( )

random(0, 1)( )
id id 1 id id

2 gd id (2)

Figure 3. Structure comparison of (a) residual network and (b)
ordinary network.

Figure 4. Network structure of (a) ELM and (b) TELM.

Figure 5. Effect of the PSO algorithm.
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The position of the particle is updated based on eq 3.

= +X X Vid id id (3)

where w is called the factor of inertia, C1 and C2 are called the
acceleration constants, generally taken as C1 = C2 ∈ [0,4],
random (0,1) means a random value on the range [0,1], Pid
denotes the individual extremum of the i-th variable in the d-th
dimension, and Pgd denotes the d-th dimension of the global
optimal value.
2.5.4. Termination Condition Setting. When the set

amount of iterations is reached or the fitness value satisfies
the difference requirement, the iteration is terminated and the
optimal value is output.
2.6. Collection and Processing of Spectra. In this

paper, 71 samples of anthracite, 80 samples of bituminous, and
58 samples of lignite were collected, each sample containing
973-dimensional spectral features. Spectral data are usually
processed in 1-D form. 1-D spectral information mainly
provides peak characteristics of different bands, which can be
analyzed in a limited space. After transforming the spectrum
from 1-D to 2-D, the CNN can not only obtain deeper features
in the spectral data but also realize the feature fusion of
adjacent bands.
To facilitate 2-D processing, some bands are randomly

selected for linear combination, and the dimension is extended
from 973 to 1024. Although the dimension of the spectrum is
increased, no new spectral information is introduced and will
not affect the identification results. After obtaining the 1024-
dimensional spectral data, each sample is arranged into a 32 ×
32 matrix according to the “S” shape, and then the 2-D spectral
data can be obtained. As shown in Figure 6, after the spectral
data are converted from 1-D to 2-D, the texture features can be
better reflected, which helps the CNN extract spectral features.
2.7. Identifying Model. The TELM algorithm performs

effectively on multiclassification tasks but has the following
drawbacks. First, the TELM algorithm is not effective in
processing complex and high-dimensional data, and the
identification accuracy is hard to meet the requirements.
Second, both the weight and bias of the first hidden layer in
the TELM algorithm are random values, which makes the
algorithm effect fluctuate greatly and not stable enough.
Aiming at the first shortcoming of the TELM algorithm, this

paper proposes a new CNN model with structural parameters
such as Tables 1 and 2. The model consists of eight
convolutional layers, eight normalization layers, and three
pooling layers combined with different categories of residual
connections. It effectively realizes the multiscale fusion of
spectral features, while avoiding the common problems of
overfitting, gradient disappearance, gradient explosion, and
degradation in deep networks.

Aiming at the second disadvantage of the TELM algorithm,
this paper applies the PSO algorithm to find the optimal
solution for the first hidden layer weight matrix and bias vector
in the TELM algorithm. A PSOTELM algorithm based on
PSO and TELM is established to achieve a more stable and
accurate classification effect. The PSOTELM algorithm flow is
shown in Figure 7.
The FC layer usually plays the role of a classifier. The deep

spectral features obtained after the convolution and pooling
processing are sent to the FC layer, and the classification
function is realized after processing by the FC layer. In the
CNN training process, like the parameters of the convolution
kernel and the pooling kernel, the parameters of the FC layer

Figure 6. Conversion of spectral dimensions.

Table 1. Structural Parameters of the CNN Branch Model

layer type
filter
size

filter
number

step
size

activation
function

1 input
2 convolution 1 1 16 ReLU
3 batch

normalization
4 max pooling 2

Table 2. Structural Parameters of the CNN Backbone
Model

layer type
filter
size

filter
number

step
size

activation
function

1 input
2 convolution 1 32 1
3 batch

normalization
4 convolution 3 8 1
5 batch

normalization
6 convolution 3 8 1
7 batch

normalization
8 convolution 3 8 1
9 batch

normalization
10 convolution 1 1 1 ReLU
11 batch

normalization
12 convolution 5 16 1 ReLU
13 batch

normalization
14 max pooling 2
15 convolution 5 1 1 ReLU
16 batch

normalization
17 max pooling 2
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also need to obtain the gradient through the back-propagation
algorithm and use the gradient descent method to achieve the
minimum loss. When the network model is large, the scale of
parameters such as weights and biases of the FC layer also
becomes larger, leading to a larger consumption of computa-
tional resources. In addition, the classification performance of
PSOTELM is better than that of the FC layer, and PSOTELM
can be applied as the classifier of the CNN instead of the FC
layer to obtain better classification results. To address the
problems of FC layers, this paper adopts the PSOTELM
algorithm to replace FC layers as classifiers of CNN models,
which improves the identification accuracy while saving
computational resources. Figure 8 shows the overall structure
of the identification model proposed in this paper.

3. RESULTS AND DISCUSSION
The model in this paper is built using the Python programming
language under the Pytorch1.7 framework in Windows 11 and
combined with MATLAB 2018b to visualize the training
process and identification results. In this paper, all
experimental networks are trained on Intel Core i7 processors
with 16-GB RAM. The graphics card model used is NVIDIA
RTX 3060. We set the batch size to 8, the max epoch to 128,
and the learning rate to 0.001.
3.1. Experimental Result. In this paper, 209 samples in

three categories are collected, and the samples are randomly
divided into the training set and test set (150 samples are
applied for training and 59 samples are applied for testing).
Label anthracite as 1, bituminous as 2, and lignite as 3. Figure 9
shows the training process of the CNN. The line graph
composed of red dots shows the accuracy change of the
network, where each red dot represents the identification
accuracy of an epoch, and the training error is represented by
vertical line segments. It can be seen that in the first 90
iterations, there are large fluctuations in both accuracy and
error. After 90 epochs, the accuracy is stable at around 99%
with almost no fluctuation, and the fluctuation of the error is
also significantly reduced and tends to 0. The identification
results of the overall model are shown in Figure 10. Anthracite
and lignite were all correctly identified, but only one sample of

bituminous was identified incorrectly, and the overall accuracy
rate reached 98.3%. It can fully meet the identification
requirements in the process of coal mining, combustion, and
pyrolysis to ensure efficient utilization of coal resources.

3.2. Algorithm Comparison and Evaluation. To verify
the effectiveness of the RS_PSOTELM model proposed in this
paper, we selected several models for comparison, including
ELM, TELM, PSO_TELM, BP, SVM, RF, and RS_Net.
Among them, the structures of RS_Net and RS_PSOTELM
are similar, and the only difference is that RS_Net adopts the
FC layer as the classifier. In this paper, the feature extraction
capability of CNN is demonstrated by comparing RS_PSO-
TELM with ELM, TELM, and PSO_TELM. By comparing
with BP, SVM, and RF, we demonstrate that RS_PSOTELM
outperforms the commonly applied classification methods in
spectral processing; by comparing with RS_Net, we demon-
strate the superior performance of PSOTELM in spectral
feature identification and classification. Table 3 summarizes the
specific identification accuracy of the different models.
Compared to the other models, RS_PSOTELM achieves the
best results in the coal identification task with an accuracy of
98.3%. The identification results of different models on
anthracite, bituminous coal, and lignite respectively are
depicted in Figure 11. In the anthracite identification task, all

Figure 7. Flow of the PSOTELM algorithm.

Figure 8. Structure of the RS_PSOTELM model.
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models have wrongly identified samples, and BP has the largest
number of wrongly identified samples, which is 14. In the

identification task of bituminous coal, PSO_TELM and BP
have no wrongly identified samples, and obtained the best

Figure 9. Training process of the model.

Figure 10. Identification results of the RS_PSOTELM model.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02665
ACS Omega 2022, 7, 23919−23928

23925

https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02665?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


identification results, while other models have different
wrongly identified samples. In the lignite identification task,
only TELM, BP, and RF have misidentified samples, of which
BP has the largest number of wrongly identified samples, and
other models are correct for lignite identification. Combining
Table 3 and Figure 11, it can be seen that the overall
performance of RS_PSOTELM is better than that of other
models in the three coal identification tasks, and its excellent
identification performance paves the way for the efficient
utilization of coal resources.
The comparison of time cost, accuracy, and economic cost

of coal identification by the chemical analysis method, manual
experience method, weighing method, and RS_PSOTELM
model is shown in Table 4, applied to 200 coal samples,

respectively. As you can see, RS_PSOTELM only costs 10 h
and $100. Although the manual experience method and
weighing method have lower cost, they have the disadvantage
of lower accuracy. In contrast, chemical analysis methods have
the highest precision but are extremely expensive and time-
intensive. If the cost of chemical analysis lab equipment is
included, some may cost more than $300,000. Relatively

speaking, RS_PSOTELM has the advantages of high speed,
high precision, and low cost.

4. CONCLUSIONS
Coal identification is a prerequisite for applications such as
coal combustion and pyrolysis. For the coal identification
problem in coal mining and applications, this paper proposes a
coal identification method that combines DL and spectrosco-
py. The superior performance of the RS_PSOTELM model is
demonstrated through extensive experiments, proving the
superiority of the method for coal identification tasks. This
provides a low-cost, efficient, and reliable identification method
for coal mining, combustion, and pyrolysis processes. In
industrial applications, bituminous coal is further classified into
long-flame coal, gas coal, fatty coal, and so on. In the next step,
we will identify different coal types within the range of
bituminous coal. In addition, because both CNN and ELM
have good generalization performance, the scope of future
research can be not only limited to the identification of coal,
but also extend the method to the identification tasks of Fe3O4,
Fe2O3, and FeCO3 in iron ore.
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