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Maternal stress induced 
endoplasmic reticulum stress 
and impaired pancreatic islets’ 
insulin secretion via glucocorticoid 
receptor upregulation in adult male 
rat offspring
Mina Salimi1, Farzaneh Eskandari2, Fateme Binayi2, Afsaneh Eliassi2,3, Hossein Ghanbarian4, 
Mehdi Hedayati5, Javad Fahanik‑babaei6, Mohamad Eftekhary4, Rana Keyhanmanesh  1,7* &  
Homeira Zardooz  2,3*

Exposure to perinatal (prenatal and/or postnatal) stress is considered as a risk factor for metabolic 
disorders in later life. Accordingly, this study aimed to investigate the perinatal stress effects on 
the pancreatic endoplasmic reticulum (ER) stress induction, insulin secretion impairment and 
WFS1 (wolframin ER transmembrane Glycoprotein, which is involved in ER homeostasis and insulin 
secretion) expression changes, in rat offspring. According to the dams’ period of exposure to variable 
stress, their male offspring were divided into, control (CTRL); pre-pregnancy, pregnancy, lactation 
stress (PPPLS); pre-pregnancy stress (PPS); pregnancy stress (PS); lactation stress (LS); pre-
pregnancy, pregnancy stress (PPPS); pregnancy, lactation stress (PLS); pre-pregnancy, lactation stress 
(PPLS) groups. Offspring pancreases were removed for ER extraction and the assessment of ER stress 
biomarkers, WFS1 gene DNA methylation, and isolated islets’ insulin secretion. Glucose tolerance 
was also tested. In the stressed groups, maternal stress significantly increased plasma corticosterone 
levels. In PPS, PS, and PPPS groups, maternal stress increased Bip (Hsp70; heat shock protein family 
A member 4), Chop (Ddit3; DNA- damage inducible transcript3), and WFS1 protein levels in pancreatic 
extracted ER. Moreover, the islets’ insulin secretion and content along with glucose tolerance were 
impaired in these groups. In PPS, PS, LS and PPPS groups, the pancreatic glucocorticoid receptor 
(GR) expression increased. Maternal stress did not affect pancreatic WFS1 DNA methylation. Thus, 
maternal stress, during prenatal period, impaired the islets’ insulin secretion and glucose homeostasis 
in adult male offspring, possibly through the induction of ER stress and GR expression in the pancreas, 
in this regard the role of WFS1 protein alteration in pancreatic ER should also be considered.

Impaired insulin secretion from the islets of Langerhans is one of the major causes of metabolic disorders 
associated with glucose metabolism such as diabetes, which could be caused by several environmental factors 
including stress1. Prevalence of metabolic disorders was thought to be mainly affected by genetic factors; however, 
genetics cannot explain all reasons causing metabolic disorders, thus recent research has focused on lifestyle as 
a major factor for the incidence of metabolic diseases2. Maternal stress/perinatal stress is considered to be a risk 
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factor in terms of trans-generational consequences. It refers to maternal exposure to stressful conditions such 
as psychological and physical distress (e.g., depression, anxiety, high carbohydrate and/or high fat diets) during 
preconception, pregnancy and also lactation periods, which can affect the programming of developing organs 
of offspring, and may lead to negative outcomes, such as cardiovascular dysfunction and diabetes in later life3,4. 
The critical mechanisms proposed to explain these associations are poorly understood. Epigenetic changes in 
various body systems, induced by elevated levels of glucocorticoids, has been suggested as a potential mechanism 
linking adverse experiences during perinatal period and impaired offspring health in later life5. Many human 
and animal studies have verified that perinatal exposure to high levels of glucocorticoids can, directly and indi-
rectly, change the expression levels of ‘epigenetic regulator’ genes such as DNA methyltransferase 1 (Dnmt1) 
in offspring, through free fatty acids, inflammatory cytokines, oxidative stress, and hyperglycemia6. Alteration 
of offspring hypothalamus–pituitary–adrenal (HPA) axis programming (and hence circulating glucocorticoid 
levels) may result in an increased HPA responsiveness to stress in adulthood7.

Recent studies have demonstrated that DNA methylation was sensitive to early life exposure to environmental 
stress. As proof, adult offspring with a history of child abuse and neglect showed anxiety and HPA axis dysfunc-
tion in adulthood and these offspring exhibited hyper-methylated and reduced expression of hippocampal gluco-
corticoid receptors (GR)8. In contrast, higher early postnatal maternal care such as lick-groom and arched-back 
nursing (LG-ABN) behaviors towards the pups, caused hypo-methylation and elevated GR expression in the 
hippocampus and reduced responses to stress9. Furthermore, Nyirenda et al. indicated that exposure to excessive 
glucocorticoids during pregnancy and lactation had long-lasting effects on the programming of metabolic signal-
ing pathways which manifested as hyperglycemia, glucose intolerance, and insulin resistance in adult animals10. 
On the other hand, it has recently been shown that the stress of endoplasmic reticulum (ER) is a central mecha-
nism involved in the onset of diseases related to metabolic disorders. Endoplasmic reticulum (ER) homeostasis 
is crucial for the appropriate function of cells, and a safeguard system called unfolded protein response (UPR) 
is activated consequent to impaired ER homeostasis. This UPR seeks to alleviate the adverse effects of ER stress 
by activating three signaling pathways: IRE1, PERK and ATF6, which are referred to as UPR sensors11,12.

A study has demonstrated that environmental and genetic factors were the causes of ER stress induction, 
specifically in β cells, which may lead to the reduction of insulin synthesis and secretion13. Moreover, Linssen 
et al. reported that prednisolone treatment could induce the GR-mediated activation of IRE1-XBP1 pathways 
that resulted in the suppression of insulin biosynthesis and secretion in the insulin-secreting INS-1E cells14. 
Other studies have also shown that low-dose of corticosterone could induce ER stress and elevate markers of ER 
stress (Bip, Chop) via the GR in macrophages15 and pancreas16 of C57BL/6 J mice. Furthermore, it has revealed 
that WFS1 played an important role in insulin biosynthesis and secretion as well as maintaining ER homeostasis 
in pancreatic β-cells17. WFS1 is a trans-membrane protein located in the ER and it is a novel component of ER 
stress signaling18–20. Under ER stress conditions, expression of the WFS1 gene was elevated via the X-box binding 
protein (XBP1), and mitigates ER stress response in the pancreatic β-cells19. Loss of its function caused impair-
ment in ER stress response and apoptosis18,21. A number of recent studies have reported that mutations in this 
protein increased plasma glucose and reduced plasma insulin22, impaired glucose-stimulated insulin secretion 
and insulin content of the islets of Langerhans21, decreased beta cell mass, and elevated the expression of ER stress 
markers23. Given the effects of stress exposure and consequent corticosterone elevation on the induction of ER 
stress, and the important role of WFS1 protein in modulating the UPR pathway and β-cell insulin biosynthesis 
and secretion, this investigation was proposed to test the hypothesis that exposure to maternal stress during 
pre-pregnancy, pregnancy and lactation periods would affect programming of the systems involved in glucose 
homeostasis in adult male rat offspring through high corticosterone levels, induction of pancreatic ER stress 
and/or changes in pancreatic WFS1 gene expression and DNA methylation.

Results
Maternal plasma corticosterone levels.  The two-way repeated measures ANOVA showed that dur-
ing pre-pregnancy period, after the first and the last exposure to stress, maternal variable stresses significantly 
increased plasma corticosterone levels in PPPLS, PPS, PPPS, and PPLS groups compared to CTRL group 
(P < 0.001). During pregnancy period, after the first exposure to stress, maternal plasma corticosterone levels in 
PPPLS, PS, PPPS, PLS, and PPLS groups showed marked elevations (P < 0.001) and also, after the last exposure 
to stress, in PPPLS, PS, and PLS groups (P < 0.001) compared to CTRL group (Fig. 1A).

Plasma corticosterone levels in offspring.  The two-way repeated measures ANOVA showed that at 
PND-1, there was a significant increase in the plasma corticosterone levels of offspring in LS (P < 0.001) and 
PPLS (P < 0.01) groups compared to CTRL group, however; no changes were observed in the offspring plasma 
corticosterone levels of other study groups compared to CTRL group. At PND-21, the plasma corticosterone 
levels of offspring showed significant elevation in PPPLS, PS, LS and PPLS groups compared to CTRL group 
(P < 0.001). In addition, at PND-64, plasma corticosterone levels of offspring in PPPLS, PS, LS, PPPS, PPLS 
(P < 0.001) and PLS (P < 0.01) groups displayed significant increment compared to CTRL group (Fig. 1B).

Plasma glucose and insulin levels during OGTT​.  Plasma glucose levels showed significant decrease in 
PPPLS (P < 0.05), PPS and PPLS (P < 0.01) PS (P < 0.001) groups compared to CTRL group in fasting conditions 
(0 min). After the glucose load, the plasma levels of glucose elevated at time 30, and these levels in the PS group 
were significantly higher than that of CTRL group (P < 0.001), then the values began to drop in all study groups; 
however, plasma glucose levels at 60 min were significantly higher in PPPLS, PS (P < 0.001) and PPPS (P < 0.05) 
groups than those of CTRL group (Fig. 2A). The area under the curve (AUC) of plasma glucose levels in PS 
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group showed that plasma glucose levels increased significantly compared to CTRL group. These data indicate 
that glucose clearance in PS group was significantly lower compared to CTRL group (P < 0.001, Fig. 2B).

Plasma insulin levels significantly increased in PPPLS, PLS (P < 0.001) and PPLS (P < 0.01) groups compared 
to CTRL group in fasting condition (0 min). The values elevated and reached a peak after 30 min of glucose load 
and approached those of time zero within 120 min. Plasma insulin levels at min 30 in all stress groups except PS 
and PPS group were higher than that of CTRL group (P < 0.001 to P < 0.01). This parameter at min 60 in PPPLS, 
PLS (P < 0.001) and PPLS (P < 0.01) groups was higher than that of CTRL group. Plasma insulin levels at min 
120 in all stress groups displayed marked increment compared to CTRL group (P < 0.001 to P < 0.05, Fig. 2C). 
The area under the curve (AUC) of plasma insulin levels in PPPLS, PLS and PPLS groups showed that plasma 
insulin levels increased significantly compared to CTRL group. These results suggest that these groups may be 
more efficient in clearing the glucose load (P < 0.001, Fig. 2D).

Indices of insulin resistance (HOMA‑IR) and insulin sensitivity (Matsuda index).  As shown in 
Fig. 3A, the HOMA-IR index was elevated markedly in the PPPLS and PLS groups compared to CTRL group 
(P < 0.001). There were no significant differences in relation to this index in other stress groups compared to 
CTRL group, however; HOMA-IR index in PPPLS group increased significantly compared to PPPS groups 
(P < 0.05). Also, this index in the PLS group elevated significantly compared to PS group (P < 0.01, Fig. 3A). 

A significant decrease in Matsuda index was observed in all stress groups compared to CTRL group (P < 0.001 
to P < 0.01). Also, there was a significant reduction of this index in PPPLS group compared to PPPS and LS groups 

Figure 1.   Effect of perinatal stress on corticosterone levels of maternal (A) and male offspring (B). Each 
column represents mean ± SEM (6 rats/group, 6 litters/group). Data was analyzed using two-way repeated 
measures ANOVA followed by Tukey’s post hoc test. The analysis were performed in each separate category; 
**P < 0.01, ***P < 0.001 versus CTRL group; ###P < 0.001 versus PPS group; φφφP < 0.001 versus PPPS group; 
ɛɛɛP < 0.001 versus PLS group; δδδP < 0.001 versus PPLS group. CTRL non stress, PPPLS pre-pregnancy, 
pregnancy, lactation stress, PPS pre-pregnancy stress, PS pregnancy stress, LS lactation stress, PPPS pre-
pregnancy, pregnancy stress, PLS pregnancy, lactation stress, PPLS pre-pregnancy, lactation stress.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12552  | https://doi.org/10.1038/s41598-022-16621-5

www.nature.com/scientificreports/

(P < 0.001 to P < 0.01). On the other hand, Matsuda index in PPS, PS and LS groups was significantly higher than 
that of PPL and PLS groups (P < 0.05, Fig. 3B).

Glucose‑stimulated insulin secretion.  In all study groups, the insulin secretion from isolated islets in 
the presence of 16.7  mM glucose were higher than 5.6  mM glucose concentration. The basal insulin secre-
tion after incubation in 5.6 mM glucose in PPPLS, PLS and PPLS groups were significantly higher than that 
of CTRL group (P < 0.001 to P < 0.01). Furthermore, the insulin secretion in the PPPLS group in the presence 
of 5.6 mM glucose concentration was higher than those of LS, and PPPS groups (P < 0.001). The responses to 
5.6 mM glucose in PLS and PPLS groups were also significantly higher than those of PS and PPS groups respec-
tively (P < 0.01, Fig. 4A).

When islets were stimulated with 16.7 mM glucose concentration, the significant increase in insulin secre-
tion was observed in PPPLS, PLS, and PPLS groups compared to the CTRL group (P < 0.001 to P < 0.01). There 
was the significant increase of insulin secretion in PPPLS group in the presence of 16.7 mM glucose concentra-
tion compared to LS, and PPPS groups (P < 0.001). Moreover, the insulin secretion in the presence of 16.7 mM 
glucose concentration in PLS group was significantly higher than those of PS and LS groups (P < 0.001, Fig. 4B).

Insulin content in isolated islets.  The isolated islets’ insulin content in response to 5.6 mM glucose con-
centration showed the significant increases in PPPLS, PLS and PPLS groups compared to CTRL group (P < 0.001 

Figure 2.   Effect of perinatal stress on plasma glucose level (A) and AUC (B), plasma insulin level (C) and AUC 
(D) during OGTT in young adult male offspring. Each point and column represent mean ± SEM (n = 6 rats/
group, 6 litters/group); Data was analyzed using two-way repeated measures ANOVA followed by Tukey’s post 
hoc test; *P < 0.05, **P < 0.01, ***P < 0.001 versus CTRL group; $$P < 0.01 versus PS group; οοP < 0.01, οοοP < 0.001 
versus LS group; φφP < 0.01 versus PPPS group; ɛɛɛP < 0.001 versus PLS group. CTRL non stress, PPPLS pre-
pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS pregnancy stress, LS lactation stress, PPPS 
pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, PPLS pre-pregnancy, lactation stress.
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to P < 0.01). The significant elevation of the insulin content of islets in PPPLS group in the presence of 5.6 mM 
glucose concentration was observed compared to PPPS, and LS groups (P < 0.001 to P < 0.01). Moreover, there 
was a significant increase of islets’ insulin content in PLS group in the presence of 5.6 mM glucose concentration 
compared to PS group (P < 0.001, Fig. 4C).

Moreover, after stimulation with 16.7 mM glucose, there was a significant increase in the insulin content of 
isolated islets in PPPLS, PLS and PPLS groups compared to CTRL group (P < 0.001 to P < 0.01). However, this 
parameter in the presence of 16.7 mM glucose concentration in PPPLS group was significantly higher than those 
of LS groups (P < 0.01, Fig. 4D).

Bip mRNA and protein expression levels.  Statistical analysis revealed that Bip mRNA expression 
increased in the pancreatic tissue of PPPLS, LS and PPLS, PPS, PLS, PS, and PPPS groups compared to CTRL 
group (P < 0.001 to P < 0.05). Bip mRNA expression levels in PPPS groups were significantly higher than that 
of PPPLS group (P < 0.01); however, the expression of Bip mRNA in PLS group reduced compared to PS group 
(P < 0.05, Fig. 5A).

In the extracted ER of pancreas, Bip protein level in all stress groups except PPPLS were significantly higher 
than that of CTRL group (P < 0.001 to P < 0.05). Moreover, this parameter in PPPS groups was significantly higher 
than that of PPPLS group (P < 0.001). There were significant differences between Bip protein levels in pancreatic 
ER of PPS and PS groups compared to those of PPLS and PLS groups respectively (P < 0.01 to P < 0.05, Fig. 5D,E).

Chop mRNA and protein expression levels.  According to ANOVA analysis the pancreatic Chop 
mRNA expression levels in all stress groups except PPPLS and PPLS groups were significantly elevated com-
pared to CTRL group (P < 0.001 to P < 0.05). Moreover, Chop mRNA expression levels in PPPS groups were 
significantly higher than that of PPPLS group (P < 0.001). This parameter in PS group increased compared to 
PLS group (P < 0.05, Fig. 5B).

Chop protein levels in the extracted ER of pancreas of PPS, LS, PLS, PS, and PPPS groups were significantly 
higher than that of CTRL (P < 0.001 to P < 0.05); however, there was not any significant differences between the 
pancreatic Chop protein levels of PPPLS, PPLS and CTRL groups. Chop protein level in pancreas of PS group 
significantly increased compared to those of PLS groups (P < 0.05). This parameter in PPPS group elevated 
compared to those of PPPLS groups (P < 0.001, Fig. 5D,F).

WFS1 mRNA and protein expression levels.  Statistical analysis revealed that the pancreatic WFS1 
mRNA level in all stress groups significantly increased compared to CTRL group (P < 0.001 to P < 0.05). WFS1 
mRNA expression in pancreas of PPPS groups was significantly higher than that of PPPLS group (P < 0.05). This 
parameter in PS group also elevated compared to PLS group (P < 0.01, Fig. 5C).

In the extracted ER of pancreas, WFS1 protein level in all stress groups except PPPLS and PPLS groups was 
significantly higher than that of CTRL group (P < 0.001 to P < 0.05). This parameter in PPPS groups elevated 
significantly compared to PPPLS group (P < 0.001). Moreover, WFS1 protein level in the pancreatic extracted ER 
of PPS and PS groups significantly increased compared to those of PPLS and PLS groups respectively (P < 0.01, 
Fig. 5D,G).

Figure 3.   Effect of perinatal stress on HOMA-IR (A) and Matsuda index (B) in young adult male offspring. 
Each column represents mean ± SEM (6 rats/group, 6 litters/group); Data was analyzed using one-way ANOVA 
followed by Tukey’s post hoc test; **P < 0.01, ***P < 0.001 versus CTRL group; ++P < 0.01, +++P < 0.001 versus PPPLS 
group; $$P < 0.01 versus PS group; φP < 0.05 versus PPPS group; ɛP < 0.05 versus PLS group; δP < 0.05 versus 
PPLS group. CTRL non stress, PPPLS pre-pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS 
pregnancy stress, LS lactation stress, PPPS pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, 
PPLS pre-pregnancy, lactation stress.
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GR mRNA and protein expression levels.  The expression of GR mRNA in the pancreatic tissue of PPS, 
PS, PPPS, and LS groups elevated significantly compared to that of CTRL group (P < 0.001 to P < 0.05). This 
parameter in PPPS groups was significantly higher than that of PPPLS group (P < 0.001). Pancreatic GR mRNA 
expression in PPS and PS groups increased significantly compared to PPLS and PLS groups respectively (P < 0.01 
to P < 0.05, Fig. 6A).

Statistical analysis revealed that GR protein of PPPS, PS, LS and PPS groups significantly elevated compared 
to CTRL group (P < 0.001 to P < 0.05). This value in PPPS groups was significantly higher than that of PPPLS 
group (P < 0.001). Moreover, this parameter in PPS groups increased compared to that of PPLS group (P < 0.01, 
Fig. 6B,C).

WFS1 DNA methylation.  As shown in Fig. 7A–C, there was not any significant changes in the methylation 
levels of WFS1 gene in the pancreas of different groups.

Discussion
The current study evaluated the hypothesis that exposure to high corticosterone level induced by perinatal stress 
could affect the programming of metabolic systems in offspring. The findings of this investigation demonstrated 
that the offspring who exposed to prenatal along with postnatal stress (in PPPLS, PLS, PPLS and LS groups) 
showed marginal increase of the pancreatic tissue mRNA and pancreatic extracted ER protein levels of Bip, 
Chop and WFS1. While they showed a marked increase of isolated islets insulin secretion and content. On the 
other hand, despite the sharp increment of pancreatic tissue mRNA and pancreatic extracted ER protein levels 
of Bip, Chop and WFS1, there were no significant changes in insulin secretion and content of isolated islets in 
the offspring who only exposed to prenatal stress (in PPS, PS, and PPPS groups). Moreover, exposure to prenatal 

Figure 4.   Effect of perinatal stress on the isolated islets insulin secretion (A,B) and insulin content (C,D) in 
response to 5.6 mM and 16.7 mM glucose concentrations in the young adult male offspring. Each column 
represents mean ± SEM (4 rats/group, 4 litters/group). Data was analyzed using one-way ANOVA followed 
by Tukey’s post hoc test; **P < 0.01, ***P < 0.001 versus CTRL group; ##P < 0.01 versus PPS group; $$P < 0.01, 
$$$P < 0.001 versus PS group; οοP < 0.01, οοοP < 0.001 versus LS group; φφφP < 0.001 versus PPPS group. CTRL 
non stress, PPPLS pre-pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS pregnancy stress, 
LS lactation stress, PPPS pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, PPLS pre-pregnancy, 
lactation stress.
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or postnatal stress (i.e. in PPS, PS, LS and PPPS groups) increased mRNA expression and protein levels of GR in 
pancreatic tissue. Interestingly, we demonstrated for the first time that DNA methylation of WFS1 gene did not 
change in adult rat offspring of the stressed groups. Furthermore, maternal stress impaired glucose tolerance, 
and significantly increased basal plasma corticosterone and insulin levels as well as HOMA-IR index, however, 
decreased ISI Matsuda (Fig. 8).

In the current study, baseline plasma corticosterone levels at the first and last days of exposure to variable 
stress throughout perinatal periods significantly enhanced in the dams of the stressed groups; therefore, we were 
able to examine the effect of each period of stress alone or in combination on offspring glucose metabolism. 
Similar to our results, the multiplicity of stressors as used in this study, did not lead to corticosterone response 
adaptation in the dams who repeatedly exposed to stress24; however, some studies have reported reduced plasma 
corticosterone level following maternal stress in dams25. It is considered that the different plasma corticoster-
one levels could be related to the alternation of HPA axis sensitivity induced by exposure to repeated stress. In 
the offspring of the stressed groups except LS and PPLS groups, plasma corticosterone level on PND1 did not 
change; however, it increased on PND21 compared to the control offspring. In contrast, studies demonstrated 

Figure 5.   Effect of perinatal stress on pancreatic tissue Bip (A), Chop (B), and WFS1 (C) mRNA expression 
and pancreatic extracted ER levels of Bip (D,E), Chop (D,F) and WFS1 (D,G) proteins in young adult male 
offspring. Representative figures for the RT-PCR are shown the fold change (3 rats/group, 3 litters/group) and 
representative bands are shown the respective densitometric values (8 rats/ group, 8 litters/group). Twenty μg 
proteins were separated on SDS-PAGE, western blotted, probed with anti-Bip antibody, anti-Chop antibody, 
and anti-WFS1 antibody and reprobed with anti-Calnexin antibody (D) The densities of proteins bands are 
measured, and the ratio is calculated (E–G). Each column represents mean ± SEM. Data was analyzed using one-
way ANOVA followed by Tukey’s post hoc test; *P < 0.05, **P < 0.01, ***P < 0.001 versus CTRL group; +P < 0.05, 
++P < 0.01, +++P < 0.001 versus PPPLS group; ɛP < 0.05, ɛɛP < 0.01 versus PLS group; δP < 0.05, δδP < 0.01 versus 
PPLS group. CTRL non stress, PPPLS pre-pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS 
pregnancy stress, LS lactation stress, PPPS pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, 
PPLS pre-pregnancy, lactation stress.
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that exposure for 24 h to a sound stress on 10th-18th days of gestation resulted in a non-significant reduction 
of basal corticosterone level in C57Bl/6 mice on PND126. Brummelte et al. reported that injection of exog-
enous corticosterone during pregnancy (10th–20th gestational days) and postpartum (2nd–21st days) increased 
serum corticosterone levels on PND1, but did not affect its levels on PND21 in rat offspring27. These differences 
between studies may be due to several possible mechanisms. In this regard, researchers showed that fetus access 
to maternal corticosterone is low because of the action of the placental enzyme11β-HSD2, which transforms 
maternal corticosterone to inactive cortisone but this barrier can be further weakened by maternal stress27. 
Maternal plasma corticosterone-binding globulin (CBG) levels may also have a role in the regulation of plasma 
corticosterone levels available to the fetus, and prenatal stress can decrease maternal CBG levels28. Previous study 
indicated that maternal CRH released by the hypothalamus during stress could transfer across the placenta and 
activate the HPA axis in the rat offspring29. On the other hand, increased maternal catecholamine levels could 
lead to hypoxia-induced vasoconstriction of the placental vessels30, which in turn activated the fetal HPA axis. 
According to the above-mentioned studies, exposure to perinatal stress could increase the transfer of maternal 
corticosteroids directly or indirectly across the placenta to the fetus. Therefore, it is possible that the offspring 
has been adapted to stress which could explain the unchanged plasma levels of corticosterone at PND1. The 
increase in serum corticosterone level on PND21 might, at least partially, be due to a direct transfer of maternal 
corticosterone to offspring through the milk. The baseline corticosterone levels in the adult offspring of stress 
groups except PPS group, were higher than those of controls. In this respect, animal studies indicated that expo-
sure to prenatal noise stress associated with physical stressors on days 12th–16th of gestation in the C57BL/6 
mice caused the elevation of HPA-axis function in offspring31. Several animal studies have shown that inducing 
prenatal stress in offspring by maternal exposure to chronic unpredictable stress (CUMS) during pregnancy24, 
and injection of corticosterone to adrenalectomized dams during prenatal period32 could increase the activity of 
the HPA axis and the plasma corticosterone levels in rat offspring. Moreover, a more recent study indicated that 
exposing dams to chronic social defeat stress (CSDS) before pregnancy (preconception stressors) for 3 weeks 
activated HPA axis and increased the basal corticosterone levels in their adult offspring33. Together these results 
suggest that exposure to high maternal corticosterone during perinatal period probably affect the programming 
of the HPA axis in the offspring which is dependent on the stressor type, intensity of stress, time and/or duration 
of stress exposure as well as the age of offspring at study.

Figure 6.   Effect of perinatal stress on pancreatic GR (A) protein (B, C) levels in the young adult male offspring. 
Each column represents mean ± SEM (3 rats/group, 3 litters/group). Data was analyzed using one-way ANOVA 
followed by Tukey’s post hoc test; *P < 0.05, **P < 0.01, ***P < 0.001 versus CTRL group; +++P < 0.001 versus PPPLS 
group; ɛɛP < 0.01 versus PLS group; δP < 0.05, δδP < 0.01 versus PPLS group. CTRL non stress, PPPLS pre-
pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS pregnancy stress, LS lactation stress, PPPS 
pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, PPLS pre-pregnancy, lactation stress.
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Figure 7.   Effect of perinatal stress on DNA methylation of WFS1 gene in pancreatic tissue. Schematic 
presentation of promoter area of the WFS1 gene encompassing investigated CpG Island (A). Agarose gel 
electrophoresis demonstrating the methylation status of WFS1 promoter in pancreatic tissue by methylation-
specific PCR (MSP). Primer sets used for amplification are designated as un-methylated (U), and methylated 
(M) (B). Each column represents mean ± SEM (3 rats/group, 3 litters/group). CTRL non stress, PPPLS pre-
pregnancy, pregnancy, lactation stress, PPS pre-pregnancy stress, PS pregnancy stress, LS lactation stress, PPPS 
pre-pregnancy, pregnancy stress, PLS pregnancy, lactation stress, PPLS pre-pregnancy, lactation stress.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12552  | https://doi.org/10.1038/s41598-022-16621-5

www.nature.com/scientificreports/

Our results demonstrated that maternal stress-exposed offspring had increased plasma insulin levels and 
insulin resistance (HOMA-IR index), and decreased plasma glucose levels and insulin sensitivity (Matsuda index) 
in adulthood. Studies reported that exposure to psychological stress during pregnancy in humans34 and chronic 
unpredictable mild stress during last week of pregnancy elevated plasma corticosterone levels and HOMA-IR 
index in rat offspring35. Previous animal research showed that maternal exposure to cortisol (0.48 mg/h) dur-
ing early pregnancy did not alter insulin sensitivity in adult male sheep offspring36. Moreover, karbaschi et al. 
demonstrated that maternal high fat diet as a psychophysical stressor during pregnancy and lactation periods 
increased plasma corticosterone levels and insulin sensitivity in adult rat offspring37. In general, maternal stress 
and exposure to elevated plasma corticosterone levels in different models may program insulin resistance and 
insulin sensitivity in the offspring which may be attributed to alterations in insulin receptor signaling pathway 
in peripheral tissues. For instance, offspring exposed to maternal stress showed reduced expression of insulin 
receptor (INSR) and insulin receptor substrate 1 (IRS1)38, AKT protein levels (total and activated/phosphoryl-
ated forms)39, expression and/or translocation of Glut4 in the muscle, liver and adipose tissues40, which were the 
mechanisms of insulin-dependent glucose uptake and utilization. Therefore, it was possible that perinatal stress 
could alter HOMA-IR and ISI indices by interfering with these mentioned pathways.

Our findings indicated that although maternal stress is able to impair glucose-insulin homeostasis in adult-
hood, glucose loading, could improve glycaemia (except in the PS group) during perinatal period. In line with 
our results, Blasio et al. reported that exposure to excess maternal glucocorticoids in early pregnancy period led 
to hyperinsulinemia, and improved glucose tolerance in adult male sheep offspring36. In contrast, the adult male 
rat offspring whose dams exposed to social stress during late pregnancy showed an unchanged plasma glucose or 
insulin concentrations following glucose tolerance test41. On the other hand, studies have revealed that exposure 
to dexamethasone10, as well as administration of carbenoxolone as inhibitor of placental 11 beta-hydroxysteroid 
dehydrogenase type 2 (11β-HSD2) during pregnancy resulted in hyperglycemia, hyperinsulinemia, and impaired 
glucose tolerance in 6-months old rat offspring42. Therefore, it was possible that impaired glucose-insulin homeo-
stasis in the adult offspring of the present study resulted partly from programming of insulin signaling pathways 
by an adverse maternal environment and excess corticosterone levels. Increased insulin secretion reflects a 
compensatory mechanism for observed insulin resistance which may explain improved glucose tolerance in the 
offspring43. Moreover, in PS group glucose tolerance was impaired, possibly due to impaired glucose-stimulated 
insulin secretion.

In the current study, there were significant elevation in the pancreatic GR mRNA and protein levels of adult 
offspring who exposed to prenatal or postnatal stress (i.e. in PPS, PS, LS and PPPS groups), whereas no changes 
were seen in offspring of mothers exposed to prenatal plus postnatal stress (i.e. PPPLS, PLS and PPLS groups). To 
our knowledge, there are not any studies in subject of the effects of perinatal stress on GR expression in pancre-
atic tissue. However, animal studies have revealed that prenatal dexamethasone administration in the last week 
of pregnancy increased44 or decreased45 GR mRNA expression and protein levels in liver, muscle and adipose 
tissues in the adult offspring. In another study in mice offspring, maternal exposure to restraint stress during 

Figure 8.   Summary of conclusion.
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pregnancy elevated GR gene expression and protein levels in liver tissue46. In contrast, Brunton et al. exposed 
the rat dams to aggressive rat as a psychosocial stress during late gestation period and reported a reduction 
of GR mRNA expression in muscle tissue in their adult offspring41. The above-mentioned studies showed that 
the levels of GR expression in different peripheral tissues were altered by an adverse maternal environment. It 
seems that exposure to excessive postnatal care (LS period) could result in the increased GR mRNA and protein 
expression in the PPS, PS, LS and PPPS groups. In this regard, studies indicate that the GR expression level is 
affected by the level of maternal care47. On the other hand, recent findings have suggested the involvement of the 
epigenetic modifications (methylation/demethylation), which were induced by early life adverse environment in 
the specific promoters of the GR gene. These epigenetic modifications could permanently change the program-
ming of GR gene expression48. Howbeit, we did not assess epigenetic programming of GR in the pancreas of 
offspring in this investigation.

Our study also indicated that offspring who exposed to prenatal stress (i.e. in PPS, PS, and PPPS groups) had 
markedly increment in Bip, Chop and WFS1 protein and mRNA levels in both pancreatic tissue and its extracted 
ER, but no change was seen in insulin secretion and insulin content of the isolated pancreatic islets in response 
to basal (5.6 mM) and high (16.7 mM) glucose concentrations in these groups. On the other hand, offspring 
who exposed to prenatal plus postnatal stress (i.e. in PPPLS, PLS, PPLS, and LS groups) had marginal increase 
of Bip, Chop and WFS1 protein levels in the extracted ER of pancreas and these changes were accompanied with 
the increased insulin secretion and insulin content of the isolated pancreatic islets in response to basal and high 
glucose concentrations. The recent study has determined that short exposure to low-dose endogenous corticos-
terone in 12-weeks old C57BL6 mice caused ER stress via the glucocorticoid receptor and directly increased the 
levels of Bip, XBP1 and ATF6 at both mRNA and protein levels in macrophage cells, whereas a longer exposure to 
a higher dose did not affect macrophage function15. Other study showed that exposure to prednisolone induced 
a GR-mediated impairment in ER homeostasis which led to increased activation of UPR signaling pathways, 
inhibition of insulin biosynthesis and glucose-stimulated insulin secretion in the INS-1E cells14. The previous 
study reported that WFS1 is an ER membrane-embedded protein, which can be up-regulated under ER stress 
and also plays an essential role in insulin expression and secretion. For instance, a study reported that exposure 
to ER stress-inducers (thapsigargin and dithiothreitol), caused the elevation of WFS1 mRNA and protein levels 
in mouse β-cell line, MIN6 cells49. A recent study by Damien Abreu showed that defects of WFS1 in vivo and 
in vitro led to ER stress and reduced insulin secretion and content in response to glucose, and triggered Chop-
Trib3 axis in WFS1-knockout mice50 According to the above-mentioned findings, most of the studies on ER 
stress markers have been done in human and animal cell lines and also WFS1 gene studies have been performed 
mainly in knocked out animal models. In our study, for the first time, the function of WFS1 and UPR in offspring 
were examined specifically in the pancreatic extracted ER. Our results showed that exposure to maternal stress 
can lead to impaired WFS1 expression level and its function as a regulator of ER calcium channels activity in off-
spring, which it may be the cause of insulin secretion and insulin content impairment in later life. In accordance 
with these findings, Kakiuch reported that WFS1 forms a complex with ER chaperone glucose-regulated protein 
94 (GRP94) in neuronal cells. Therefore, down-regulation of GRP94 may increase the amount of GRP94-free 
WFS1, leading to the enhancement of WFS1 function51. The studies in humans and animal models have shown 
that maternal exposure to synthetic glucocorticoids during pregnancy could lead to epigenetic alterations in 
the offspring DNA which resulted in programming changes and long-lasting effects on the expression of some 
genes52. Thus, in the present study, it is possible that perinatal stress caused epigenetic changes in the UPR sign-
aling pathway in offspring pancreatic islets, which needs further investigation. However, in current study, for 
the first time, the effect of perinatal exposure to stress evaluated on the methylation of CpG islands at promoter 
regions for WFS1 gene. The results showed that perinatal stress did not affect DNA methylation level of WFS1 
gene in different study groups. There is now extensive evidence that part of the effects of adverse experiences 
in the critical period of life alteration corticosterone gene expression47. Thus it seems that in the PPS, PS, and 
PPPS groups, the elevated levels of the plasma corticosterone and pancreatic expression of mRNA and protein 
of GR could contribute in GR-mediated impairment of ER homeostasis, so the complex between WFS1 and 
ER chaperone probably became stronger and WFS1 remained in the ER to maintain or restore ER homeostasis 
which lead to disturbances in glucose metabolism in these stressed groups. Histological analysis at the tissue 
level revealed that WFS1 was expressed not only in ER but also in secretory granules to regulate acidification 
and maturation of insulin protein in mouse pancreatic β-cells53.

In this study, the dams were inevitably deprived of water and food during exposure to stress (for 60 min). It 
should be noted that deprivation of water and food is also considered as a stressor and in many studies that use 
the variable stress paradigm, it is considered as one of the stressors54,55. As mentioned above, water and food 
deprivation is an inevitable topic in our study. However, considering that the animals were exposed to stress 
during light phase, in which the animals are not active in terms of feeding56, and also regarding that this type of 
stressor has a psychological aspect, like other types of stressors used in this study, water and food deprivation 
may not have a profound negative effect on the results. Moreover, According to previous studies, from weaning, 
the male offspring were housed in same-sex groups of three animals per cage to the end of the experiment57, 
thus a state of adaptation was established between rat animals and with monitoring the animals’ behavior, there 
was no state of dominancy in rats to affect the study results also, food intake was measured by calculating the 
difference between fixed amount of food and the amount remaining after 24 h. this amount was then divided by 
3 and was considered as food intake for each animal because there were no significant difference between the 
animals’ body weight therefore the effect of food competition between animals on the metabolic changes may 
be weak. Based on the results of the present study, it seems that the probable increment of maternal care during 
lactation could reduce the effects of maternal stress on the offspring58,59 therefore, stress-related changes in the 
offspring metabolic systems were mainly observed during pre-pregnancy and pregnancy periods. These results 
showed the effect of maternal care on the level of gene expression in metabolic and neuroendocrine systems of 
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offspring, which needs further investigation9,60,61. The data of the present study provide new insight about effects 
of WFS1 on glucose-insulin homeostasis, particularly in the context of stress during critical periods of develop-
ment, therefore these findings provide motivation for further research studies and also therapeutic approaches 
targeting WFS1 as a treatment for stress-related metabolic disorders in later life.

Conclusions
Findings of the current investigation showed that prenatal maternal stress affected glucose metabolism in adult 
male rat offspring through the induction of ER stress and the increased pancreatic GR expression, as well as 
increased pancreatic extracted ER WFS1 protein expression. Which, in turn led to the impairment of glucose-
stimulated insulin secretion and insulin content. These alterations seems to be compensatory responses to pre-
serve ER homeostasis.

Limitations of study
Based on the results of this study, the following suggestions are made: investigating the epigenetic changes of 
glucocorticoid receptor in the pancreatic tissue, assessment of intracellular Ca2+ level in pancreas tissue, deter-
mining the levels of apoptotic factors regulated by the UPR signaling pathways in pancreas tissue relative to 
pancreatic beta-cells death.

Materials and methods
Animals.  Male and female Wistar rats (10–12 weeks old, 200–250 g) were kept in a temperature-controlled 
room (22 ± 2 °C) with a 12:12-h light: dark cycle and their food (standard pellets, Pars Company, Tehran, Iran) 
contained 2 g% soybean oil, which provided 4.75% Kcal as fat; 17.5 g% protein, which provided 18.48% Kcal; 
72.72 g% carbohydrates, which provided 76.77% Kcal and water were provided ad libitum (it is noteworthy that 
experimental groups were deprived of food and water in the testing days). Mating occurred overnight with two 
females and one male in a cage, pregnancy was confirmed based on the presence of sperm in the vaginal smear 
on the following morning and considered as gestational day 0 (GD0). The methods of the present study has been 
reported in accordance with ARRIVE guidelines62. All experimental procedures were performed according to 
the previously published guideline for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, 
revised 1996) and approved by the Ethics Committee of the physiology Research Center, Tabriz University of 
Medical Sciences, Tabriz, Iran (IR.TBZMED.REC.1397.336) and Ethics Committee of Shahid Beheshti Univer-
sity of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1400.300).

Experimental design.  Dam rats were assigned to the experimental groups consisting of seven stress groups 
and control group. The dams were exposed to variable stress for 21 consecutive days before mating (during pre-
pregnancy period), or/and during pregnancy and lactation periods. After delivery, the pups of each group were 
kept with their mothers. Table 1 showed the litter size, the percentages of male puppies per litter and death in 
each group. All experiments were done at postnatal day (PND) 64 (28 rats/group). Figure 9 depicted the experi-
mental design of this study.

Following the first and last exposure to stress, blood samples of dams and offspring (PND-1 and PND-21) 
were taken using retro-orbital-puncture method to measure plasma corticosterone levels. They were weaned 
on PND-23, then male pups of each litter (There are sex differences in the occurrence of metabolic disorders 
compared to females, and males are more susceptible to the metabolic disturbances induced by environmental 
challenges63, therefore this study examined male rat offspring to indicate the metabolic disturbances due to mater-
nal stress) were randomly assigned into eight groups according to the maternal stress as follows: CTRL group; 
the offspring of control mothers who were not exposed to any stresses, PPPLS group; the offspring of mothers 
who were exposed to stress during pre-pregnancy, pregnancy and lactation periods, PPS group; the offspring 
of mothers who were exposed to stress during pre-pregnancy period, PS group; the offspring of mothers who 
were exposed to stress during pregnancy period, LS group; the offspring of mothers who were exposed to stress 
during lactation period, PPPS group; the offspring of mothers who were exposed to stress during pre-pregnancy 
and pregnancy periods, PLS group; the offspring of mothers who were exposed to stress during pregnancy and 
lactation periods, PPLS group; the offspring of mothers who were exposed to stress during pre-pregnancy and 

Table 1.   Effects of variable stress on litter size, percent males, and death rate.

Groups Litter size (pups) % Male (pups/litter) % Death rate

CTRL 11.50 ± 0.65 57.80 ± 6.34 9.20 ± 4.12

PPPLS 9.75 ± 0.86 46.18 ± 8.27 15.67 ± 6.96

PPS 11.00 ± 0.55 49.23 ± 4.38 3.64 ± 2.23

PS 11.40 ± 0.75 49.98 ± 4.83 8.89 ± 7.26

LS 9.80 ± 0.63 54.90 ± 11.86 11.67 ± 7.26

PPPS 11.24 ± 0.58 39.29 ± 3.65 2.00 ± 2.15

PLS 10.00 ± 0.37 46.67 ± 6.94 8.04 ± 3.76

PPLS 8.83 ± 0.31 43.06 ± 7.45 2.22 ± 2.50
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lactation periods. From weaning, the male offspring were housed separately (three per cage) and had free access 
to a normal diet until experimental day. At young adulthood (PND-64), in the offspring of all study groups, 
following an overnight fasting blood samples were taken to measure plasma glucose and insulin levels as well as 
HOMA-IR and Matsuda indices, then oral glucose tolerance test (OGTT) was performed. Finally, the animals 
were decapitated to remove their pancreas in order to islet isolation and assessment of glucose-stimulated insulin 
secretion along with insulin content, WFS1, Bip, Chop, and GR mRNA and protein levels and DNA methylation 
of WFS1 gene as well as WFS1, Bip and Chop protein levels of rough endoplasmic reticulum.

Stress procedure.  The dams of different stress groups were subjected to variable stress during specific peri-
ods according to their grouping. The variable stress paradigm was used to prevent the possible habituation to 
a repeated homotypic (same) stressor. The stressors were applied during the light cycle at different times of 
the day (at 8–10 AM or 14–16 PM). All stressors used are known to induce endocrine responses in male rats. 
Moreover, because the duration of exposure to stress in this study were long (3 weeks pre-pregnancy, 3 weeks 
pregnancy, and 3 weeks lactation periods), so we have applied psychological stress with different intensities that 
dam can tolerate and also do not adapted to it. The stressors were as follows: (1) transparent plexiglass cylinder 
(9.5 × 20 cm, 60-min); (2) wire mesh restrainer (4 × 8 cm, 60-min); (3) decapiCone Restrainer (small plastic bag 
with a hole in the end that only the rat’s head can fit through, 60-min); (4) social stress (move the animals to 
a new cage with unfamiliar animals, 60-min); (5) swimming stress (transparent tank, 18 × 40 cm, containing 
12 cm of water 23 ± 2 °C, 15-min); (6) shaking (high speed, 20-min); (7) nip tail (1/3 tail terminal, 10-min); (8) 
bright light (three times, 100 W lamp, 10-min)54,64,65.

Blood sampling.  Blood samples of dams were collected after the first and the last exposures to stress and 
also adult offspring of each group on PND64 using retro-orbital puncture method. The offspring were decapi-
tated on PND1 and their trunk blood were collected. In all blood sampling, blood was collected following iso-
flurane (6.5 ml/l/kg of isoflurane/desiccator volume/rat body weight) (Baxter, USA)66 anesthesia after overnight 
fasting. The blood samples were collected in heparinized (5000 IU/mL, Caspian Tamin, Rasht, Iran, 10 µL/mL) 
micro tubes and centrifuged at 664 × g at 4 °C for 10 min. Then, the plasma was stored at –80 °C until corti-
costerone measurement. Plasma levels of corticosterone were measured using the rat corticosterone ELISA kit 
(ZellBio GmbH, Ulm, Germany). (Minimum detection: 0.9 nmol/l). Intra- assay coefficients of variation (CVs) 
were 6.4%.

Oral glucose tolerance test (OGTT).  After overnight fasting on PND64, a bolus of glucose solution (%20 
in distilled water, 2  g/kg body weight) (Merck, Germany) was given to adult rats by oral  gavage and blood 
samples were collected at 30, 60, and 120 min after glucose load in order to evaluate plasma glucose and insu-
lin concentrations67. Plasma glucose and insulin levels were determined using glucose oxidase method (Pars 
Azmoon Co., Tehran, Iran) and enzyme-linked immunosorbent assay method (Rat insulin ELISA kit; ZellBio 
GmbH, Ulm, Germany) respectively. (Minimum detection: 1 mg/dl and 0.1 mIU/L respectively). Intra- assay 
coefficients of variation (CVs) were 2.1%, and 5.1% respectively.

Calculation of HOMA‑IR and matsuda indices.  Insulin resistance was assessed in the fasting state by 
calculating homeostasis model assessment according to the following formula:

HOMA-IR = Fasting glucose (mmol/l) * Fasting insulin (µU/ml)/22.5
Insulin sensitivity was calculated using all GTT time points in the following formula:
ISI (Matsuda) = 10,000 /√ [(Gfasting × Ifasting) × (GOGTT mean × IOGTT mean)]

Figure 9.   Experimental procedures over the course of the experiment.
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Where Gfasting is fasting plasma glucose expressed as mg/dl, Ifasting is fasting plasma insulin expressed as μU/
ml, GOGTT mean is mean plasma glucose concentration after glucose loading and IOGTT mean is the mean insulin 
concentration after glucose loading68.

Islet isolation procedure.  The islet isolation was performed by the collagenase technique of Lacy and 
Kostianovsky (1967)69 with slight modification70 (Please see the details in Supplementary Method).

Isolated islets’ Glucose‑stimulated insulin secretion and content.  Glucose-stimulated insulin 
secretion and insulin content was assessed at 5.6 and 16.7 mM glucose concentrations70 (Please see the details 
in Supplementary Method).

Isolation of rough endoplasmic reticulum (RER).  Rough vesicles derived from RER of rat pancreatic 
cells were extracted by the slightly modified method71 described by Kan et al. (1992). Briefly, the rats of each 
group (8 rats/group) were anesthetized by isoflurane and decapitated. Then, their pancreases were removed and 
homogenized in 30 ml of an ice-cold sucrose (0.25 M) solution at 630.8 × g using electric potter homogenizer 
(Potter–Elvehjem Homogenizer, Iran). The homogenate was then filtered through surgical filter made of fabric 
cotton. By adding ice-cold sucrose (0.25 M) solution, the homogenate reached a volume of 60 ml, and it was cen-
trifuged at 1881.33 × g for 13 min. Subsequently, the supernatant was centrifuged at 4957.87×g for 14 min, and at 
7923.73 × g for 67 min, at 4 °C (Beckman model J-21B, USA). The pellet was dissolved in 9 ml of ice-cold sucrose 
(2 M), and transferred to a glass homogenizer to be manually homogenized for 20–25 times. Subsequently, the 
obtained suspension was centrifuged at 12,129.07×g for 67 min in a sucrose gradient condition (including 1 M 
and 2 M sucrose solution) and the resulting pellet was dissolved in 20 ml sucrose imidazole pyrophosphate 
(0.25  mM sucrose, 3  mM imidazole, 0.5  mM Na pyrophosphate). Then it was centrifuged at 8941.87×g for 
47 min and repeated for three times. Finally, the resulting pellet (RER vesicles) was dissolved in 1 ml sucrose 
imidazole (0.25 mM sucrose, 3 mM imidazole) at a final concentration of 7 mg/ml and stored in 10 µl aliquots, 
pH 7.4, at − 80 °C until being used.

Measurement of protein levels in pancreatic rough endoplasmic reticulum (RER) and pan‑
creatic tissue.  Protein levels were analyzed by Western blotting (Please see the details in Supplementary 
Method). In this study the following primary antibodies were used; WFS1#26110; St John’s Laboratory, Bip 
#21685; Abcam, Chop #11419; Abcam, GR #223138; Abcam, β-actin #8226; Abcam, Calnexin #22595; Abcam.

Measurement of Bip, Chop, WFS1, GR mRNA levels in pancreatic tissue.  In order to determine 
mRNA levels of Bip, Chop, WFS1, and GR in pancreatic tissue, quantitative real-time PCR (QRT-PCR) method 
was used. The primer sequences are shown in Table 2 (Please see the details in Supplementary Method).

DNA methylation of the WFS1 gene promoter in pancreatic tissue.  Methylation-specific PCR 
(MSP) method was performed for assessing methylation differences at specific CpG sites WFS1 gene based on 
bisulfite treatment of DNA72.

Extraction and bisulfite modification of DNA.  Genomic DNA from pancreatic tissue was extracted 
using the phenol–chloroform method. Briefly, 300 μl of lysis buffer (containing: Sucrose, 0.32 M; Tris, 10 mM; 
MgCl2, 5 mM; and SDS, 1%) was added to the tissue and incubated at 40 °C for 20 min, then 300 μl of phenol 
solution and chloroform were added. After centrifugation at 1770.67 × g for 5 min, the supernatant was trans-
ferred to a clean tube containing acetate sodium 0.3 M and absolute alcohol (Merck, Germany). Then, the DNA 
solution was incubated at − 20 °C for 2 h. After a further centrifugation step (30 min at 2877.3 × g) and adding 
100 μL 70% EtOH, the DNA tube was air-dried and resuspended in 30 μL ddH2O. The concentration and purity 

Table 2.   Primers used for real-time PCR analysis. WFS1 wolframin ER transmembrane Glycoprotein, Bip 
(Hsp70) heat shock protein family A member 4, Chop (Ddit3) DNA-damage inducible transcript3, GR (Nr3c1) 
nuclear receptor subfamily 3, group C, member 1.

Primer name Gene bank accession no Primer sequence (5′→3ʹ)

WFS1 NM_ 031,823.1
Forward: GAC​AAG​ATT​GAA​CCG​CCT​CGT​

Reverse: CCA​CAT​CTG​CCT​TCA​TGG​GAC​

Bip NM _ 013,083.2
Forward: CAA​TGA​CCA​AAA​CCG​CCT​GA

Reverse: GCT​TTC​CAA​TTC​ATT​CCT​CGT​

Chop NM_001109986.1
Forward: ATG​AAC​TGT​TGG​CAT​CAC​CT

Reverse: TGC​ACT​GGA​GAT​TAC​ATG​CTT​

GR NM_012576.2
Forward: AGG​CTT​CAG​AAA​CTT​ACA​CC

Reverse: CAA​ATG​CCA​TGA​GAA​ACA​TCC​

ß-Actin NM_31144.3
Forward: CTC​ATG​AAG​ATC​CTG​ACC​GAG​

Reverse: TCT​CTT​TAA​TGT​CAC​GCA​CGA​
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of DNA were determined using Nano drop spectrophotometer (Thermo Fisher Scientific, USA). The DNA was 
modified by bisulfite using the EpiTect Bisulfite Conversion kit (QIAGEN), according to the manufacturer’s 
protocol. Briefly, 500 ng DNA (500 ng/ml) was mixed with 85 µL bisulfite mix, 35 µL DNA protect buffer and 
adjusted to a volume of 140 μL with nuclease-free water. The following cycling conditions were used: 95 °C for 
5 min, 60 °C for 25 s, 95 °C for 5 min, 60 °C for 85 min, 95 °C for 5 min, and 60 °C for 175 min. Then, the modi-
fied DNA was washed repeatedly with buffers (BW, BD, BL, and EB) and subsequently centrifuged at 2656×g for 
1 min, finally it stored at − 20 °C.

Methylation‑specific PCR (MSP).  Methylated (M) and unmethylated (U) sets of primer pairs for MSP 
were designed using the Meth Primer software, the primer sequences are listed in Table 3. The amplification con-
ditions were 95 °C for 5 min (initial denaturation) followed by 40 cycles of 95 °C for 30 s (denaturation), 58 °C 
for 30 s (annealing), 72 °C for 30 s (extension); and 7 min as final extension at 72 °C. All PCR reactions were 
carried out using a BIOER Thermal Cycler 9500 (Hangzhou Bioer Technology Co., Ltd., Binjiang, China). PCR 
products were resolved by electrophoresis on 2% agarose gels. In order to determine the degree of methylation 
of WFS1 gene, the Image J software was used and the intensities of bands were assessed.

Data analysis and statistics.  The data were shown as mean ± standard error of the mean (SEM). One-way 
analysis of variance (ANOVA) (by considering stress as an independent factor) and two-way repeated measures 
ANOVA (by considering time as a repeated factor and stress as an independent factor) were performed as appro-
priate and followed by a Tukey post hoc test using GraphPad Prism program package (Version 6). P-value below 
0.05 was considered as the level of significance.
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