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Abstract Chromosomal instability is a hallmark of human

cancers and is closely linked to tumorigenesis. The prognostic

value of molecular signatures of chromosomal instability

(CIN) has been validated in various cancers. However, few

studies have examined the relationship between CIN and

glioma. Histone deacetylases (HDACs) regulate chromosome

structure and are linked to the loss of genomic integrity in

cancer cells. In this study, the prognostic value of HDAC4

expression and its association with markers of CIN were

investigated by analyzing data from our own and four other

large sample databases. The results showed that HDAC4

expression is downregulated in high- as compared to low-

grade glioma and is associated with a favorable clinical out-

come. HDAC4 expression and CIN were closely related in

glioma from both functional and statistical standpoints.

Moreover, the predictive value of the O-6-methylguanine-

DNA methyltransferase (MGMT) promoter methylation sta-

tus—a widely used glioma marker—was refined by HDAC4

expression level, which was significantly related to CIN in our

study. In conclusion, we propose that HDAC4 expression, a

prognostic and CIN marker, enhances the predictive value of

MGMT promoter methylation status for identifying patients

who will most benefit from radiochemotherapy.
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Introduction

Glioma is the most common type of primary central ner-

vous system (CNS) tumor and a leading cause of tumor-

related mortality. Despite major advances in therapy over

the past decades, the clinical outcome for most patients

remains poor. This is especially true for glioblastoma

(GBM), the most malignant grade of glioma, which has a

median survival of 14.6 months and a 2-year survival rate

of 5–10 % even after aggressive therapy [1]. As a major

form of genomic instability, chromosomal instability (CIN)

is a critical event in early stages of tumorigenesis and,

when compounded, leads to the transformation of normal
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cells into cancer cells [2]. Various types of CIN have

been detected in glioma, including mutations, loss of het-

erozygosity, and copy number aberrations [3–6]. Several

studies have reported that CIN can affect sensitivity to

chemotherapy and consequently the prognosis of glioma

patients [7, 8].

A close association between CIN and histone acetylation

has been demonstrated [9–11]. Central to histone acetylation

are histone deacetylases (HDACs), which maintain genomic

integrity by targeting histone and non-histone proteins and

thereby regulating DNA repair mechanisms [12]. A total of

18 human HDACs, classified into four groups, have been

identified. As a member of group II HDACs, HDAC4 is

closely linked to many disease processes—including cancer,

leukemia, diabetes, infection, and cardiac disease [13–18]—

and is also highly expressed in the brain where it plays an

important role in brain functioning [19–22].

Epigenetic silencing of the O-6-methylguanine-DNA

methyltransferase (MGMT) gene by promoter methylation is

associated with prolonged survival and sensitivity to che-

motherapeutic alkylating agents in GBM patients undergo-

ing standard treatment [23, 24]. The beneficial effects of

combined radiochemotherapy vary significantly between

GBM patients, even for those with a methylated MGMT

promoter [25]. This suggests that while important, MGMT

promoter methylation is not the sole factor determining

clinical outcome, and highlights the need for evaluating

patients based on other factors; for instance, CIN combined

with MGMT promoter methylation status may provide more

accurate information for predicting disease outcome.

CIN is defined as the gain or loss of whole or fractions

of chromosomes, and is associated with tumorigenesis,

disease prognosis, and acquisition of multi-drug resistance

in various cancers, including breast cancer, melanoma, and

lymphoma [26–32]. High throughput gene expression

profiling approaches have established a reasonable link

between the expression of specific genes and the degree of

CIN in multiple cancers. Carter et al. developed compu-

tational methods to measure the ‘‘CIN score’’ for 10,151

genes, which indicates the correlation between each gene

and the CIN degree in tumor samples [30]. Based on the

‘‘CIN score’’, the top ranked genes are chosen for forming

the CIN signature, which was represented by CIN25 score

(Further backgrounds of CIN signature and CIN25 score

are shown in the Supplementary Text) [30]. The CIN sig-

nature, comprising a specific set of genes that are critical

for maintaining genomic integrity, is significantly higher in

metastatic foci, and stratifies patients according to clinical

outcome in various cancers, suggesting that these genes are

responsible for a more aggressive cancer phenotype [30,

33]. However, as it consists of multiple genes, the CIN

signature is too complex to be suitable for routine clinical

application. The present study investigated whether

HDAC4 expression can serve as an alternative marker for

assessing the degree of CIN and, in combination with

MGMT promoter status, predict the outcome of patients.

Materials and methods

Patients and samples

A total of 539 glioma specimens from the Chinese Glioma

Genome Atlas (CGGA) that were contiguously collected at

multiple centers were used in this study. Tumor tissue

samples were obtained by surgical resection prior to radio

and/or chemotherapy, flash-frozen in liquid nitrogen, and

stored at -80 �C until nucleic acid extraction. The study

protocol was approved by the ethics committees of par-

ticipating hospitals. Each sample was diagnosed and

independently confirmed histopathologically at the

Department of Pathology according to the 2007 WHO

classification system of CNS tumors by two experienced

neuropathologists. Clinical data, including age, sex, pre-

operative KPS score, adjuvant radiation and chemotherapy,

and the recorded date of disease progression or death were

obtained from medical records.

Data on mRNA expression were obtained by whole tran-

scriptome sequencing (N = 325) and whole-genome mRNA

expression microarray (N = 299) from the CGGA, and the

following four datasets were used for validation: the Cancer

Genome Atlas (http://cancergenome.nih.gov); Repository

for Molecular Brain Neoplasis Data (REMBRANDT,

http://caintegrator.nci.nih.gov/rembrandt); GSE16011 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011);

and GSE4290 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE4290).

Evaluation of MGMT promoter methylation by DNA

pyrosequencing

MGMT promoter methylation status was detected by DNA

pyrosequencing as previously described [34, 35]. Bisulfite

DNA modification was performed using the EpiTect Kit

(Qiagen). The following primers were used to amplify the

MGMT promoter region: 50-GTTTYGGATATGTTGGG

ATA-30 (forward) and 50-biotin-ACCCAAACACTCACCA

AATC-30 (reverse). The PCR analysis was performed in

duplicate in a 40-ll reaction volume containing 0.5 ll each

primer (using a 10-lM working solution), 4 ll 10 9 buf-

fer, 3.2 ll of 2.5 lM dNTP, 2.5 U hotstart Taq (Takara

Bio, Madison, WI, USA), and 2 ll of 10 lM bisulphite-

treated DNA. The reaction conditions were: 95 �C for

3 min; 40 cycles of 95 �C for 15 s, 52 �C for 30 s, and

72 �C for 30 s; and 72 �C for 5 min (ABI 9700; Applied

Biosystems, Foster City, CA, USA). DNA was purified
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from total PCR products using QIAamp DNA Mini Kit

(Qiagen, Valencia, CA, USA) and subjected to pyrose-

quencing (PyroMark Q96 ID System; Qiagen) using the

primer 50-GGATATGTTGGGATAGT-30 in accordance

with the manufacturer’s instructions. The obtained meth-

ylation values were averaged across the seven tested CpG

loci within the MGMT promoter. Samples were considered

as having a methylated MGMT promoter if the average

methylation was C10 %.

Survival analysis

To assess the prognostic value of HDAC4 expression in

glioma, a survival analysis for each tumor grade was per-

formed based on expression level. The combined effect of

MGMT promoter methylation status and HDAC4 expres-

sion was then assessed in GBM. Patients receiving radio-

chemotherapy were stratified into two groups according to

MGMT status, and further classified into four subgroups

based on HDAC4 expression level; the statistical signifi-

cance was determined by the log-rank test.

CIN25 score based on 25 genes was calculated as the

sum of the expression levels of each signature gene in a

patient [30]. Dichotomization was performed for each

tumor grade to classify patients into two groups based on

the median signature score. Patients who received radio-

chemotherapy were then stratified into four subgroups

based on MGMT status and CIN25 score to study the

combined effect of these parameters in GBM, and a sur-

vival analysis was carried out.

Gene ontology (GO) analysis and gene set enrichment

analysis (GSEA)

A Pearson correlation analysis was performed across gli-

oma grades to identify genes that are significantly related to

HDAC4. GO analysis was performed using the DAVID

(http://david.abcc.ncifcrf.gov/home.jsp) [36]. To obtain

more information about the relationship between CIN25

score and HDAC4, GSEA (http://www.broadinstitute.org/

gsea/index.jsp) was performed as previously described to

determine whether the identified set of genes showed sta-

tistically significant differences between the two biological

states [37].

Statistical analysis

SPSS software and GraphPad Prism 6 were used for sta-

tistical analyses. The differences in HDAC4 expression and

CIN25 score between groups were compared using Stu-

dent’s t and v2 tests. A dichotomization based on the median

HDAC4 expression level and CIN25 score was carried out

for the survival analysis. Overall survival (OS) was

calculated from the date of diagnosis until death or the end

of follow-up. Progression-free survival (PFS) was defined

as the time between the diagnosis and the first unequivocal

clinical or radiological sign of disease progress. Kaplan–

Meier survival analyses for OS and PFS were performed

and compared with the log-rank test. A Pearson correlation

analysis was used to test the correlation between CIN25

score and HDAC4 expression. Statistical significance was

defined as a two-tailed P value \ 0.05.

Results

HDAC4 expression is significantly associated

with progressive malignancy in glioma

To test the relationship between HDAC4 expression and

tumor grade, patients were stratified into low or high

expression groups according to the median value for

HDAC4 expression in each database. The percentage of

samples with low expression increased with progressive

malignancy (P \ 0.001; v2 test) (Table S1). This correla-

tion between HDAC4 expression and tumor grade was

studied in CGGA and three validation sets (Fig. 1a–d)

showing that HDAC4 expression differed among various

grades and was downregulated for higher grades. Based on

these results, we propose that low HDAC4 expression is a

characteristic of high-grade glioma.

Highly expressed HDAC4 prolongs survival

and strengthens the predictive value of MGMT

promoter methylation

To evaluate the prognostic value of HDAC4 expression in

glioma, dichotomization was applied in every grade to

separate samples into two groups based on HDAC4

expression level. Kaplan–Meier survival curves in CGGA

and three validation sets showed that HDAC4 overexpres-

sion conferred longer OS (Fig. 2a–j) and PFS (Fig. S1a–c)

in each grade. When both radiochemotherapy and MGMT

promoter methylation status were considered, 55 GBM

patients were included in the assessment of the prognostic

value of HDAC4 expression combined with MGMT pro-

moter methylation status. Patients were assigned to four

subgroups according to their MGMT status and HDAC4

expression level, as described above. Notably, OS varied

significantly among the four subgroups (P = 0.027;

Fig. 2k). Among patients with a methylated MGMT pro-

moter, those with higher HDAC4 expression had a median

OS of 669 days, which was significantly longer than that of

patients with low HDAC4 expression or with a non-meth-

ylated MGMT promoter (Fig. 2k). There were no other

differences among the three subgroups. A similar analysis
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was carried out in GBM patients who had received stan-

dard radiation combined chemotherapy in the TCGA

database, and the results confirmed that patients with

MGMT promoter methylation and high HDAC4 expression

had a significantly longer OS than other patients (Fig. 2l).

HDAC4 expression is closely correlated with chromatin

structure

A Pearson correlation analysis was conducted to identify

genes whose expression is correlated with that of HDAC4. A

total of 4,794 genes were significantly correlated (3,262 genes

with R \ - 0.3 and 1,532 genes with R [ 0.3; P \ 0.001).

Positively correlated genes with a P value\ 1e-10 were used

for the GO analysis, which revealed ten processes mostly

related to chromatin organization and histone modification.

These results confirm that HDAC4 is critical for regulating

chromosome structure (Table 1).

A high CIN25 score is associated with progressive

malignancy, poor prognosis, and chemotherapy

resistance in glioma

The CIN25 score was used as a marker of CIN. Based on

the median score across tumor grades, patients were

stratified into low and high score groups. Patients with high

scores has greater representation among higher tumor

grades (P \ 0.001; v2 test) (Table S2). Analysis of data

from the CGGA and two validation databases (Student’s t

test) (Fig. 3a–c) showed that CIN25 scores increased as a

function of glioma grade and was highest in the most

malignant GBM, indicating that CIN is tightly associated

with glioma progression.

The prognostic value of the CIN25 score in glioma was

next evaluated across three independent databases. The OS

and PFS showed a notable reduction for patients with a high

as compared to a low CIN25 score (Fig. 3d–f, Fig. S2, S3). In

52 GBM patients who received post-operative radiochemo-

therapy, MGMT promoter methylation status and CIN25

score were incorporated into the stratification; in this case,

the OS differed significantly among subgroups (P = 0.025;

Fig. 3g). Patients with MGMT promoter methylation and

lower CIN25 score had a longer OS than the other three

subgroups. A significant difference in clinical outcome was

detected in the MGMT promoter methylation group, dem-

onstrating that a low CIN25 score was associated with better

prognosis than a high CIN25 score (P = 0.046; Fig. 3g).

When the relationship between CIN25 score and response to

chemotherapy in GBM was analyzed, patients with a lower

CIN25 score who received radiochemotherapy had longer

Fig. 1 HDAC4 expression is

negatively correlated with

tumor grade. The association

between HDAC4 expression

level and grade II, III, and IV

glioma was evaluated in the

CGGA (a) and three other

validation sets (b–d)
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survival times than those who received radiotherapy alone

(P \ 0.001, Fig. 3h). However, there was no difference

between these two treatment conditions among patients with

high CIN25 scores (Fig. 3i), suggesting that the poor prog-

nosis observed in these patients may be due to the acquisition

of chemotherapy resistance.

Fig. 2 Higher HDAC4 expression is associated with longer OS in the

CGGA, REMBRANDT, GSE16011, and TCGA databases (a–j).
Survival analysis according to MGMT promoter status combined with

HDAC4 expression was performed with data from the CGGA (k) and

TCGA (l). Patients whose tumors had a methylated MGMT promoter

and a higher expression of HDAC4 had the best prognosis

Table 1 Gene ontology (GO)

terms for HDAC4-associated

genes

Term Count P value Fold enrichment

GO:0006325 * chromatin organization 27 0.04587 1.47075

GO:0016568 * chromatin modification 21 0.04497 1.57811

GO:0016569 * covalent chromatin modification 14 0.00810 2.28784

GO:0016570 * histone modification 14 0.00621 2.36285

GO:0016573 * histone acetylation 10 0.00043 4.28970

GO:0043966 * histone H3 acetylation 7 0.00127 5.54361

GO:0043983 * histone H4-K12 acetylation 3 0.03092 10.29528

GO:0043982 * histone H4-K8 acetylation 3 0.03092 10.29528

GO:0043984 * histone H4-K16 acetylation 3 0.03092 10.29528

GO:0043981 * histone H4-K5 acetylation 3 0.03092 10.29528
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CIN signature is strongly associated with HDAC4

expression in glioma

A correlation analysis revealed that HDAC4 expression

was significantly correlated with CIN25 score (Fig. 4a,

P \ 0.001, R = - 0.366), which was confirmed by

data from the REMBRANDT and GSE16011 datasets

(P \ 0.001, R = - 0.461 and P \ 0.001, R = - 0.309,

respectively; Fig. 4b, c). This suggests a significant rela-

tionship between HDAC4 expression and CIN in glioma.

The GSEA was used to test whether HDAC4 expression is

correlated with genes contributing to the CIN25 score.

Samples were listed in order of increasing HDAC4

expression. The results indicate that CIN25 genes were

significantly enriched in samples with low HDAC4

expression, whereas high HDAC4 expression was not

correlated with any of these genes (NES = 1.5306281,

P = 0.027; Fig. 4d).

Discussion

The high prevalence, mortality, and risk of post-treatment

complications associated with glioma make it one of most

challenging diseases affecting humans. Moreover, patients

with the same diagnosis may experience vastly different

clinical outcomes even after undergoing the same treat-

ment. This heterogeneity highlights the limitations of a

grading system based purely on pathological characteriza-

tion. As a feature of most human cancers, CIN—which has

a high degree of heterogeneity among tumor cells and

involves a complex network of molecular interactions

rather than a single signaling pathway [38]—may better

reflect glioma severity and offer a more accurate measure

for predicting disease prognosis.

HDACs are the main regulators of histone acetylation,

which has been implicated in CIN. As a member of group

II HDACs, HDAC4 is highly expressed in the brain and

Fig. 3 Correlation between CIN25 score and glioma malignancy.

CIN, as measured by the CIN25 score, was analyzed with respect to

tumor grade (II–IV) in the CGGA (a) and two validation sets (b, c). A

high CIN25 score was associated with shorter OS (d–f) in the CGGA.

A survival analysis for MGMT promoter status combined with CIN25

score was performed in the CGGA (g). Sensitivity to chemotherapy

was assessed in GBM patients. Patients with a low CIN25 score

receiving radiochemotherapy had better OS than those receiving

radiotherapy alone (h); no differences between treatment groups were

observed among patients with a high CIN25 score (i)
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involved in various functions including learning and

memory, behavior, and neuronal survival [19–21, 39, 40].

We propose that HDAC4 expression is closely associated

with glioma grade and prognosis, with a lower HDAC4

expression significantly associated with progressive

malignancy and unfavorable disease outcome, similar to

what is observed in other cancers [41]. The GO analysis

indicated that HDAC4 expression is functionally related to

the maintenance of chromosome structure. Meanwhile,

several previous studies have demonstrated various roles

for HDAC4 in cancer cells. In chondrosarcoma, a decrease

in HDAC4 expression leads to the upregulation of vascular

endothelial growth factor expression, thereby stimulating

angiogenesis [42]; in prostate cancer cells, HDAC4

downregulation was associated with a high level of

androgen receptor expression, which promoted cell growth

[43]. The results of the present study reveal that HDAC4 is

a strong prognostic factor in glioma and likely determines

patient outcome via modulation of genomic integrity.

The most widely used marker of genomic instability is

the CIN signature, which embodies aberrations in chro-

mosome number as well as structure [44]. There was

considerable overlap in the CIN25 score across tumor

grades, and patients with the same grade had significantly

different CIN25 scores. The overlap between grades was

normalized by restricting the analysis of CIN25 score to

each grade in the glioma databases; as in the case of other

cancers, a higher score was linked to high pathological

grade and unfavorable prognosis, confirming that a loss of

genomic integrity plays an important role in tumorigenesis

and impacts patient prognosis. The strongly negative cor-

relation between HDAC4 expression and CIN which

determined by statistical analyses of GO results and by

GSEA confirmed the utility of HDAC4 as a more conve-

nient, alternative marker of genomic instability.

Previous studies have reported that cancer cells with a

high degree of CIN acquire multi-drug resistance at higher

rates as compared to diploid cells with stable chromo-

somes. This is true in the case of colorectal cancer,

regardless of somatic mutation status [45]. A similar rela-

tionship to drug sensitivity was found in soft tissue sar-

coma and ovarian cancer [32, 46]. In this study, GBM

patients with a low CIN25 score were more sensitive to

radiochemotherapy and lived longer than those receiving

radiotherapy alone, but there were no differences observed

between the two treatment groups for patients with a high

CIN25 score. The relationship between CIN and multi-drug

resistance can be explained by the increased heterogeneity

in malignant cancers resulting from CIN, which increases

the probability of a drug-resistant subclone arising in the

tumor [47].

Combined radiochemotherapy, rather than radiotherapy

or chemotherapy alone, is a standard treatment for GBM.

MGMT promoter methylation status is a clinical predictor

of the extent to which GBM patients will benefit from

chemotherapy [25]. Several studies have shown that

MGMT deficiency resulting from MGMT promoter meth-

ylation may confer increased sensitivity to alkylating

Fig. 4 Association between

HDAC4 expression and CIN25

in glioma. HDAC4 expression

level was closely correlated

with CIN25 score in the CGGA

(a) and other validation sets (b,

c). The GSEA showed that

CIN25 genes were significantly

enriched in samples with low

HDAC4 expression (d). The

horizontal bar in graded color

from red to blue represents the

rank ordering of patients based

on increasing HDAC4

expression. The vertical black

lines represent the projection of

individual genes constituting the

CIN25 score. Genes on the left

(red) correlated most strongly

with downregulated HDAC4

expression. NES normalized

enrichment score
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agents, yet some glioma patients with MGMT promoter

methylation still exhibit resistance to these drugs [25, 48].

Thus, evaluating genomic integrity in combination with

MGMT promoter methylation status may provide addi-

tional insight into the mechanism underlying the acquisi-

tion of drug resistance [49]. The current analysis of GBM

patients with MGMT promoter methylation receiving

combined radiochemotherapy revealed that survival was

prolonged in patients with a low CIN25 score (indicating a

more stable genome) than those with a high score; in the

latter group, the poor outcome was likely due in part to

chemotherapy resistance arising from increased CIN.

These results indicate that the sensitivity to chemotherapy

conferred by MGMT methylation depends on a stable

genome, and that the degree of genomic instability further

stratifies patients with MGMT methylation. The CIN25

score encompasses the status of 25 different genes, and as

such, is difficult to incorporate into routine clinical practice

as a diagnostic tool. Based on the strong association

between HDAC4 expression and CIN, we examined whe-

ther the combination of MGMT promoter methylation sta-

tus and HDAC4 expression level could instead be used to

predict patient outcome. Interestingly, for the highly

malignant GBM, combined radiochemotherapy had the

greatest benefit for patients with MGMT promoter meth-

ylation and high HDAC4 expression (indicating a lesser

degree of CIN). Thus, these two factors combined can

identify patients with the best prognosis who are suitable

candidates for more aggressive therapy, even the underly-

ing mechanisms needed further experimental methods for

interpretation.

Such an analysis helped us gain a novel perspective for

understanding the chemotherapy resistance in GBM patients.

The mechanisms of chemotherapy resistance resulted from

CIN needed further experimental methods for interpretation.

In addition, whether the CIN degree was a determining factor

in gliomagenesis of different subtypes and further tightly

associated with the appearance of MGMT promoter methyl-

ation in GBM patients were pertinent questions as well. With

immunohistochemistry being widely used in both routine

clinical practice and research, the role of HDAC4 in glioma

could be further validated from protein level in the near future.

Clinically, our next major goal is to verify its role in the

guidance of glioma diagnosis and treatment.

In conclusion, in present study, HDAC4 expression was

found to be closely related to tumor grade and patient

prognosis, and functional and statistical analyses identified

a correlation between HDAC4 expression and CIN signa-

ture in glioma. Taken together, the results indicate that

HDAC4 can serve as a marker of CIN and, when combined

with MGMT promoter methylation status, may be used to

identify GBM patients who would benefit most from

combined radiochemotherapy.
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