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Recognising moulting behaviour in
trilobites by examining morphology,
development and preservation:
Comment on Bl-a _zejowski et al. 2015

Harriet B. Drage1)* and Allison C. Daley1)2)
A 365 million year-old trilobite moult-carcass assemblage was described by

Bl-a _zejowski et al. (2015) as the oldest direct evidence of moulting in the

arthropod fossil record. Unfortunately, their suppositions are insufficiently

supported by the data provided. Instead, the morphology, configuration and

preservational context of the highly fossiliferous locality (Kowala Quarry,

Poland) suggest that the specimen consists of two overlapping, queued

carcasses. The wider fossil record of moulting actually extends back 520million

years, providing an unparalleled opportunity to study behaviour, ecology and

development in early animals. Taking cues from modern analogues, it is

possible to quantify precise details about moulting behaviour to determine

broad-scale evolutionary trends, ontogenetic sequences and morphological

selection pressures. In this review, we argue that this rich source of data has

been underused in evolutionary studies, though has great potential for

investigating the life history and evolution of arthropods in deep time.
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Introduction

The extensive fossil record of Arthro-
poda provides a fascinating insight
into the evolution of the most diverse
and abundant animal phylum, upon
its appearance amongst the earliest
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animals 541 million years ago [1–3].
Arthropod growth requires moulting of
the exoskeleton (Fig. 1), a process
known as ecdysis [4, 5], which is also
observed in nematodes and other
closely related phyla that make up the
group Ecdysozoa. The exoskeleton of
arthropods provides protection and
structural support, but has the disad-
vantage of needing to be moulted in
order for the animal to grow. Each
growth stage in arthropods involves a
moulting event, which provides the
opportunity not only for development
towards an adult morphology (in juve-
niles) and an increase in body size, but
also for the regeneration and repair of a
ioessays published by WILEY Periodicals, Inc.
f the Creative Commons Attribution License, wh
medium, provided the original work is properly
damaged exoskeleton [5]. Owing to this
multi-faceted function, the mode and
method of moulting can greatly influ-
ence large-scale evolutionary trends
within the arthropods; for example,
the successful radiation of insects
(Fig. 1A) was linked to the regulation
of ecdysis-related hormones [6]. The
evolutionary significance of moulting in
extinct animals can also be examined
because the empty moults, or exuviae,
are discarded after ecdysis, providing
a record of previous developmental
stages, and have the potential to be
fossilised. As one of the few behaviours
with palaeontological evidence, moult-
ing provides a rare opportunity to study
ecology, growth and development in
extinct arthropods, as recently reviewed
by Daley and Drage [5].

The fossil record of moulting is
largely composed of exuviae, and fossils
preserved during moulting are ex-
tremely rare because these events take
place on a relatively rapid time scale [5].
The most prolific fossil record of moult-
ing is observed in trilobites, an extinct
group of marine arthropods that were
very abundant and important members
of the animal ecosystem from 521 to
250 million years ago (Fig. 2). Their
anatomy consists of a mineralised,
segmented body with three longitudinal
lobes (a central axial lobe, and left and
right pleural lobes, hence the name
“trilobite”), and an anterior to posterior
regionalisation consisting of a head
(cephalon), thorax and tail (pygidium)
www.bioessays-journal.com 981
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Figure 1. Exemplar photographs of modern arthropod moulting behaviours. A: Cicada
moulting through the dorsal part of the abdomen (image credit: Wikimedia Commons).
B: Horseshoe crab that died following exuviation through the anterior cephalic ecdysial gape
(image credit: Wikimedia Commons). C: Giant house spider (Eratigena atrica), extracting the
legs while emerging mid-moult from the dorsal abdomen (image credit: Wikimedia
Commons). D: Mid-moult Scolopendra centipede, emerging through an anterior cephalic
gape suture (image credit: Nicky Bay, http://sgmacro.blogspot.com).
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(Fig. 2A). Building on this basic body
plan, trilobites had a diverse morphol-
ogy and ecology, occupying numerous
niches in marine communities. Trilo-
bites had distinct moulting behaviours
that mostly utilised the facial sutures,
thus allowing the lateral and antero-
dorsal parts of the cephalon to be
displaced (the free cheeks, or librige-
nae), providing an opening through
which the organism could shed the
smaller exoskeleton (Fig. 2B). In some
trilobites, the facial sutures were fused
and the animal moulted by disarticulat-
ing the entire cephalon (Fig. 2C). With
either scenario, the distinct configura-
tion remaining as empty exuviae allows
us to identify specimens as moults with
relative ease. For other moulting arthro-
pods with a known fossil record, such as
decapods, scorpions, and eurypterids
(sea scorpions), distinguishing between
exuviae and carcasses is not as easy
982
because ecdysial suture lines are less
distinct and the moult assemblages are
not as recognisable [5]. Trilobites,
therefore, represent one of the best
model taxa for studying the evolution of
moulting, growth and development in
extinct arthropods.

Trilobites have a rich fossil record of
carcasses and exuviae, which has
provided a wealth of information on
developmental stages, behaviour and
interactions with the environment (e.g.
Refs. [5, 7, 8]). Trilobite specimens
preserved in the short period immedi-
ately post-moulting are extremely rare.
However, a recent paper by Bła _zejowski
et al. [9] described an Upper Devonian
fossil, approximately 365 million years
old from the Kowala Quarry in the
Holy Cross Mountains of central Poland,
that consists of two stacked exoskel-
etons of the trilobite Trimerocephalus
chopini, which they interpret as in situ
Bioessays 38: 981–990,� 2016 The Authors. Bio
preservation of an individual having
just emerged from its moulted exuvia,
located directly above the carcass
(Fig. 3C and F). The spectacular preser-
vation of such a short-lived event would
provide important information for
studying the complex interplay between
ontogeny, behaviour and fossil preser-
vation, and as such it is critical that
such evidence is identified correctly in
the fossil record. Unfortunately, the
proposed trilobite carcass-moult assem-
blage hypothesised by Bła _zejowski
et al. [9] is not well supported, and
the lines of evidence on which their
interpretation is based are discussed in
order below. We then place our paper
in the context of the excellent fossil
record of moulting in general, and focus
on its potential for studying the evolu-
tion of developmental processes in deep
time.
The earliest fossil record
of moulting extends back
to the Cambrian

Bła _zejowski et al. [9] claimed that the
three-dimensional specimen of T. cho-
pini from Kowala Quarry in central
Poland represents the oldest direct
example of a fossilised moulting event
at 365 million years old. However, in-
the-act moulting is conclusively known
from a number of older fossils from the
Cambrian. An exquisite specimen of
Marrella splendens from the middle
Cambrian Burgess Shale (approximately
508 million years old) was illustrated
emerging anteriorly from its exoskele-
ton, and therefore represents the earli-
est example of an arthropod preserved
mid-moult [10]. Even older examples
(from approximately 518 million years
ago) are known for other ecdysozoans,
including a loriciferan (microscopic
marine sediment-affixed animals with
a protective outer layer) from the lower
Cambrian Sirius Passet preserved exit-
ing its exoskeleton [11], and a lobopo-
dian (extinct worm-like ecdysozoan
with paired limbs) with overlapping
plates from the lower Cambrian of
northern Greenland that suggests it
was preserved during the process of
moulting [12]. The early fossil record
of moulting is also rich in examples
of exuviae, particularly for Cambrian
essays published by WILEY Periodicals, Inc.
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Figure 2. A: Labelled line drawing of Olenus sp., with the anterior and posterior directions
indicated, and the cephalic, thoracic and pygidial regions also indicated on an adjacent
photograph of an Olenus truncatus specimen (PMU, no number, 4mm scale). B: Acidaspis
coronata moult showing disarticulation and backwards displacement of the free cheeks
(librigenae) (OUMNH C.17494, 5mm scale). C: Ogygiocarella debuchii moult showing
disarticulation of the cephalon and dislocation along the thorax (OUMNH B.263, 20mm
scale).
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and Ordovician strongly biomineralised
arthropods such as trilobites [5]. Several
specimens from this time period show
clusters of exuviae preserved in close
proximity, indicating synchronous
mass moulting events [13, 14]. This rich
fossil record of moulting has allowed
for quantitative analyses investigating
moulting behaviour trends, and their
impact on trilobite evolution [5, 15].
Therefore, the Devonian specimen of
T. chopini described by Bła _zejowski
et al. [9] cannot be considered ‘the
oldest direct evidence for a moulting
episode’ (p. 1).
Specimen position,
preservation and context
suggest queueing trilobite
carcasses

Many arthropods have distinct exoskel-
etal arrangements upon moulting,
Bioessays 38: 981–990,� 2016 The Authors. B
which are found preserved in the fossil
record due to their reinforced cuticle.
These moult assemblages can usually
be recognised by a number of criteria,
described by Henningsmoen [16] and
expanded upon in Daley and Drage [5].
For example, opened gape sutures
(created by the opening of suture lines
or articulation points) in the exoskele-
ton and repeated configurations of
disarticulated sclerites (individual units
of the exoskeleton) are most commonly
used to designate moults. Contextual
information from the fossil locality
(associated material, palaeoenviron-
ment, preservational processes), and
the distortion of sclerites in consider-
ation with local preservational pro-
cesses (flattening, superimposition of
elements, telescoping), are important
for differentiating between preserved
arthropod moults and carcasses, and
for distinguishing abiotic or microbial
exoskeleton disarticulation from true
moult assemblages. Using these criteria,
ioessays published by WILEY Periodicals, Inc.
moulted trilobite exoskeletons are very
often recognisable in the fossil record,
and can provide a great deal of
behavioural and ecological information.
They display several distinct moult
arrangements (such as those described
in Ref. [16]) with clear exuvial gapes.
Most frequently, trilobites created an
exuvial gape by disarticulating the free
cheeks (Fig. 2B), or entire cephalon
(Fig. 2C), followed by the animal
extracting itself from the remaining
articulated sclerites by moving anteri-
orly [5]. Unfortunately, Bła _zejowski
et al. [9] do not factor several crucial
considerations into their description of
a putative moult-carcass trilobite as-
semblage. In particular, the presumed
exuvial gape, relative positioning of
their specimen, and the context (other
specimens from the locality, and pres-
ervational conditions) do not support
their hypotheses.

T. chopini figured by Bła _zejowski
et al. [9] (Fig. 3) shows two overlapping
individuals, a situation that has been
interpreted as a ‘moulted exoskeleton’
positioned dorsal and slightly posterior
to the ‘carcass’. The putative moult
is exposed, displaying a cephalon with
slight dorsal angling, while the putative
carcass was revealed in three-dimensions
by CT-scanning. Bła _zejowski et al. [9]
argued that this specimen shows the
moult arrangement described for Paci-
phacops preserved ‘immediately follow-
ingmoulting’ (p. 2). They (andwe) reject
the idea that this assemblage represents
a specimen preserved during or immedi-
ately before moulting (with the ‘carcass’
still enclosed in the soon-to-be moulted
exoskeleton) because the two individu-
als are ‘separated by a layer of sediment’
(Fig. 3F) and not ‘pancaked’ (Ref. [9],
p. 2), as would be expected if they were
still articulated at the time of preserva-
tion. Paciphacops is thought to utilise
infaunal moulting (following burrowing
for protection from predators), which
occurs through an anterior gape suture
created by ventral disarticulation of the
cephalon and thorax, causing the ceph-
alon to hinge dorsally at an angle of
nearly 90˚ (Ref. [17], Fig. 2; our Fig. 3D).
Other phacopid trilobite specimens also
show possible infaunal moulting with
their cephala angled at more than 90˚
from the sediment [18]. However, the
specimen of T. chopini (Ref. [9], Fig. 2)
shows a much lower angle of cephalic
983



Figure 3. Trimerocephalus specimens from the Early Famennian (Late Devonian), Holy Cross
Mountains, central Poland. A: line drawing produced from the CT scan of the Trimerocephalus
chopini ‘moult’ figured by Bła_zejowski et al. [9]. B: Line drawing from the CT scan of the T.
chopini ‘carcass’. Numbering in A and B indicates 10 thoracic segments in each, particularly
visible when using the appended CT scan video provided by Bła_zejowski et al. [9]. C: Original
lateral-view CT scan of the T. chopini specimen from Bła_zejowski et al. (Ref. [9], Fig. 2B, cc-by
licensed), illustrating the relative positioning of their putative ‘carcass’ and ‘moult’. Measures of
the lateral and dorsal lengths of the cephala, and of the individual thoracic segment lengths
show no appreciable difference in size between the two individuals. Scale bar 2 cm, as given in
Bła _zejowski et al. [9]. D: In comparison to C, the positioning of the labelled ‘carcass’ and ‘moult’
suggested for a true moult-carcass assemblage [17]. E: One of several Trimerocephalus
‘queues’ of overlapping trilobite carcasses from the Holy Cross Mountains, adapted from Plate
2, Fig. 4 of Radwa�nski et al. [19]. The white box shows the contextual positioning of G. No
scale bar provided in Radwa�nski et al. [19]. F: Dorsal-view photograph of the T. chopini
suggested moult-carcass assemblage from Bła_zejowski et al. (Ref. [9], Fig. 2A, cc-by licensed).
Scale bar 2 cm, as given in Bła _zejowski et al. [9]. G: Dorsal-view close-up of two overlapping
Trimerocephalus carcasses, adapted from Radwa�nski et al. (Ref. [19], Plate 2, Fig. 4A and B)
and shown in situ in E. Shown free of context in comparison to F, the two specimens appear
extremely similar. No scale bar provided in Radwa�nski et al. [19].
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hinging and displacement (Fig. 3C) than
these definitive moult specimens, sug-
gesting either very minor disruption
984
during moulting or subsequent closure
of the gape suture. Both scenarioswould
be unlikely if the animal had been
Bioessays 38: 981–990,� 2016 The Authors. Bio
moulting infaunally, because sediment
would immediately infill the empty
exoskeleton after moulting [18]. Even if
the specimen were moulting above-
ground, a larger displacement of the
cephalon would still be expected, as is
regularly seen in taxa that moult in this
manner (Fig. 2C) [5, 16]. Regardless of
whether Trimerocephalus was moulting
infaunally or not, similar minor dis-
placements of the cephala have fre-
quently been observed in other
trilobites from the Kowala Quarry, and
interpreted as ‘resulting from a diage-
netic event of compaction’ (Ref. [19],
p. 461), rather than moulting. This
further suggests that the dorsal individ-
ual figured in Bła _zejowski et al. [9] is not
a moult.

The position of the ‘carcass’ relative
to the ‘moult’ raises further issues with
the moult-carcass assemblage interpre-
tation. The ‘carcass’ component is
positioned very much beneath, and
only slightly forward, of the ‘moult’
(Ref. [9], Fig. 2). As mentioned earlier,
this cannot represent preservation be-
fore or during moulting, because the
layer of sediment separating the dorsal
and ventral individuals indicates that
the supposed ‘carcass’ was not enclosed
in the soon-to-bemoulted ‘exoskeleton’.
To result in this position in a specimen
preserved immediately after moulting,
the egressing individual would have
had either to detach the dorsal exoskel-
etal shield as a single unit and move
downwards vertically, or to have exited
anteriorly through a ventral gape suture
under the cephalon and burrowed
backwards into the sediment. Trilobites
do not have sutures in the thorax,
meaning that the pleural and pygidial
doublure (the parts of the thorax and
pygidium that extend laterally onto the
ventral side) would inhibit the first of
these scenarios. Some trilobites didmove
anteroventrally through the cephalon
while exiting the old exoskeleton [16],
but this would have required disarticula-
tion of ventral sclerites (rostral plate,
hypostome), and no convincing event
involves backward movements within
the sediment post-moulting. The direc-
tion of exuvial movement in most trilo-
bites is towards the anterior (Ref. [17],
Fig. 3; Ref. [20], Figs. 2–6), and therefore
a more convincing moult-carcass as-
semblage would have the carcass pre-
served entirely in front of the moult on a
essays published by WILEY Periodicals, Inc.



Figure 4. A and B: Specimen of Olenoides serratus described as freshly moulted [33]
(USNM 57685, part and counterpart). C: Freshly moulted specimen of Phacops rana (USNM
403875, described in Refs. [31, 32]). Both show wrinkling, flattening, and low relief of
features; these are considered characteristic of freshly moulted trilobites and led to the
original publications describing them as such. C is in contrast to an adjacent, smaller
specimen considered a normal intermoult trilobite because it is darker in colour, and shows
no flattening, wrinkling, or evidence of compression. Scale bars all 1 cm.
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similar depositional plane (Fig. 3D). For
example, Henningsmoen [16] identified
a Hanchungolithus primitivus specimen
(Ref. [21], Plate 5, Fig. 9) possibly
preserved shortly after moulting in this
specific configuration (Fig. 3D) ‘again
[indicating] forwards movement of the
exuviating trilobite, since the larger
specimen lies in front of the smaller’
(Ref. [16], p.188). The broader preserva-
tional context of the locality must also
be considered. Kowala Quarry preserves
aligned (‘queued’) carcasses of Trimer-
ocephalus (Ref. [19], Plate 1, Fig. 5C–D,
Plate 2, Figs. 3A and B, 4A and B, 6C and
D) overlapping in the same way as the
specimen illustrated by Bła _zejowski
et al. [9]. Radwa�nski et al. [19] described
these very similar specimens as ‘live
trilobites entombed while migrating’
(p. 460), and these queues of up to
Bioessays 38: 981–990,� 2016 The Authors. B
nine trilobites do not show any clear
evidence of moulting (e.g. disarticulated
cephala) or the presence of disarticu-
lated exuvial debris. The specimens
described by Bła _zejowski et al. [9] more
likely represent two individual aligned
carcasses preserved on top of each other
and separated by sediment deposition,
in the queued arrangement typical of
this locality [19]. While this does not
necessarily exclude the specimen of
Bła _zejowski et al. [9] from also being a
moult assemblage, it demands a clearer
explanation of how this particular speci-
men differs from the other completely
preserved body clusters found there. In
isolation, several queued carcasses from
Radwa�nski et al. (Ref. [19], Plate 2)
are indistinguishable (see our Fig. 3E
and G) from the specimen described by
Bła _zejowski et al. [9].
ioessays published by WILEY Periodicals, Inc.
Understanding moulting
allows for the study of
growth and development
in trilobites

During development, juvenile arthro-
pods grow in a stepwise pattern, with
distinct instars separated by moulting
events and accompanied by morpholog-
ical change such as thoracic segment
addition (anamorphic growth). Adult
trilobites may have grown indetermi-
nately, meaning they increased in size
with each adult moult until death while
maintaining the same morphology
[22, 23]. Continued moulting during
adulthood is suspected because of the
presence of healed injuries in adult
exoskeletons, a process that only takes
place during moult growth events [24].
Examining moults therefore allows
direct interpretation of growth and
developmental patterns from the fossil
record, and to date there have been
numerous studies detailing variation in
trilobite ontogeny (e.g. Refs. [25–28]).
Bła _zejowski et al. [9] interpreted their
putative moult-carcass assemblage as a
growing juvenile, based on a suggested
increase in thoracic segment number.
However, we find no clear evidence for
the increased number of thoracic seg-
ments, and suggest that the lack of
overall increase in body size argues
against this being a moult assemblage.

Bła _zejowski et al. [9] argued that the
‘carcass’ part of their specimen displays
one additional thoracic segment as
compared to the supposed empty moult,
and use this to support the idea of a
moult-carcass assemblage. This sug-
gested increase in segment number
may actually reflect complications in
preservation of the dorsal specimen
because posterior segments are obscured
by pygidium enrolment. Bła_zejowski
et al. [9] did not publish their segment
number observations, but we can distin-
guish 10 thoracic segments in the CT-
scan reconstructions of both individuals
(Fig. 3A and B). This argues against the
juvenile moult assemblage interpreta-
tion. Furthermore, pygidium enrollment
results from muscle contraction on death
[19], and is a classic indicator of a pre-
served carcass rather than a moult,
becausecomplexmusculature is required.

Our measurements also indicate
that the overall body size and size of
985



Figure 5. Percentage of sampled trilobite species from seven orders that show each of four
different moulting behaviours (disarticulation of: free cheeks; cephalon; free cheeksþ remain-
ing cephalon; thoracic segments). Data obtained from the descriptive literature (see [5] for
methodology, data normalised to 100%).
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the individual sclerites of the ventral
specimen are not significantly larger
than the dorsal specimen. Trilobites
grew at each moulting event [22], par-
ticularly when considered juvenile [29],
as seen in the H. primitivus specimen
figured by Dean (Ref. [21], Plate 5, Fig. 9)
and suggested by Henningsmoen [16] to
represent a larger carcass to the anterior
of its moulted exoskeleton. While there
may have been a very brief period of
time immediately after moulting when
inflation of body size had not yet
occurred to an observable extent, the
exoskeleton would necessarily be rela-
tively soft during this freshly moulted
stage, but there is little evidence of this
in the Bła _zejowski et al. [9] specimen, as
discussed in detail in the next section.
A freshly moulted Phacops trilobite
specimen found immediately adjacent
to its moulted exoskeleton (Ref. [30],
Plate 1, Fig. 5) clearly has a larger body
size and is in the softer, post-moult
state, as evidenced by the flattened and
wrinkled preservation. This specimen
suggests that an increase in body size
986
occurs almost immediately after exiting
the exoskeleton, and should be ob-
served if the specimen in Bła _zejowski
et al. [9] really were amoult assemblage.
Preservation of freshly
moulted trilobites is
characterised by wrinkling
and flattening

Several trilobite carcasses (Fig. 4) have
been described as preserved very shortly
after a moulting event in a soft-shelled
state before the new exoskeleton min-
eralised and hardened [30–33]. In
this duration of time, arthropods are
vulnerable to predation. Individuals of
Phacops rana from the same beds as
trilobite exuviae clusters at the Penn
Dixie shale pit, New York (Fig. 4C),
‘exhibit a distinctly thinner, pale brown
to grey cuticle, which may be flattened
and slightly wrinkled’ (Ref. [31], p. 96)
and are found directly associated
with specimens showing ‘little or no
Bioessays 38: 981–990,� 2016 The Authors. Bio
compression’ (Ref. [31], Fig. 3D, p. 91;
reiterated in Ref. [32], Fig. 7E, p. 214). A
single Olenoides serratus (Fig. 4A and
B), in contrast to other individuals of the
species, has low relief, conspicuous
wrinkling, poorly defined structures,
and soft-part preservation of appen-
dages and the entire alimentary canal
(including midgut), the latter indicating
that it is a carcass [33]. Phacops rana
milleri trilobites from the Middle Devo-
nian Silica Shale of Ohio show the
stages of post-ecdysial cuticle harden-
ing, freshly moulted individuals being
‘pale, thin and wrinkled’ (Ref. [30],
p. 33). Cuticle thickness was quantita-
tively measured in thin section, and
freshly moulted individuals had a
thinner cuticle (25–135mm) than inter-
moult specimens (300–500mm) [30].
All of these specimens show a charac-
teristic wrinkling, flattening and thin-
ness in the exoskeletons of freshly
moulted trilobites. Wrinkles may have
resulted from incomplete decompres-
sion of the new larger exoskeleton after
exiting the old exoskeleton, and/or from
deformation and compaction during
burial in sediment, the latter of which
also caused flattening of the soft
exoskeleton [30]. Because other preser-
vational processes unrelated to moult-
ing (e.g. tectonic deformation) could
essays published by WILEY Periodicals, Inc.
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have caused wrinkling and/or flattening
in whole assemblages of trilobite exo-
skeletons [34], trilobites with flattened
and wrinkled exoskeletons need also to
be found in close proximity to trilobites
with unwrinkled, high-relief, fully min-
eralised exoskeletons before they can be
soundly interpreted as freshly moulted
individuals. Size frequency distribu-
tions of the assemblages should also
be examined to determine if differences
in relief could be the result of varying
preservation mechanics of differently
sized trilobites.

Wrinkles in the anterior cephalon of
the T. chopini ‘carcass’ specimen are
taken by Bła _zejowski et al. (Ref. [9], p. 3)
as evidence that the cuticle was soft as a
result of recent moulting. However,
these wrinkles are difficult to discern
in specimen images (Ref. [9], Fig. 2E),
and could alternatively be cracks in the
rock, particularly given that numerous
cracks are visible elsewhere in the
‘carcass’ and ‘moult’ (Ref. [9], Fig. 2C–
F), and in other trilobites from this
locality [19, 35], because trilobite exo-
skeletons are known to fracture during
compression [30, 36]. Wrinkles alone
would not be enough to identify a
freshly moulted trilobite because all
other documented examples (Fig. 4)
show pronounced flattening in addition
to wrinkles (Ref. [30], Plate 1, Fig. 5;
Ref. [31], Fig. 3D; Ref. [33], Plate 17,
Fig. 3, Plate 19), owing to the greater
compressibility of the softer, newly
moulted exoskeleton. In contrast, the
Bła _zejowski et al. [9] specimen shows
very little difference in the height of
the ‘carcass’ as compared to the ‘moult’
(Fig. 3AandB), and this lack of flattening
does not support the interpretation of
a freshly moulted individual.
Modern analogues can be
used to understand
trilobite moulting

One of the better ways to understand the
anatomy, behaviour and development
of extinct animals is to compare them to
modern animals with similar affinity,
mode of life or environmental prefer-
ences. The use of modern analogues has
shed light on a diverse set of enigmatic
palaeontological evidence. For exam-
ple, a comparative anatomy approach
Bioessays 38: 981–990,� 2016 The Authors. B
allowed for the analysis of brain mor-
phology in a 518 million year-old
arthropod, Fuxianhuia protensa from
the Chengjiang Biota, by comparison
with the neuroanatomy of modern
hermit crabs [37]. Such approaches are
particularly important when studying
extinct animals with no direct modern
relatives, as long as the modern ana-
logue is appropriate in affinity and/or
mode of life.

Bła _zejowski et al. [9] used horseshoe
crabs as a comparison for understand-
ing the preservation and behaviour of
moulting trilobites. The horseshoe crab
(Fig. 1B) is one of the most renowned
‘living fossils’, generally considered to
have a morphology that has changed
little in over 400 million years. In
reality, horseshoe crabs (xiphosurans)
have undergone striking changes to
their morphology during their long
evolutionary history [38]. Horseshoe
crabs may not be the most appropriate
modern analogue for interpreting the
trilobite fossil record of moulting.
While trilobites and horseshoe crabs
are both marine arthropods and some
recent phylogenetic analyses ally them
(and other Artiopoda, the extinct group
containing trilobites) with the Chelicerata
group to which horseshoe crabs belong
[39], other analyses place trilobites with
the Mandibulata, rather than the Cheli-
cerata [1, 2, 40]. Further, xiphosurans
possess an anterior exuvial gape that
closes after egress, making it difficult to
distinguish moults from carcasses in the
fossil record [5]. Unlike most trilobites,
horseshoe crabs have an exuvial suture
that splits open along the anterolateral
margin of the head, through which the
animal exits, but during which no
element of the head is removed [41].
The resulting uncertain moult fossil
record makes it difficult to study evolu-
tionary aspects of xiphosuran moulting
behaviour. Horseshoe crabs also differ
from trilobites in having determinate
growth, meaning that they stop growing
and moulting after reaching adulthood,
whereas trilobites are suggested to have
continued to moult and increase in size
as adults [4, 22, 23, 42, 43].

Given that trilobites have been
considered closely related to Mandibu-
lata, modern analogues may be more
appropriate if drawn from within this
clade, which is comprised of the Myr-
iapoda (centipedes and millipedes),
ioessays published by WILEY Periodicals, Inc.
Crustacea (crabs, lobsters, shrimp,
etc.) and Hexapoda (insects). Many
myriapods and crustaceans show con-
tinuous growth and moulting during
adulthood [4, 44], as suggested for
trilobites [22, 23, 42, 43]. In myriapods
(Fig. 1D), moulting often proceeds by a
transverse dorsal suture opening in the
head to create the exuvial gape, through
which the animal egresses anteri-
orly [45, 46]. Other myriapods moult
by disarticulating the entire head from
the remainder of the body. Themoulting
behaviour and similar repeated nature
of the trunk segments is therefore
comparable to that of trilobites. The
myriapod fossil record largely consists
of millipedes, which have a robust
cuticle reinforced with calcium carbon-
ate, although most fossils are inter-
preted as carcasses rather than moults
[47, 48]. This is because in centipedes
the cuticle undergoes extensive reab-
sorption prior to moulting and the
remaining moulted exuvia is almost
always consumed by the individual,
which greatly reduced the chance of
exuviae being preserved in the fossil
record [48]. Myriapods are appropriate
modern analogues for studying general
moulting mode, but because they are
terrestrial rather than aquatic, they
make poor analogues for understanding
trilobite exuvial behaviour and moult
preservational processes. The density
difference between air and water pre-
sumably leads to divergent exuvial
procedures, requiring distinct move-
ments for terrestrial compared to
aquatic moulting. Marine isopod crus-
taceans may be a more useful compara-
tive group. These are extant arthropods
that have a unique biphasic moulting
method, in which the posterior part of
the body is moulted first, followed by
the anterior sclerites a few days later
[49–51]. Separate moulting of the body
and head is reminiscent of moulting in
trilobites, although in trilobites the
cephalic sclerites are moulted first and
the remainder of the exoskeleton is
shed after. Biphasic moulting in marine
isopods influences preservation of these
arthropods in the palaeontological re-
cord, the majority of fossils being
interpreted as moulted exuviae because
they consist of posterior body regions
only, without the head [50, 51]. Studying
how marine isopod moulting affects
their fossil preservation could therefore
987
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provide insight into the taphonomy and
behaviour of moulting in the extinct
trilobites.

Bła _zejowski et al. [9] compared their
proposed trilobite moult assemblage
to the fossil horseshoe crab Crenatoli-
mulus from the Late Jurassic Owad�ow-
Brzezinki Quarry in Central Poland, to
examine both preservation and behav-
iour. The proposed wrinkles on the
exoskeletons of both the horseshoe crab
and the trilobite are taken as evidence
for these being freshly moulted individ-
uals that have not yet undergone post-
moulting ‘decompression’ (Ref. [9],
p. 3). This is in contrast to the well-
established interpretation of wrinkles in
otherwise complete horseshoe crab
fossils as taphonomic artefacts resulting
from sediment compaction and flatten-
ing of high relief structures [34, 41, 52].
Bła _zejowski et al. [9] imply that the
horseshoe crab specimens, and by
extension the T. chopini trilobite speci-
men, are too three-dimensional for the
wrinkling seen on their exoskeletons to
be from taphonomic processes. How-
ever, it has been shown that even small
amounts of compression can cause
taphonomic wrinkles in horseshoe crab
specimens that retain high relief [34,
52]. The absence of pronounced flatten-
ing in these specimens suggests that
these specimens had fully hardened
exoskeletons at the time of preserva-
tion, and does not support the claim of
Bła _zejowski et al. [9] that they were
freshly moulted individuals.
Mass moulting occurs in
modern arthropods and
trilobites

One of the most significant social
behaviours linked with moulting is the
occurrence of synchronised moulting
events, or ‘mass moulting’, involving a
large number of individuals [31, 53–57].
In modern arthropods, mass moulting
events are sometimes triggered by
external abiotic cues, as is seen in the
lunar-rhythmic moulting of the crayfish
Astacus [53]. Direct communication
between individuals can also trigger
synchronised moulting, either through
pheromones, as seen in some colonial
spiders and Hexapoda such as beetles
and springtails [54–56], or through
988
visual communication, as seen in krill
[13, 57]. Mass moulting reduces preda-
tion pressure on individuals during this
vulnerable stage of their development
[58], but the benefit is balanced by
higher disease transmission rates within
the population [13, 59]. Synchronised
moulting events are well established in
modern arthropods, but identifying this
behaviour in the fossil record is more
difficult. Trilobites are one of the only
fossil arthropod groups found in large
enough numbers that we can access
group behavioural information [19,
60–65] and examine synchronised
moulting events in deep time.

Gregarious behaviour in trilobites
has been documented in many assemb-
lages [19, 60–63] for protection [14],
moulting [31], burrowing [60], feed-
ing [64] and reproduction [65]. Unlike
in modern arthropods, where behaviour
can be observed directly, trilobite fossil
aggregations must be considered in
context to try to assess whether they
are the result of gregarious behaviour or
abiotic accumulations. Currents, sedi-
ment reworking, gravity and other
transportation mechanisms could act
to accumulate numerous individuals in
one area after death, leading to a time-
averaging effect where individuals that
were separated in space and time during
life are combined and preserved to-
gether after death. Detailed analyses of
the taphonomy, sedimentology and
palaeoenvironment of the locality and
size-frequency distribution of the popu-
lation have been successful in separat-
ing abiotic trilobite accumulations from
actual examples of gregarious behav-
iour [31, 62, 65]. Bła _zejowski et al. [9]
described their Devonian T. chopini
trilobite assemblage as preserved in
close association with many juvenile
individuals, and suggest that they were
‘growing in a nursery ground’ (Ref. [9],
p. 4). Prior descriptions of synchronised
moulting-mating behaviour in trilobites
and migration of the offspring to
nursery grounds were based on firmly
documented evidence of moulting, in
combination with quantitative analyses
of the environmental context and pop-
ulation structure [31, 65]. These data
were not described for the Trimeroce-
phalus queues at the Kowala Quarry
locality [9], but if documented, could
allow further inferences about trilobite
gregarious behaviour to be made.
Bioessays 38: 981–990,� 2016 The Authors. Bio
Why study moulting in
trilobites?

The enormous wealth of trilobite moult
fossils provides a unique opportunity to
explore the development and behaviour
of an ecologically important group
during the early history of animal
evolution. Each individual study on
trilobite moulting feeds into a larger
aggregation of occurrences and behav-
ioural descriptions that can be analysed
to interpret evolutionary trends for the
group. This is why specimens such as
that described by Bła _zejowski et al. [9]
must be examined with a critical eye,
in order to determine how appropriate
they are for inclusion in future studies
that examine broader trends in trilobite
moulting. While most published occur-
rencesof trilobitemoultingaredescriptive
in nature, rare quantitative studies have
given us a glimpse of the huge potential
residing in this growing database of
behavioural information. Brandt [15]
contrasted trilobite moulting – which
is actually highly variable even within a
single species (e.g. Ref. [66]) and lacks
reabsorption of the mineralised exoskel-
eton before moulting – with the canal-
ised habit and efficient reabsorption
seen in modern arthropods. Preliminary
survivorship analyses suggested that
the ultimate extinction of trilobites
may have been related to the cumulative
effects of a variable and metabolically
expensive moulting behaviour, reveal-
ing the evolutionary importance of
ecdysial efficiency for taxonomic longev-
ity [15], though the extent of this
influence has been debated (see
Ref. [67]). Our own recent analyses of
published occurrences quantitatively
showed that trilobites exhibit a high
level of variability inmoultingbehaviour
in all orders and throughout their
evolutionary history (Fig. 5, Ref. [5]).
These proof-of-concept studies show
that a huge breadth of information on
early arthropod development remains to
be extracted and interpreted from the
moult fossil record.
Conclusions and outlook

Bła _zejowski et al. [9] described a speci-
men of T. chopini, from the Upper
Devonian (365 million years ago)
essays published by WILEY Periodicals, Inc.
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Kowala Quarry of central Poland, that
they argued consisted of a freshly
moulted individual preserved ventral
to its recently moulted exoskeleton. This
supposition is based on a suggested
increase in the thoracic segment num-
ber and wrinkling of the ‘carcass’. On
consideration of the preservation, mor-
phology and arrangement of the speci-
men, and in comparison to other trilobite
material fromthe locality, it ismore likely
that this specimen represents two sepa-
rate trilobite individuals, which are
queueing in a manner similar to that
described for Trimerocephalus by Rad-
wa�nski et al. [19]. This type of critical
analysis is important when investigating
the fossil record ofmoulting owing to the
difficulty that exists in distinguishing
moults from carcasses, which can be
clarified by consideration of the contex-
tual information of the fossil locality and
comparison with modern analogues [5].

With every new discovery of moult-
ing preserved in the fossil record, we are
more able to discuss important aspects
of the evolution of development and
behaviour. The rare and exquisite
preservation of caught-in-the-act moult-
ing is informative for snapshot views of
ecdysial behaviour [10–12], while larger
scale quantitative analyses of abundant
moult assemblages (i.e. readily identifi-
able trilobite exuviae) allow us to link
trends in moulting modes with geologi-
cal time and taxonomy [5, 15]. Quanti-
tative studies on moulting in the fossil
record should be further expanded,
based upon their demonstrated poten-
tial to reveal information on the life
histories and behaviour of extinct
animals. Understanding what the fossil
record can tell us about moulting and
growth provides a unique deep-time
insight into the evolution and develop-
ment of Arthropoda and other members
of Ecdysozoa.
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