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Effects of temporal correlations in 
social multiplex networks
Michele Starnini1,2, Andrea Baronchelli3 & Romualdo Pastor-Satorras4

Multi-layered networks represent a major advance in the description of natural complex systems, and 
their study has shed light on new physical phenomena. Despite its importance, however, the role of 
the temporal dimension in their structure and function has not been investigated in much detail so far. 
Here we study the temporal correlations between layers exhibited by real social multiplex networks. At 
a basic level, the presence of such correlations implies a certain degree of predictability in the contact 
pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for 
the single-layer case. At a different level, we demonstrate that temporal correlations are a signature 
of a ‘multitasking’ behavior of network agents, characterized by a higher level of switching between 
different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations 
significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work 
opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of 
interest to researchers in a broad array of fields.

Recently, the theoretical framework of network science1 has been enriched by two new concepts: Multiplex net-
works2–4, whose edges belong to different layers, representing different kinds of interactions; and temporal net-
works5, 6, whose edges have an intrinsic dynamics of creation and annihilation, representing interactions switching 
on and off with given characteristic time scales. The introduction of these two viewpoints has greatly enriched our 
understanding of real networks. On the one hand, the multiplex representation, through the definition of new 
observables, such as multilayer clustering, degree correlations or layer overlap2, has allowed for a better structural 
characterization of many networked systems, and helped clarify the behavior of dynamical processes on top of 
them7–11. On the other hand, taking into account the temporal dimension of edges has allowed to uncover unex-
pected properties of time-varying networks, such as their general bursty nature, characterized by a heavy-tailed 
distribution of inter-event times τ between the establishment of consecutive connections12, 13, often compatible 
with power-law forms, ( ) (1 )~ψ τ τ α− + . These temporal effects, moreover, have been shown to radically alter the 
behavior of dynamical processes on such evolving structures14–17.

In the particular case of social networks18, the recent availability of large digital databases has shown the neces-
sity of a dual description based on both multiplex and temporal network approaches. This urgency stems from 
the very nature of social interactions, which are diverse in nature and quality, with different layers co-existing and 
interacting with one another (e.g., physical vs. digital interactions)19, and evolve in time, with new relationships 
being continuously created and destroyed. Therefore, a realistic description should rely on temporal multiplex 
networks, that can be mathematically described by endowing the multiplex paradigm with an additional tempo-
ral dimension, see Methods. The empirical evidence of this dual nature of social networks is arousing a growing 
interest in their temporal multiplex representation within the complex system community20–22. However, the 
effects of the interplay between temporal and multiplex dimensions on the structure and function of real net-
works still remain largely unexplored, also due to the lack of suitable, longitudinal data.

In this paper, we will consider one particular aspect, namely the possibility of observing correlations between 
the temporal activity of different layers. In single-layered networks, indeed, temporal correlations have been 
recently observed23, implying the presence of memory effects24. In the context of temporal multiplex networks, 
this effect translates into the possible presence of inter-layer temporal correlations, i.e. the fact that a social inter-
action, taking place in some given layer at some given time, might alter the probability of subsequent interactions 
in different layers. Such correlations have been characterized in ref. 20 in terms of a Multiplex Markov chain, 

1Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. 
2Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain. 
3Department of Mathematics - City, University of London - Northampton Square, London, EC1V 0HB, UK. 
4Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034, Barcelona, Spain. 
Correspondence and requests for materials should be addressed to R.P.-S. (email: romualdo.pastor@upc.edu)

Received: 11 April 2017

Accepted: 29 June 2017

Published: xx xx xxxx

OPEN

mailto:romualdo.pastor@upc.edu


www.nature.com/scientificreports/

2Scientific Reports | 7: 8597  | DOI:10.1038/s41598-017-07591-0

showing the presence of correlated creation and destruction of connections between pairs of nodes in different 
layers. Here we focus on the effects of such temporal correlations, both in the dynamics of social interactions and 
on dynamical processes running on top of a temporal multiplex. We start by checking the presence of inter-layer 
temporal correlations in several empirical scenarios, by applying a simple information theory approach, which 
reveals a certain degree of potential predictability in the interaction patterns. We measure the effect of temporal 
correlations on social activity by defining a multitasking index, and show that they tend to increase the rate of 
switching between layers expected in an uncorrelated setting. Finally, we explore the impact of temporal correla-
tions on the dynamics of coupled epidemic/awareness processes unfolding on different layers25, showing that they 
can either slow down or speed up the epidemic spread, depending on the region of the parameter space defining 
the model.

In our analysis, we consider different empirical scenarios: Human contact networks, recorded by the “Reality 
Mining” (RM) experiment26 and consisting of two independent data sets, “Social Evolution” (SE) and “Friends 
and Family” (FF); Open Source Software (OSS) collaboration networks27, with data provided by a OSS project 
part of the Apache software foundation28; and scientific collaboration networks29, reconstructed from the 
American Physical Society (APS) data sets for research30. In all cases, interactions are represented as a temporal 
multiplex network formed by two layers, arbitrarily denoted =1 and 1= − . See Methods and Section 1 of the 
Supplementary Material for a full description of the considered data sets.

Results
Correlation and influence between layers.  One simple approach to establish the presence of inter-layer 
temporal correlations in our empirical datasets consists in extending to multiplex networks the mutual informa-
tion analysis traditionally used to detect temporal correlations in single layer sequences of social activity31–33. In 
multiplex networks, an individual i switching from one kind of interaction to another one (e.g. he/she sends an 
email to a colleague and then co-edits some code with another collaborator) is represented by a link between node 
i and node j in layer  at time t1 and a link between node i and node k (including the case j = k) in layer −  at time 
t2 > t1. We want to understand whether i, after having an interaction with j in layer , chooses his next partner k in 
layer −  at random or there is a certain degree of predictability in his choice31, 32.

To address this issue, we define the uncorrelated entropy H ( )i
u
  of individual i as
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p j( )i  is the probability that individual i interacts with individual j in layer . The uncorrelated entropy thus 
measures the degree of heterogeneity in the interaction pattern of an individual in one layer. The conditional 
entropy  → −H ( )i
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 is the conditional probability that individual i interacts with individual k in layer −  immediately 
after interacting with individual j in layer . The influence of layer  on layer − is quantified by the mutual infor-
mation, defined for each individual i as the difference between uncorrelated and conditional entropy, 
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p k j( , )i  is the joint probability that individual i interacts first with individual k in a layer − and imme-
diately after with individual j in a layer . Since H Hi

u
i
c≥ , the mutual information Ii is always positive, and it is 

equal to zero only if the interaction patterns of individual i on the two layers −  and  are temporally uncorre-
lated. Therefore,  → −I ( )i  measures the degree of potential predictability of the interaction pattern of individ-
ual i in layer − , and it is equal to the amount of information about his next partner in layer −  earned by 
knowing his current partner in layer .

To avoid spurious effects due sample size issues, in the computation of these quantities we perform a bootstrap 
analysis, retaining only those individuals who have a value of the conditional entropy significantly smaller than 
the one obtained by rewiring the network according to a null model, in which, for each individual i, the set of all 
pairs of consecutive interactions in different layers is extracted, and the set of second individual interactions in 
each pair is randomized. This procedure destroys any temporal correlations between layers, while keeping con-
stant the uncorrelated entropy. See Section 2 of the Supplementary Material for further details.

Figure 1 (bottom panels) shows the relation between uncorrelated and conditional entropy for single individ-
uals, on the SE contact and OSS collaboration networks (see Supplementary Fig. S2 for additional datasets). One 
can see that many individuals show a significant entropy difference, resulting in a certain degree of potential 
predictability, in each data set under consideration. For the case of RM contact networks, in both data sets SE and 
FF, the uncorrelated and conditional entropy obtained in the physical layer  = +( 1) are larger than the ones 
obtained in the digital layer ( 1) = − , because the former is characterized by a richer pattern of interactions, with 
a larger density and heterogeneity (see Supplementary Table S1). The same behavior is observed in the OSS col-
laboration network, where the denser communication layer ( 1)= −  shows larger values of the uncorrelated and 
conditional entropy than the ones obtained in the co-work layer = +( 1). Figure 1 (top panels), see also 
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Supplementary Fig. S2, shows the amount of potential predictability of an individual i in one layer  obtained by 
the other layer − , as measured by mutual information  → −I ( )i . For the majority of individuals there is a 
mutual influence between layers, both I(+1 → −1) > 0 and I(−1 → +1) > 0.

These results show, in agreement with ref. 20, that the sequences of contacts in social multiplex networks pres-
ent indeed temporal correlations. In our mutual information approach, these correlations translate in a certain 
degree of predictability31, 32, resulting from a deterministic component that overrules the random establishment 
of contacts in one or another social layer. In the following we will show how these temporal correlations can have 
an impact on social behavior and dynamic spreading.

Multitasking index of individuals.  The temporal correlations observed in the entropy analysis performed 
above have an effect in the patterns of social interactions that can be gauged by using simple observables. 
Considering the number of interactions, 



Δn t( )i( )  and Δ−n t( )i( )


, that an individual i performs in a time interval Δt 
in two different layers  and −, a multitasking index ri(Δt) of individual i can be defined as the Pearson correla-
tion coefficient between the set of variables Δ Δ−n t n t{ ( ), ( )}

i i( ) ( )
 

, where each pair 
 

Δ Δ−n t n t( ( ), ( )) is measured at 
different time intervals of fixed length Δt. If ri(Δt) > 0 (i.e. if the values of Δn t( )i( )



 and Δ−n t( )i( )


 attain comparable 
values), then individual i is simply distributing his activity among the two layers and he/she is likely to interact 
indistinctly in both layers at the same time. Otherwise, if ri(Δt) < 0 (i.e. if a large Δ



n t( )i( )  is associated with a small 


∆−n t( )i( ) , and vice-versa), then he/she is likely to be concentrating her activity on one of the two layers.
Figure 2 (top row) shows the probability distribution of the multitasking index, P(r), measured for each node 

of the SE contact and OSS collaboration networks (see Supplementary Fig. S3 for additional datasets), for dif-
ferent values of the time interval Δt, obtained by cutting the whole temporal sequence into consecutive slices. 
The multitasking index is generally negative, indicating the presence of large sequences of uninterrupted acts 
of the same kind. In a given time interval Δt, an individual is more likely to relate with the others only through 
face-to-face interactions, or only through calls or texts, and less likely to use both channels simultaneously. In the 
context of the OSS collaboration network, this translates into developers being more likely either to communicate 
or to co-work, not doing both actions at the same time. In APS networks, see Supplementary Fig. S3, it implies 
that authors are more likely to collaborate in a sequence of papers in the same journal, instead of switching among 
different journals.

Figure 1.  Scatter plot of uncorrelated vs conditional entropy of each individual i, H ( )i
u  vs H ( )i

c
 → −  

(bottom row), and mutual information between layers, I ( )i → −   (top row). Only individuals with a 
conditional entropy with a p-value smaller than 0.05 with respect to the null model are plotted. Data shown are: 
RM contact network, data set SE (left) and OSS collaboration network (right).
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This apparently strong effect must be, however, judged with caution, since burstiness alone is a sufficient con-
dition for the emergence of large sequences of consecutive interactions in the same layer, even in temporally 
uncorrelated networks. In Section 4 of the Supplementary Material, indeed, we build a null model of an uncorre-
lated temporal multiplex network with two independent renewal processes, one for each layer , each one with a 
power-law form of the inter-event time distribution, 



ψ τ τ∼ α− −( ) 1 . We analytically show that the probability 
distribution of finding n consecutive events on the same layer  follows a power-law form, ~



 

α α− + −P n n( ) (1 / ), see 
Supplementary Figs S5 and S6.

Therefore, the empirical multitasking index needs to be contrasted with a null model which destroys temporal 
correlations between layers. In this null model, for each individual i, the set all its interactions in each layer is 
randomized, in such a way that the interevent time distribution ( )ψ τ



 of each layer  is preserved, while temporal 
inter-layer correlations are destroyed. In Fig. 2, upper row, we show also the distribution of multitasking indexes 
in the randomized versions of our empirical datasets. As we can see, the real and randomized distributions are 
clearly different, specially for larger values of the time interval Δt. In Fig. 2, bottom row (see also Supplementary 
Fig. S3), we present a scatter plot between the empirical and randomized coefficients, r(Δt) and rNM(Δt), respec-
tively, for different time intervals Δt. Only individuals whose coefficient r(Δt) is significantly different from 
rNM(Δt) (with a p-value smaller than 0.05 or greater than 0.95, see Section 2 of the Supplementary Material), are 
plotted.

One can see that almost all significant individuals have a multitasking coefficient r(Δt) greater than the corre-
sponding coefficient rNM(Δt) obtained in the null model, as highlighted by the diagonal line. This implies that, in 
general, temporal inter-layer correlations tend to decrease the stretches of time in which activity is concentrated 
in a single layer, increasing the multitasking index. The practical implication of this observation for social dynam-
ics is that temporal correlations increase the rate at which individuals switch from one kind of social activity to 
another one, with respect to a purely random behavior, only constrained by the burstiness of human dynamics.

Figure 2.  Comparison of the multitasking index of individuals in the original data, r, with the corresponding 
index rNM in data randomized according the null model. Probability distribution of the multitasking index of 
the original and randomized data, P(r) and P(rNM) (top row), and scatter plot of the multitasking index of the 
original versus randomized data, r vs. rNM (bottom row), for different time windows Δt. In the scatter plots, 
only individuals with r with a p-value smaller than 0.05 or greater than 0.95 with respect to the null model are 
plotted. In calculating the multitasking index, we consider only individuals with at least 10 interactions in each 
layer. Data shown are: RM contact network, data set SE, 41 significant individuals over 73 (left, Δt expressed in 
seconds) and OSS collaboration network, 40 significant individuals over 52 (right, Δt expressed in minutes).
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Effects of temporal correlations on coupled spreading dynamics.  As we have seen, temporal corre-
lations can alter the pattern of social interactions. Additionally, they can also influence the behavior of dynamical 
processes running on top of temporal multiplex networks. To show this, we consider the interplay of compet-
ing spreading processes, which has been previously studied on static, synthetic, multiplex networks7, 25. In this 
framework, an epidemic spreads on the physical layer of the RM contact networks while information spreads 
on the virtual layer, representing awareness to prevent the infection25. This scenario is modeled as follows: A 
Susceptible-Infected process runs on the physical layer, in which whenever an infected (I) individual i has a 
contact with a susceptible (S) one j, the disease is transmitted with probability β1, and j becomes infected. An 
Unaware-Aware process runs on the virtual layer, in which whenever an aware (A) individual i has a contact with 
an unaware (U) one j, the information is transmitted with probability β2, and j becomes aware. Infected individ-
uals are instantaneously aware of the disease, while a susceptible individual that becomes aware of the disease is 
instantaneously immunized (R) from it, and cannot be infected.

Figure 3 (top row) shows the final prevalence ρ = Iinf/N (a) and the fraction of immunized individuals 
i = Rinf/N (b) measured at the end of the contact sequence of data set SE (see also Section 3 of Supplementary 
Material and Supplementary Fig. S4 for data set FF), as a function of the two parameters β1 and β2 controlling the 
dynamics. The population shows a clear transition from an inactive (i.e. susceptible) to an active (i.e. infected) 
state, for increasing values of the infection probability β1, and decreasing values of the probability of information 
transmission β2. Interestingly, the fraction of immunized agents does not follow such behavior with respect to β1, 
but it reaches a maximum for β −101

3
 , and decreases for larger values. The effects of temporal correlations are 

shown in the bottom row of Fig. 3, where we plot the relative prevalence ρR = (ρNM − ρ)/ρ, (c) and relative fraction 
of immunized individuals, iR = (iNM − i)/i, (d), as obtained by contrasting original data with a null model (NM) in 
which the times of the sequence of contacts between any given pair of individuals i and j is randomized, destroy-
ing inter-layer temporal correlations while keeping the inter-event time distribution of contacts between pairs; see 
Section 2 of the Supplementary Material for further details.

The effect of temporal correlations on the epidemic outbreak is complex and nonlinear. On the one hand, the 
coupled spreading processes unfolding on a uncorrelated network result in a final prevalence up to 50% larger 
than the corresponding processes on a correlated multiplex. The maximum effect of temporal correlations on the 
prevalence is observed for large β2, close to the transition between the inactive and active phases. Therefore, tem-
poral correlations slow down the epidemic spreading in these regions of the phase space, consequently reducing 
the disease outbreak. On the other hand, the final number of immunized individuals is larger in the uncorrelated 
case with respect to the correlated one for small β1, while it is smaller for large β1. This implies that temporal cor-
relations slow down the information diffusion for small β1, and they speed it up for large β1.

Discussion
Here we have shown that the presence of temporal correlations between the layers of a social multiplex networks 
can affect both the patterns of social contacts and the behavior of unfolding spreading processes. On the one 

Figure 3.  Phase diagrams (β1, β2) obtained by simulating the competition between epidemic spreading and 
information awareness on the RM contact network, data set SE (see Supplementary Fig. S4 for data set FF). 
Plots show (a) the fraction of infected and (b) fraction of immunized individuals for the original data; relative 
difference of infected (c) and immunized (d) individuals with respect to randomized data.
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hand, inter-layer correlations reduce the inclination of individuals to engage in large sequences of interactions of 
the same kind, as captured by the increase of their multitasking index. This observation means that individuals 
tend to switch from one kind of social activity to another one more frequently than would be expected in a purely 
random pattern of interactions. At the same level, this correlated pattern implies a certain degree of predictability 
in the sequence of contacts. On the other hand, temporal correlations alter the dynamics of coupled epidemic/
awareness processes unfolding on different layers, either enhancing or depressing the spreading speed. In order to 
single out genuine temporal correlations between layers, in our analysis we contrast our results with appropriate 
null models, pointing out that the burstiness of human activity within a single layer is responsible for spurious 
correlations, and therefore it should be taken into account in the definition and measurement of new quantities 
related with social dynamics. Interestingly, the results obtained are independent of the length of the temporal 
sequence defining the multiplex, as evidenced by the SE and FF datasets, resulting from similar experiments but 
with widely different length.

Our study allows for a better understanding of social networks, highlighting the interplay between their two-
fold temporal and multi-layer nature, which allows to define and measure new observables able to characterize 
the entanglement in the development of different kinds of social activities. Moreover, our findings pave the way 
to sense and measure temporal correlations in other fields of complexity invested by the multiplex representation, 
ranging from the multilayer organization of brain networks34 to multimodal mobility and efficient transporta-
tion35, 36, as well as to their extension to more general multilayer networks. In particular, further research is in 
order to fully unravel the influence of inter-layer correlations in more complex epidemic spreading processes, 
as well as their impact on immunization strategies levering on the temporal patterns of social interactions37, 38.

Materials and Methods
Mathematical description of temporal multiplex networks.  Temporal multiplex networks can be 
mathematically described by endowing the multiplex paradigm with an additional temporal dimension20. In this 
way, a temporal multiplex network can be represented by a contact sequence, a set of quadruplets i j t( , , , )  indi-
cating that nodes i and j are connected at time t in layer , with ∈ = …i j N, {1, , } , the set of nodes, of a total 
number N = , ∈ t  the set of contact times, and ∈ = …   { , , , }L1 2 , the set of = L  layers. From this 
exact description, coarse grained information can be obtained by projecting either temporal, multiplex or both 
dimensions onto a static and/or single-layered network, see Fig. 4. A single-layered temporal network is obtained 
by projecting different layers  onto a single aggregate layer for each contact time ∈ t , so that the resulting 
temporal network is described in terms of a contact sequence with triplets (i, j, t). A static multiplex network is 
recovered by projecting time t onto a time-aggregated network for each layer , resulting in a set of L (possibly 
weighted) networks, 

  

→
= …( )G G G G, , ,

L1 2
. Each network G



 is described by the adjacency matrix1 a , whose 
elements 



 a w i j t( , , , )ij ij tχ= = ∑  represent the number of interactions between i and j occurring over the whole 
contact sequence in layer . One can project both time t and multiplexity  onto a time-aggregated, single-layered 
network G. The elements of its adjacency matrix χ= = ∑ 



a w i j t( , , , )ij ij t,  represent the number of interactions 
between i and j occurring over the whole contact sequence across any layer . The temporal dimension can also 
be considered in more general multi-layer networks2, in which each layer is characterized by a different set of 
nodes.

Figure 4.  Different observation levels of a temporal multiplex network. A full temporal multiplex network (a), 
in this case with two levels, is represented by different snapshots at times ∈ =t t t t{ , , }i 1 2 3  of a single set of 
nodes with edges on different layers (colors) that appear at different times. The integrated static multiplex (b) is 
given by the projection over the time window   of all edges, which appear in their respective layers if they have 
appeared at least once in the whole observation window. A single layer temporal network (c) is obtained by 
projecting all layers onto a single one. Simultaneous projection over time and layers leads to a single layer static 
network (d).
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Empirical data.  We consider three different kinds of empirical temporal multiplex networks, all formed by 
two layers (duplex): human contact networks, recorded by the RM experiment26, OSS collaboration networks, 
reconstructed by means of data provided by the Apache software foundation28, and scientific collaboration net-
works, reconstructed from the APS data set for research30. The RM experiment26, conducted by the MIT Media 
Lab, is composed by two data sets: “Social Evolution” (SE) and “Friends and Family” (FF). It records proximity 
data by means of bluetooth sensors, forming a layer of physical interactions, = + 1, and digital communications, 
as given by phone calls and text messages, merged in a single layer of digital interactions 1= − . The Apache 
software foundation28 provides data of email communications between developers and their commits to edit files 
of several OSS project. We focus on “Apache Axis2/Java”, one of the project involving the largest number of devel-
opers, and consider a layer of co-work, 1 = + , formed by co-commits to edit the same file, and a layer of com-
munication,  = −1, formed by email messages. The APS dataset30 provides information about all papers 
published by the APS since 1893. A multiplex network can be constructed by considering the co-authorship of a 
paper published in any of the APS journals. We consider a layer formed by co-authorship in the journal Physical 
Review Letters (PRL), 1 = + , and coauthorship in other APS journal, excluding PRL,  1= − .

Null models of temporal multiplex networks.  In order to single out inter-layer correlations in temporal 
multiplex networks, we consider different null models. From a theoretical point of view, the structure of a tempo-
ral multiplex network can be represented as a collection of point processes39 for each layer , with two different 
levels of description:

	 1.	 A set of N point processes, 


∈p{ }i i,  , where   is the set of layers, in which a point corresponds to an 
interaction of an agent i with any other agent in the same layer;

	 2.	 A set of N2 point processes, 


p{ }i j i j, , , ∈ , in which a point corresponds to an interaction of agent i with agent j 
in the same layer.

The simplest characterization of these point processes is in terms of their inter-event time distributions rep-
resenting the probability that two points in a process are separated by a time τ. Therefore, a null model of an 
uncorrelated temporal multiplex network corresponds to N × L (or N2 × L) uncorrelated renewal processes40, 
depending on the level of coarse-graning one chooses to consider, in which the time τ between two points is an 
independent random variable distributed according to the inter-event time distribution ψ(τ) extracted from the 
data.

From an empirical point of view, null models can be constructed from the real data by a randomization pro-
cesses5, in which interactions in each layer are reshuffled, preserving certain physical observables (mainly the 
inter-event time distributions). The null model for the multitasking index of individuals is based on the descrip-
tion level (1), preserving the individual inter-event time distributions, while case (2) has been used for the cou-
pled spreading processes unfolding on the multiplex network, preserving now the inter-event time distributions 
of pairs of individuals. For the mutual information analysis, a rewiring preserving the uncorrelated entropy was 
performed. See Section 2 of the Supplementary Material for a detailed definition of each empirical null model.
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