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Abstract

Most current analysis tools for antibody next-generation sequencing data work with primary

sequence descriptors, leaving accompanying structural information unharnessed. We have

used novel rapid methods to structurally characterize the complementary-determining

regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire

sequences. These structurally annotated CDRs provide unprecedented insights into both

the structural predetermination and dynamics of the adaptive immune response. We show

that B-cell types can be distinguished based solely on these structural properties. Antigen-

unexperienced BCR repertoires use the highest number and diversity of CDR structures

and these patterns of naïve repertoire paratope usage are highly conserved across sub-

jects. In contrast, more differentiated B-cells are more personalized in terms of CDR struc-

ture usage. Our results establish the CDR structure differences in BCR repertoires and

have applications for many fields including immunodiagnostics, phage display library gener-

ation, and “humanness” assessment of BCR repertoires from transgenic animals. The soft-

ware tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.

com/oxpig/saab_plus.

Author summary

B-cell receptors (BCR) are the major components of the adaptive immune system. These

are immunoglobulin molecules that bind to foreign substances known as antigens. Each

individual has a huge BCR repertoire, where each individual BCR has a specific binding

site composed of the complementary-determining regions (CDRs) capable of recognising

a specific antigen. Drug discovery and immunodiagnostics inspired by the adaptive

immune system rely on our ability to accurately interrogate the structural diversity of the

binding sites of the BCR repertoire. Here we report our novel rapid pipeline, SAAB+,

which has enabled us to interrogate how the structure of the CDR changes in BCR reper-

toires along the B-cell differentiation axis. By analysing human and mouse BCR reper-

toires at an unprecedented scale, we observed species-specific structural predetermination
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and detected CDR dynamics across multiple stages of B-cell differentiation. We showed

that naïve repertoires share the highest number and diversity of CDR structures, a pattern

which was highly conserved in all B-cell donors. Our results suggest that increased B-cell

differentiation is associated with a personalization of CDR structure usages. Finally, we

established the differences in CDR usages between humans and mice, analysis with imme-

diate relevance for BCR repertoire “humanness” assessment and rational immunothera-

peutic engineering.

Introduction

B-cells are essential components of the adaptive immune system in jawed vertebrates. They

play a key role in recognizing foreign molecules (antigens) via membrane-bound B-cell recep-

tors (BCR), and antibodies (secreted BCRs). Successful recognition of a broad array of struc-

tural motifs (epitopes) on antigens relies on the enormous sequence and structural diversity of

BCR repertoires, generated by the rearrangement of V(D)J gene segments in the two variable

domain chains (heavy and light), each consisting of four framework and three complemen-

tary-determining (CDR) loop regions [1,2]. Upon antigen stimulation, somatic hypermutation

(SHM) recursively introduces changes to the variable (Fv) domain of naïve BCR repertoires.

These occur primarily in the antibody binding interface (paratope, which consists mostly of

CDR residues)[3], leading to structural changes. Those B-cells whose paratopes are epitope-

complementary are clonally expanded, and further diversified and selected to enhance antigen

binding properties. BCR diversification also happens outside the Fv domain, where immuno-

globulin class switching changes the constant region of the heavy chain [4]. There are five

main heavy constant regions (isotypes), each with a unique profile of effector functions and

antigen binding avidity.

Next-generation sequencing of immunoglobulin genes (Ig-seq) has become an essential

technique in immunology [5,6]. For example, Ig-seq has revealed the dynamics of BCR

sequence diversification across different B-cell types in healthy and antigen-stimulated B-cell

donors [7–10], advanced our understanding of the adaptive immune response, and contrib-

uted to vaccine development [11] and immunodiagnostics [12].

Most Ig-seq analysis tools work within the remit of BCR primary sequence information

[6,13]. These rapid methods of measuring BCR diversity are highly scalable, an important

property as Ig-seq datasets become ever larger and more numerous [2]. However, the decision

to avoid paratope structural descriptors could lead to inaccuracies [14–16], as it is known that

similar sequences can have markedly different epitope complementarity and vice versa [13].

Therefore, a computationally-efficient structure-based BCR repertoire method should aug-

ment current Ig-seq analysis pipelines to deliver a clearer understanding of the process of BCR

development.

One of the first structural analyses of Ig-seq data was that of DeKosky et al., [14]. They dem-

onstrated that antibody models from paired-chain naïve and memory BCR repertoires dis-

played different physicochemical properties. However, their analysis was limited to 2,000

antibody models from three B-cell donors [14]. Most publicly-available BCR repertoires are

unpaired, only covering either the heavy or light variable domain [17] precluding the genera-

tion of refined antibody models. Krawczyk et al., [15] showed that it was possible to annotate

unpaired BCR repertoires with structural information by mapping loop sequences individually

onto crystallographically-solved antibody structures.
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Using a similar approach, we have investigated structural diversity along the B-cell differen-

tiation axis in humans and mice. We show that structurally annotating BCR repertoires yields

unprecedented insights into both the structural predetermination and dynamics of the adap-

tive immune response. By approximating BCR repertoire structures with rapid homology

modelling techniques, we find that different B-cell types can be distinguished by their usage of

CDR loop structures. Our analysis reveals that BCR repertoires of naïve B-cells tend to contain

conserved “public” CDR structure profile, whilst those of more differentiated B-cell types

become more personalized. These results provide crucial information about the structural

changes in antibody CDRs during B-cell differentiation, with a plethora of prospective applica-

tions in immunodiagnostics and rational immunotherapeutic engineering.

Results

Structural annotation of Ig-seq data

We searched the Observed Antibody Space (OAS) resource [17] for heavy chain Ig-seq studies

that contained at least three different B-cell types, had sequences with defined isotype informa-

tion and consisted of at least 50 BCR repertoires, and identified two studies: Galson et al.,

(“human”) [7] and Greiff et al., (“mouse”) [9].

Annotating the antibody CDR sequences in these human and mouse Ig-seq studies with

structural information allows us to investigate how the three-dimensional shape of CDR-H1,

CDR-H2 and CDR-H3 loops vary across BCR repertoires (Fig 1). To achieve this, we devel-

oped the SAAB+ pipeline.

SAAB+ is our analysis pipeline that performs annotation of BCR repertoire amino acid data

with structural information. The SAAB+ pipeline was built on the previously developed tool,

SAAB [15]. The major differences/improvements of SAAB+ over SAAB are the following.

First, SAAB+ scrutinises each antibody sequence for structural viability. In this step, sequences

are passed through multiple structural filters (alignment to Hidden Markov Model (HMM)

profiles, indel and conserved residue identification, chimeric sequence removal, presence of all

3 CDR loops according to the IMGT numbering [19] definition) [17,20]. SAAB+ utilizes SCA-

LOP [21] for rapid canonical class identification, which gives a significant boost to the analysis

rate without compromising accuracy. In a similar fashion to SAAB, FREAD is employed to

predict whether CDR-H3s from the Ig-seq data share a similar structure to a crystallographi-

cally-solved CDR-H3 structure [22]. CDR-H3 predictions made by FREAD are annotated

with the PDB code of the crystallographically-solved CDR-H3 structure (template). The SAAB

+ pipeline also performs structural clustering of CDR-H3 templates. To find structural tem-

plates with similar CDR-H3 loop shapes (analogous to canonical loop shapes), SAAB+ struc-

turally clusters them based on their backbone atom RMSD values (see Methods). SAAB

+ outputs a tab delimited text file that can easily be merged with the current AIRR-seq stan-

dard format file [23].

Structural CDR-H3 coverage and template usage

We investigated the structures of CDR-H3s used across BCR repertoires of different B-cell

types in the human and mouse data. Predicting approximate shapes of CDRs rather than creat-

ing refined three-dimensional antibody models allows the SAAB+ pipeline to structurally

annotate BCR repertoires rapidly. SAAB+ can analyse ~4.5 million BCR sequences a day on a

40 core computing cluster (Intel Xeon E5-2699 v4 @ 2.20GHz). SAAB+ structurally annotated

the human data within two days and the mouse data in 4–5 weeks. Table 1 shows the coverage

achieved by FREAD for each species.

Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis
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CDR-H3 structural coverages of BCR repertoires were similar across different B-cell types

in the human data (Kruskal-Wallis test, p = 0.37), but varied in the mouse data (Kruskal-Wallis

test, p< 0.001). In both species, the variance of coverage was lower in the BCR repertoires of

antigen-unexperienced B-cells (S2 Fig). The mean structural coverage was higher for mouse

CDR-H3s than for human CDR-H3s (Table 1). Differences in length distributions could be a

major cause of this discrepancy, as CDR-H3 structures are harder to predict for longer lengths,

and the most common lengths were 11 and 12 residues in the mouse data, compared to 15 res-

idues in the human data (S3 Fig).

Human and mouse BCR repertoires are the effector products of two different sets of germ-

line genes. We therefore investigated whether species germline genes might also translate into

preferred CDR-H3 structure usage. We used reported species origin information from SAb-

Dab [24] to calculate the usages of different species CDR-H3 templates across our BCR reper-

toires (S4 Fig). As expected, human and mouse data used different frequencies of species

Fig 1. Structural annotation of BCR repertoires. BCR repertoires are sourced from the OAS resource. For each BCR sequence, CDR loop sequences are extracted, and

the closest structural framework match is found, which is used in CDR-H3 loop grafting [15]. Next, SCALOP is used to identify canonical classes for non-CDR-H3

sequences, and FREAD is used to identify whether a CDR-H3 sequence shares a structure with any FREAD crystallographically-solved structures (templates). SCALOP

returns a canonical class cluster identification (e.g. H1-8-A); FREAD returns the PDB code of an antibody structure with a protein chain specified (e.g. 5myx_B) [18], a

CDR-H3 structural template.

https://doi.org/10.1371/journal.pcbi.1007636.g001

Table 1. FREAD coverage of Ig-seq data. The human data contained 5.7 million sequences with CDR-H3 loop lengths of 16 amino acids or shorter (see Methods).

FREAD generated predictions for 48.1% of CDR-H3s in the human data, with an average coverage of 47.2% across BCR repertoires. The total number of mouse sequences

was ~207 million, of which 88% were structurally-annotated with FREAD. The average structural coverage across mouse BCR repertoires was 88.1%.

Data Total sequences CDR-H3 template predicted Mean coverage with std

Human 5,712,939 2,750,469 (48.1%) 47.2±11%

Mouse 206,680,496 182,309,575 (88%) 88.1±4%

https://doi.org/10.1371/journal.pcbi.1007636.t001
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CDR-H3 templates. The human BCR repertoires tended to use more human CDR-H3 tem-

plates as compared to uniform CDR-H3 template sampling, with mouse CDR-H3 templates

appearing about as often as would be expected at random. In the mouse data, usage of mouse

CDR-H3 templates was enriched, whilst usage of human CDR-H3 templates was reduced.

These usages were roughly similar across B-cell types in both human and mouse data, suggest-

ing a species bias towards CDR-H3 structural sampling largely independent of B-cell matura-

tion. Interestingly, 109 (or ~4%) of all FREAD templates were never used in neither the

human nor mouse data. Eighty eight of these templates were derived from nanobodies (S1

Appendix).

Together, these results suggest that different species may engage different epitopes on the

same antigen through inherent structural biases.

CDR-H3 cluster profiles along the B-cell differentiation axis

The adaptive immune system responds to antigen exposure by selecting and optimizing the

most efficacious BCRs. Therefore, B-cells at different maturation stages may possess discrete

paratope structural properties.

Galson et al., [7] demonstrated that different B-cell types could be separated using three het-

erogeneous sequence descriptors (clonality, average CDR-H3 loop length and percentage of V

gene mutations) in a principal component analysis (PCA). We repeated their experiment on

our human and mouse data (Fig 2A and 2B). In the human data, their sequence descriptors

distinguished B-cell types. In the mouse data, pre, naïve, and plasma IGHM BCR repertoires

clustered together, whilst plasma IGHG were clearly distinguishable from other B-cell types.

We investigated whether the structural annotation of CDR-H3s on its own could distin-

guish the BCR repertoires of different B-cell types, by performing PCA on CDR-H3 cluster

usages across BCR repertoires. We found a clear separation of B-cell types in both the human

and mouse data (Fig 2C and 2D), with a sequential pattern of B-cell differentiation in the

human data (Naïve!Marginal!Memory! Plasma). Mouse IGHM and IGHG plasma

BCR repertoires can be distinguished by CDR-H3 cluster usages, whereas neither we nor Gal-

son et al., [7] observe the same separation in the human plasma BCR repertoires. The variance

of CDR-H3 cluster usages in plasma IGHM were, in fact, more similar to antigen-unexper-

ienced than to plasma IGHG BCR repertoires in the mouse data. Inaccuracies arising during

B-cell sorting could cause improper B-cell labelling, adding noise to the B-cell type separation

seen in Fig 2. In laboratory mice, the range and degree of antigen exposure is limited by patho-

gen-free housing conditions and low organism ages. This “purity” could account for the finer

separation of B-cell types.

To quantify the behaviour seen in Fig 2, we employed the DBSCAN clustering algorithm

with increasing maximum distance to closest neighbours (ε) to interrogate the densities of

CDR-H3 cluster usages across BCR repertoires. Clustering at lower ε distances indicates a

more similar distribution of CDR-H3 cluster usages. In the human data, all naïve BCR reper-

toires clustered at low ε distances along with one marginal zone BCR repertoire. As the value

of ε was increased, all marginal zone BCR repertoires merged with the naïve BCR repertoire

cluster, followed by memory and finally plasma BCR repertoires (S5 Fig). In the mouse data,

pre and naïve BCR repertoires initially formed two separate clusters at low ε distances. As ε
was increased, antigen-unexperienced (pre and naïve) BCR repertoire merged into a single

cluster, followed by plasma IGHM and plasma IGHG repertoires respectively (S6 Fig).

BCR repertoires of different B-cell types are known to have their own characteristic distri-

butions of CDR-H3 lengths [7,25]. To see whether this alone was driving the separation, we

repeated our PCA experiment at specific lengths of CDR-H3, again employing DBSCAN to

Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis
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interrogate the densities of CDR-H3 cluster usages. For each length, we observed the same pat-

terns, confirming that our separation of BCR repertoires was not solely an artefact of CDR-H3

loop length (S7 Fig).

These findings give structural confirmation to our understanding of B-cell development

from antigen-unexperienced to terminally-differentiated plasma B-cells. The collection of

CDR-H3s in a terminally-differentiated BCR repertoire should be reflective of individual’s

complex history of antigenic stimulations yielding highly specialized, high-affinity antibodies

[2]. These results demonstrate a mode of structural BCR repertoire ontogeny, where antigen-

unexperienced BCR repertoires have the most conserved “public” frequencies of CDR-H3

structural clusters across individuals. Upon antigenic stimulation, the somatic hypermutation

(SHM) machinery of B-cells recursively introduces point mutations, primarily to the antibody

CDR regions [3,26]. Our DBSCAN analysis shows that BCR repertoires of different B-cell

types do not use equal frequencies of CDR-H3 clusters, suggesting that affinity maturation

leads to discernible structural changes in the paratope. As B-cells differentiate to the next

developmental stage, their repertoires become more personalized; a fine-tuning of antibody

CDR structures along the differentiation axis.

Next, we checked whether above results were caused by varying numbers of utilized

CDR-H3 clusters. We evaluated the total number of CDR-H3 clusters represented across dif-

ferent B-cell types in the human and mouse data (Fig 3A and 3B). None of the BCR repertoires

used the maximum number of CDR-H3 clusters (1,169), and the numbers varied between

BCR repertoires, with antigen-unexperienced repertoires using the most. The average number

of CDR-H3 clusters in plasma IGHG BCR repertoires was 3–4 times smaller than in naïve

repertoires.

Fig 2. PCA on the human and mouse data. Features included in the PCA were either average CDR-H3 length, clonality and percentage of SHMs in V genes (a, b) or

CDR-H3 cluster usages (c, d). The human data is shown in a and c, whilst the mouse data is in b and d. The first two principal components are used to visualize the

separation of BCR repertoires. Colours represent different B-cell types.

https://doi.org/10.1371/journal.pcbi.1007636.g002

Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007636 February 18, 2020 6 / 20

https://doi.org/10.1371/journal.pcbi.1007636.g002
https://doi.org/10.1371/journal.pcbi.1007636


This difference could potentially be explained by a smaller number of isolated plasma B-

cells. To account for the varying sizes of BCR repertoires, we subsampled 10,000 sequences

from each of them 100 times and recorded the average number of CDR-H3 clusters. The sub-

sampling gave a similar pattern to the complete data, with the average number of CDR-H3

clusters being highest in antigen-unexperienced BCR repertoires (Fig 3C and 3D), and total

numbers of represented clusters decreasing along the B-cell differentiation axis. This drop in

the number of CDR-H3 clusters is not caused by poorer structural coverage of more differenti-

ated BCR repertoires, as we have already shown that the coverage is not significantly different

across B-cell types in the human data, and increases for more differentiated cells in the mouse

data (S2 Fig). Therefore, we suspect that this decrease in the number of represented CDR-H3

clusters along the differentiation axis was the result of only specific CDR-H3 structures transi-

tioning to the next development stage.

To confirm this hypothesis, we investigated whether the decreased numbers of CDR-H3

clusters in antigen-experienced BCR repertoires are also accompanied by structural specializa-

tion i.e. personalized CDR-H3 cluster usage. We employed Shannon entropy to investigate the

structural diversity of CDR-H3s across our BCR repertoires. High entropy demonstrates a

high diversity of CDR-H3 structures, whilst low entropy indicates the over-representation of

one or more CDR-H3s. To account for the decreasing number of represented CDR-H3 struc-

tures, we calculated the proportion of theoretical maximum entropy for each BCR repertoire

Fig 3. Average number of CDR-H3 clusters in the human and mouse data. The top boxplots depict the total number of CDR-H3 clusters in human (a) and mouse

(b) BCR repertoires. In the bottom boxplots, every human (c) and mouse (d) BCR repertoire was subsampled 100 times for 10,000 sequences, with the average

number of CDR-H3 clusters recorded. Colours represent different B-cell types. The horizontal blue line shows the total number of CDR-H3 clusters in our FREAD

library, and therefore the theoretical maximum.

https://doi.org/10.1371/journal.pcbi.1007636.g003
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to yield a normalized estimate of the diversity of CDR-H3 clusters used (S8 Fig). This confirmed

that the structural diversity of CDR-H3 gradually decreased along the B-cell differentiation axis.

Antigen-unexperienced BCR repertoires had the highest structural diversity of CDR-H3s, as

well as the lowest variance in entropy across B-cell types. Marginal and memory IGHM BCR

repertoires utilized the same number of CDR-H3 structures (p = 0.66, Mann-Whitney U-Test),

whilst the structural diversity was significantly lower in memory B-cells (p = 0.005, Mann-Whit-

ney U-Test). Our results again give structural confirmation of the affinity maturation process,

where only CDR structures that are specific to cognate antigens are retained.

Overall, the above results demonstrate that B-cell types can be distinguished based on the

profile of CDR-H3 structural descriptors alone and that antigen-unexperienced BCR reper-

toires utilized the highest number and the highest entropy of CDR-H3 clusters. Cluster fre-

quencies in naive BCR repertoires were conserved across different B-cell donors. As B-cells

differentiate, their CDR-H3 cluster usage becomes narrower and more distinct between indi-

viduals, which is reflective of both affinity maturation and a personalized history of B-cell

selection. These results provide us with the first structural insight into fundamental processes

that govern BCR repertoire differentiation across B-cell donors.

Canonical class characterization

Our analysis so far has focused on CDR-H3, but CDR-H1 and CDR-H2 also play a key role in

shaping the antibody paratope [27]. Most CDR-H1 and CDR-H2 loops are found in a small set

of structures known as canonical classes. This allows prediction of their structure from

sequence with high confidence [21].

A single V gene encodes for both CDR-H1 and CDR-H2 loops and it is known that SHMs

preferentially take place in these loops during B-cell differentiation [3,26]. As the level of

SHMs increases with B-cells differentiation, the number of mutations in the V gene has often

been used as a proxy to study B-cell development [7,28].

Here, we investigated whether SHMs in the V gene lead to structural changes in CDR-H1

and CDR-H2 in humans and mice. We calculated the percentage of sequences across BCR rep-

ertoires where either the CDR-H1 or CDR-H2 canonical class diverged from its parent germ-

line. Sequences with unassigned canonical class information were retained in the analysis as

their number was low (S2 Table), and SHMs can still change loop conformation to a yet

uncharacterized canonical class. As of June 2019, only one human and six mouse V genes con-

tained either a CDR-H1 or a CDR-H2 shape that did not fall into a SCALOP canonical classes

[21].

Canonical class divergence from germline occurred in all B-cell types, but was observed to

increase along the B-cell differentiation axis in the human data (S9 Fig). This was less clear in

the mouse data. Pre and naïve B-cells had less canonical class divergence from the germline,

whereas memory and plasma B-cells had a higher divergence. These results place structural

information on the knowledge that the percentage of V gene mutations increases with B-cell

differentiation [7]. The average percentage of canonical class divergence across B-cell types

were consistently higher in human than mouse data. This is in agreement with previously-

reported results showing that human V genes tend to accumulate a larger number of SHMs

than mouse [29].

CDR-H1 and CDR-H2 loops had different levels of canonical class divergence in both

human and mouse data, with CDR-H1s changing their germline loop shapes more often than

CDR-H2s (S10 Fig). This can probably be directly attributed to the different number of canon-

ical classes accessible to CDR-H1 and CDR-H2 (7 versus 4), which implies CDR-H1 loops

have a greater degree of structural freedom.

Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis
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Both Galson et al., [7] and Greiff et al., [9] studies showed that the V gene usages varied

across B-cell types. Here, we investigated whether canonical class usages could provide a struc-

tural explanation for the observed alterations in V gene utilization during B-cell differentia-

tion. As with CDR-H3, we performed PCA on combinations of canonical class usages across

BCR repertoires (S11 Fig). In the human data, we found a separation between naïve and more

differentiated B-cell types, with naïve BCR repertoires utilizing more similar canonical class

usages. In the mouse data, BCR repertoires were separated into different B-cell types with the

sequential pattern of B-cell differentiation.

Our results demonstrate that canonical class usages are not static during B-cell differentia-

tion, with more mature B-cells exhibiting a higher level of canonical class divergence from the

parent germline. CDR-H1 and CDR-H2 structures are clearly modulated to help refine the

antibody paratope configuration against the cognate antigen.

Patterns of CDR-H3 cluster usage

Biased usage of CDR-H3 clusters is observed in different BCR repertoires along the differentia-

tion axis. For instance, antigen-unexperienced B-cells share the closest frequencies of CDR-H3

clusters (Fig 2). A detailed understanding of biased CDR-H3 structure usage would signifi-

cantly advance our knowledge of the adaptive immune system development and maturation.

To investigate patterns of biased CDR-H3 cluster usage, we split CDR-H3 clusters into

three groups for each B-cell type based on frequencies of CDR-H3 clusters used across these

BCR repertoires. “Structural Stems”, which were defined as CDR-H3 clusters, whose frequen-

cies were significantly over-represented across the BCR repertoires of a given B-cell type,

“Under-Represented” which describes under-represented CDR-H3 clusters. And CDR-H3

clusters, whose frequencies were not significantly different from random uniform sampling

-“Random-Usage” (Fig 4).

First, we looked at the average number of CDR-H3 clusters found in our three groups

(Structural Stems, Random-Usage and Under-Represented) across the different B-cell types.

In all BCR repertoires, Under-Represented always contained the largest number of CDR-H3

clusters (S12 Fig), however, this does not translate to dominance in terms of coverage (Fig 5).

This is because, in most cases, Under-Represented CDR-H3 clusters tend to have only a few

sequences in a repertoire that share that shape, whereas Structural Stems will have far higher

numbers.

In the human data, the number of Structural Stems was largest in naïve BCR repertoires

and gradually decreased along the B-cell differentiation axis. The number of Random-Usage

CDR-H3 clusters was lowest in the naïve repertoires. This number increased in marginal BCR

repertoires followed by a gradual decline along the B-cell differentiation axis. Similar to the

human data, the number of Structural Stems was the highest in antigen-unexperienced BCR

repertoires in the mouse data. The number of Structural Stems declined in plasma IGHM and

were completely absent in plasma IGHG repertoires.

Next, we investigated the proportional composition of BCR repertoires across B-cell types

with Structural Stem, Random-Usage and Under-Represented CDR-H3 clusters. The distribu-

tion of repertoire coverages differed between B-cell types in both human and mouse data (Fig

5). Structural Stems cover ~70–80% of antigen-unexperienced BCR repertoires, with coverage

declining along the B-cell differentiation axis. In contrast, coverage with Under-Represented

clusters gradually increased as B-cells matured. Pre and naïve BCR repertoires were least cov-

ered with Random-Usage CDR-H3 clusters (only 5–10%). In the human data, coverage with

Random-Usage CDR-H3 clusters showed a transient increase in memory BCR repertoires fol-

lowed by a decline in plasma repertoires, though this trend was less evident in the mouse data.
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Fig 4. Pattern of CDR-H3 cluster usage within a specific B-cell type. A schematic representation of how we grouped CDR-H3 clusters based on their pattern of usage.

(a) In this mock example, only four CDR-H3 clusters are found in (b) four naïve BCR repertoires. (c) In the case of random uniform sampling, each of these clusters

would constitute approximately 25% of a simulated BCR repertoire. (d) Structural Stems are defined as CDR-H3 clusters, which are over-represented across BCR

repertoires when compared to random cluster usage. Under-represented are clusters that are under-represented across repertoires. CDR-H3 clusters, which usages are

not significantly different from random sampling, were termed Random-Usage.

https://doi.org/10.1371/journal.pcbi.1007636.g004

Fig 5. Coverage of BCR repertoires with CDR-H3 clusters based on their pattern of usage in the human and mouse data. The X-axis shows different B-cell types in

the order of the B-cell differentiation axis. The Y-axis shows the proportion coverage of BCR repertoire sequences with CDR-H3 clusters.

https://doi.org/10.1371/journal.pcbi.1007636.g005
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The same CDR-H3 clusters are preferentially over-represented across different B-cell types

with the number of these over-represented CDR-H3 clusters diminishing to none along the B-

cell development axis (S13 Fig) (S2 Appendix).

These results demonstrate that antigen-unexperienced BCR repertoires display CDR-H3

structural conservatism. Naive BCR repertoires are largely composed of “public” sets of over-

represented CDR-H3 clusters. During B-cell selection, CDR-H3 cluster usages become less

conserved across individuals as the coverage with Random-Usage and Under-Represented

CDR-H3 clusters rise. In terminally-matured plasma IGHG BCR repertoires, none of

CDR-H3 clusters was significantly over-represented across individuals. This reflects how the

history of antigenic stimulations structurally shapes BCR repertoires, which become increas-

ingly specialized as B-cells differentiate.

Discussion

We have carried out the first systematic study of structural diversity in the BCR repertoires of

multiple donors and species along the B-cell differentiation axis. By mapping sequences to

solved antibody structures, we show the structural transformation occurring as BCR reper-

toires develop in humans and mice.

Our data show that B-cell types can be distinguished based solely on the structural diversity

of CDR-H3 loops. Antigen-unexperienced (pre and naïve) BCR repertoires contain conserved

“public” CDR-H3 cluster frequencies across individuals. As B-cells differentiate, their struc-

tural repertoires become increasingly personalized, as a reflection of each individual’s history

of antigen exposure. Antigenic stimulation induces marked changes in the pattern of CDR-H3

cluster usage in BCR repertoires. The repertoires utilize a smaller number of available

CDR-H3 configurations, CDR-H3 structural diversity is reduced, and CDR-H3 cluster usage

becomes increasingly divergent from naïve BCR repertoires. Structural changes also take place

in non-CDR-H3 loops, highlighting the importance of canonical loops in paratope shaping.

This shows how structure changes as B-cells, whose CDRs are complementary to cognate anti-

gens, are positively selected.

The human and mouse data used in this work came from two studies that interrogated

BCR repertoire sequence diversities following antigenic stimulation [7,9]. In their original

publications, the sequence diversity was shown to decrease along the B-cell differentiation

axis, with the most marked decline in the plasma cell repertoires in response to antigen expo-

sure [7,9]. In our work, we find evidence to support these diversity changes on the structural

level, which can be indicative of affinity selection of antigen specific BCRs. The SAAB+ pipeline

was able to capture both these sequence/structural convergence paradigms, where similar

CDR-H3 templates are more likely to be selected in less sequence diverse BCR repertoires as

well as identification of sequence dissimilar CDR-H3 loops located in the same structural

space.

Most publicly available Ig-seq studies interrogate BCR repertoires either in disease or anti-

genic stimulation settings [17]. This could potentially lead to sequence/structural diversity

measurements that are different from the resting BCR repertoire state. Recently, two Ig-seq

studies released cumulatively more than 7 billion BCR reads of unsorted B-cells from healthy

individuals [2,30]. These studies provided crucial insights into the BCR sequence diversity and

dynamics amongst healthy individuals. However, analogous large-scale studies have not yet

been performed on sorted BCR repertoires due to high costs concomitant with experimental

setups, and labour requirements. In order to develop a robust immunodiagnostics pipeline, it

is important to understand sequence/structural diversity on the level of the whole repertoire as

well as individual B-cell types.
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In this work we considered only the three CDRs encoded by heavy chain genes. However,

the light chain also plays an important role in shaping the BCR paratope [31]. Therefore, it is

anticipated that the diversity of light chain CDR configurations would also change along the

B-cell differentiation axis. To advance our understanding of the role of the light chain in para-

tope shaping, further investigations are required to study joined structural diversities of heavy

and light chains within individual B-cell donors.

Inclusion of cognate light chain pairing information into our analysis would also facilitate

generation of refined antibody models. Increased availability of paired heavy/light BCR data

[32] and improvements in antibody modelling speed [13] will pave the way to a new frontier

of antibody structure usage analysis at the scale of an entire BCR repertoire. Structural descrip-

tors harvested from these models will push forward the resolution of our current work,

enabling calculations of paratope charge and hydrophobicity, as well as antibody developabil-

ity profiles [33].

Structural coverage of CDR-H3s of the human and mouse data was *48% and *88%

respectively. In this analysis, we did not consider BCR sequences with CDR-H3 loop lengths

greater than 16 amino acids to ensure high prediction accuracies. This modelling quality filter

removed 3.9% (± 2 s.t.d) of the mouse and 29% (±11 s.t.d) of the human BCR datasets from

the analysis, meaning that the structural diversity information of longer CDR-H3 loops unex-

plored (S3 Fig). Despite these marked differences in BCR repertoire coverages, both human

and mouse data showed similar patterns of structural diversities along the differentiation axis.

These findings agree with and provide structural reasons for the sequence diversity measure-

ments calculated across all lengths in the original studies of the human and mouse data. There-

fore, it is unlikely that the unexplored portions of human BCR repertoires would have

significantly different structural diversity properties.

More than 400 antibody structures have been solved in 2019 [24], which constitutes more

than 10% of our CDR-H3 template library. With this steadily increasing rate of antibody struc-

ture availability and continuous improvements in homology modelling technologies, further

studies will be soon necessary to investigate trade-offs between BCR repertoire coverage and

prediction accuracies.

Structural characterization of Ig-seq data can augment existing analysis pipelines [13]. Cur-

rent Ig-seq data clustering approaches work on the premise that CDR-H3 sequence identity

alone can capture structural features of the paratope [6]. However, sequences with low

CDR-H3 sequence identity can adopt close shapes and vice versa [13]. Hence, the development

of structure-aware clustering methods such as SAAB+ allows for the direct grouping of struc-

turally/functionally related BCR sequences [34], as well as enables structural changes to be

traced within individual B-cell linages.

A set of CDR-H3 clusters was consistently over-represented across all B-cell donors (“Struc-

tural Stems”) within the specific B-cell types. These clusters encompassed 70–80% of all

sequences in antigen-unexperienced BCR repertoires. This shows that humans and mice

largely rely on a conserved “public” set of CDR-H3 clusters to initiate antigen recognition.

This knowledge could be leveraged to study immune system disorders, including immunose-

nescence, where distortions in the conserved public pattern of CDR-H3 cluster usage in anti-

gen-unexperienced BCR repertoires could signal disease states. Furthermore, the knowledge of

over-represented CDR-H3 clusters in naïve BCR repertoires could be applied in rational phage

display library engineering, with Structural Stem cluster sequences used as starting points for

library diversity generation.

Recently, transgenic mouse models with human adaptive immune system have been cre-

ated to raise “naturally human” antibodies in non-human systems [35]. However, their BCR

repertoires are shaped inside the murine environment, which could potentially select for BCR
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paratopes non-native to the human body. Hence, our structural diversity analysis could also be

employed in the paratope “humanness” assessment of BCR repertoires derived from trans-

genic animals.

Methods

Data selection

Human Ig-seq data from Galson et al., [7] and mouse (C57BL/6 inbred strain) Ig-seq data

from Greiff et al., [9] were used. Galson et al., (“human”) is a longitudinal vaccination study

across nine healthy human donors, in which the heavy chain of naïve, marginal zone, memory,

and plasma B-cell types were interrogated [7]. Greiff et al., (“mouse”) is a high depth sequenc-

ing study of the murine adaptive immune system in response to antigenic stimulation, con-

taining heavy chain BCR repertoires from pre, naïve and plasma B-cells [36]. Both studies used

FACS to sort B-cells into subpopulations according to their differentiation stages.

The Ig-seq amino acid sequences were downloaded from the Observed Antibody Space

(OAS) [17] resource, retaining their Data Unit information. Each Data Unit is a sequencing

sample from a single B-cell donor with a defined combination of B-cell type and isotype infor-

mation, and contains sequences that are IMGT-numbered [19] and filtered for antibody struc-

tural viability. Henceforth, OAS Data Units will be referred to as B-cell receptor (BCR)

repertoires.

To investigate structural changes along the B-cell differentiation axis, BCR repertoires with

defined B-cell type and isotype information were downloaded. Only IGHG and IGHM

sequences were considered as these were the most abundant. The total number of BCR reper-

toires in the human and mouse data were 85 and 82 respectively.

Structural annotation

To annotate the human and mouse data with structural information, we developed a custom-

ized version of our SAAB pipeline [15], SAAB+ that predicts the structural shape of the

IMGT-defined CDRs. CDR-H1 and CDR-H2 adopt a limited number of structural configura-

tions, known as canonical classes [16,37,38], which can be predicted accurately and rapidly

from sequence [21]. SAAB+ uses SCALOP [21] to annotate non-CDR-H3 loop canonical clas-

ses. Canonical class annotation should be highly accurate, with SCALOP predictions estimated

to be within 1.5 Å of the true structure 90% of the time [21]. The June 2019 SCALOP database

was used in this study.

SAAB+ uses FREAD to predict CDR-H3 structural templates [22,39,40]. Accurately model-

ling all the CDR-H3s in an Ig-seq dataset is challenging, owing to the vastness of structural

space accessible to these loops [41–43], relative to the small number of publicly-available

crystallographically-solved antibodies (many of which are highly sequence redundant) [24]. In

addition, structurally-solved antibodies have a CDR-H3 length distribution and sequence

diversity that is different from natural Ig-seq data (S3 Fig). We tested the performance of

FREAD on the Ig-seq data and, at the parameters used, the expected average RMSD of FREAD

CDR-H3 template predictions for both human and mouse data is 2.5 Å (see S3 Appendix).

This is in line with current state-of-the-art CDR-H3 modelling software tools (mean RMSD of

2.8 Å) [44]. In a similar manner to DeKosky et al., [14], we limited our CDR-H3 analysis to

loop lengths of 16 amino acids or shorter, as far fewer structures with longer CDR-H3 loops

are available and longer loops have increased structural freedom. We also excluded CDR-H3

loops shorter than five amino acids from our analysis, as only three CDR-H3 templates cov-

ered these lengths. FREAD templates were downloaded from SAbDab (14th November 2018)
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[24], and consisted of all X-ray crystal structures of antibodies with a resolution better than 2.9

Å.

CDR-H3 clustering

To identify similar CDR-H3 loop structures, we used the DTW algorithm [16] to cluster

FREAD templates by backbone RMSD. Those within 0.6 Å were placed in the same cluster,

reducing our 2,943 FREAD CDR-H3 templates to 1,169 CDR-H3 clusters.

Filtering BCR repertoires

As PCR sequencing can lead to variable amplicon amplification, we removed any BCR reper-

toire if its two most redundant CDR-H3 clusters contained more than 80% of all repertoire

sequences (S1 Fig). We also discarded any BCR repertoire that contained fewer than 10,000

sequences with predicted CDR-H3 structures—this cut-off was selected to allow for adequate

sampling of CDR-H3 template usages, whilst retaining as many BCR repertories as possible

(S3 Table). This reduced the number of repertoires for all subsequent structural analysis to 81

(human) and 73 (mouse). CDR-H1 and CDR-H2 loops were not taken into account in deter-

mining BCR repertoire quality, since canonical class coverage was ~95% and ~99% for the

human and mouse data respectively (S2 Table).

Patterns of CDR-H3 cluster usage

We analysed the pattern of CDR-H3 cluster frequencies in the human and mouse data, to

identify clusters whose usages were over-represented (Structural Stems), random (Randomly-

Used) and under-represented (Under-Represented) within a given B-cell type.

The structurally-annotated human and mouse data was split into individual groups based

on unique B-cell type and isotype combinations. Within these groups, we calculated the

CDR-H3 length distributions and the proportion modellable by FREAD for each CDR-H3

length. Next, we randomly selected CDR-H3 templates from our FREAD library (with replace-

ment) according to these distributions, to generate a randomized dataset for each BCR reper-

toire. Sampling was performed across the set of FREAD templates already present in each BCR

repertoire. The randomized dataset sizes were set to one million sequences and the total num-

ber of randomized datasets was matched to the number of the BCR repertoires within the cor-

responding groups (S3 Table).

A one-sided Mann-Whitney rank test (p = 0.05) was performed on the relative usage of

each CDR-H3 cluster in the grouped BCR repertoires and the corresponding randomized

datasets, to categorize them as Structural Stem, Random-Usage or Under-Represented

CDR-H3 clusters.

Statistical analysis

Statistical analyses were performed in Python using the scikit-learn[45] and scipy packages.

Detailed information on statistical tests is outlined in the figure legends. Data visualization was

performed with the seaborn package.

Supporting information

S1 Fig. Percentage of sequences contained within the two most redundant CDR-H3 clus-

ters for each BCR repertoire in the human and mouse data. Each circle represents the per-

centage of sequences present in the two most redundant CDR-H3 clusters in a BCR repertoire.

If this percentage exceeds 80% of the total number of that BCR repertoire’s sequences (orange
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circle), the BCR repertoire was not included in the subsequent structural analysis. Different

thresholds were checked, lower percentage cut-offs produced the same qualitative results in

our structural analysis. Hence, 80% cut-off was selected to retain as many BCR repertories as

possible.

(TIF)

S2 Fig. CDR-H3 structural coverage in human (A) and mouse (B) BCR repertoires.

FREAD CDR-H3 modellability was calculated across BCR repertoires of different B-cell types.

FREAD modellability is defined as the percentage of sequences with predicted CDR-H3 struc-

tures over the total number of sequences in a given BCR repertoire.

(TIF)

S3 Fig. Normalized CDR-H3 length distribution in the human and mouse data, and our

FREAD CDR-H3 template library. Normalized CDR-H3 length distribution was calculated

for all BCR repertoires in the human and mouse data, and all CDR-H3 templates that were in

our FREAD library. Mouse CDR-H3s were on average shorter than human. The distribution

of FREAD CDR-H3 lengths is different that found in the human and mouse data. The vertical

blue line shows our CDR-H3 length cut-off (17 residues). Sequences and FREAD templates

whose CDR-H3 lengths were longer than the cut-off were not considered in our analysis.

(TIF)

S4 Fig. Reported species origin of CDR-H3 templates in the human and mouse data. We

calculated the proportion of CDR-H3 template reported species of origin for every BCR reper-

toire across different B-cell types. Reported species origin information was extracted from

SAbDab (10). Orange bars show the proportion of human CDR-H3 templates, blue bars repre-

sent mouse CDR-H3 templates, while cyan bars depict the proportion of other than human or

mouse CDR-H3 templates. The horizontal lines represent the expected outcome of uniform

sampling of human (orange) and mouse (blue) CDR-H3 templates. Uniform sampling was cal-

culated as the number of human or mouse CDR-H3 templates over the total number CDR-H3

templates found in our FREAD library.

(TIF)

S5 Fig. Analysis of densities of CDR-H3 cluster usage in the human data. (a) PCA was per-

formed on the human BCR repertoires (circles) with CDR-H3 cluster usages used as the fea-

tures. The first two principal components were used to visualize any separation. Colours

represent different B-cell types. (b) DBSCAN analysis with increasing maximum distance (ε)

was employed to interrogate CDR-H3 cluster usage densities across human BCR repertoires.

PCA analysis (as in a) was then used to visualize the DBSCAN clustering. The parameter ε was

increased left-to-right, top-to-bottom. Marker shapes indicate different B-cell types; blue col-

our represents BCR repertoires that clustered with antigen-unexperienced BCR repertoires

(naïve); orange colour shows DBSCAN-unclustered BCR repertoires at that ε value.

(TIF)

S6 Fig. Analysis of densities of CDR-H3 cluster usage in the mouse data. (a) PCA was per-

formed on the mouse BCR repertoires (circles), with CDR-H3 cluster usages used as the fea-

tures. The first two principal components were used to visualize any separation. Colours

represent different B-cell types. (b) DBSCAN analysis with increasing maximum distance (ε)

was employed to interrogate CDR-H3 usage densities across mouse BCR repertoires. PCA

analysis (as in a) was then used to visualize the DBSCAN clustering. The parameter ε was

increased left-to-right, top-to-bottom. Marker shapes indicate different B-cell types; cyan col-

our (in the top left subplot) represents naïve BCR repertoires, blue colour represents BCR
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repertoires that clustered with antigen-unexperienced BCR repertoires (pre and naïve); orange

colour shows DBSCAN-unclustered BCR repertoires at that ε value.

(TIF)

S7 Fig. Structural interrogation of the human and mouse data with specific CDR-H3

lengths. PCA was performed on (a) human and (b) mouse BCR repertoires, with CDR-H3

cluster usages selected as the features. The first two principal components were used to visual-

ize any separation. Colours represent different B-cell types. DBSCAN was employed to quan-

tify densities of CDR-H3 cluster usages across the repertoires. Marker shapes illustrate

DBSCAN cluster information. Circle markers indicate DBSCAN unclustered BCR repertoires;

other marker shapes show individual DBSCAN clusters. We considered a B-cell type separa-

tion if naïve and pre (antigen-unexperienced) BCR repertoires displayed the closest densities

of CDR-H3 cluster usages at lower ε values in DBSCAN. In both (a) human and (b) mouse

repertoires, antigen-unexperienced B-cell types cluster first regardless of CDR-H3 lengths.

This confirms that BCR repertoires of different B-cell types have different patterns of CDR-H3

cluster usage.

(TIF)

S8 Fig. CDR-H3 structural diversity in the human and mouse data. Shannon entropy was

calculated for CDR-H3 cluster usage in human (a) and mouse (b) data. To account for the

varying numbers of CDR-H3 clusters across B-cell types, structural diversity of CDR-H3s was

expressed as a proportion of entropy over theoretical maximum entropy in the human (c) and

mouse (d) data. Theoretical maximum entropy was found for each BCR repertoire by using

CDR-H3 structures represented in the given repertoire in equal proportions in entropy calcu-

lations. Higher values indicate higher diversities of CDR-H3 cluster usage. The Mann-Whitney

U-test was used for statistical analysis and p-values are reported.

(TIF)

S9 Fig. Canonical class divergence from parent germline class in the human and mouse

data. Canonical class divergence was defined as a mismatch in either the CDR-H1 or CDR-H2

canonical class from the germline canonical class. Percentages were calculated as the number

of sequences with canonical class divergence over the total number of sequences in a given

BCR repertoire. Colours represent different B-cell types.

(TIF)

S10 Fig. CDR-H1 and CDR-H2 canonical class divergence from parent germline class in

the human and mouse data. The top boxplots show canonical class divergence in CDR-H1

canonical class from the germline canonical class in the (a) human and (b) mouse data. Per-

centages were calculated as the number of sequences with canonical class divergence over the

total number of sequences in a given BCR repertoire. The bottom boxplots show the same

analysis on CDR-H2 canonical class in the (c) human and (d) mouse data. Colours represent

different B-cell types.

(TIF)

S11 Fig. PCA on the human and mouse BCR repertoires. Features included in the PCA were

frequencies of CDR-H1 and CDR-H2 combinations in BCR repertoires. The first two principal

components were used to visualize the separation of BCR repertoires. Colours represent differ-

ent B-cell types.

(TIF)

S12 Fig. Number of CDR-H3 clusters based on their pattern of usage across different B-

cell types in human and mouse data. Structural Stems (blue bars) were defined as CDR-H3
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clusters, which were over-represented across BCR repertoires of the same B-cell type. Under-

Represented (green bars) were under-represented CDR-H3 clusters. CDR-H3 clusters, whose

usages were not significantly different from random sampling, were termed Random-Usage

(orange bars). The X-axis shows different B-cell types in the order of the B-cell maturation

axis. The Y-axis shows the number of CDR-H3 clusters.

(TIF)

S13 Fig. Overlap of Structural Stem CDR-H3 clusters between naïve and antigen experi-

enced BCR repertoires in the human and mouse data. Naïve and antigen experienced BCR

repertoires were investigated for the Structural Stem overlap in the human (row A) and mouse

(row B) data. The overlap was defined as a number of shared clusters between Structural Stem

CDR-H3 clusters in BCR repertoires found in two different B-cell types. The X-axis shows the

B-cell types. The Y-axis shows the total number of Structural Stem CDR-H3 clusters. The

stripped pattern indicates the number of overlapped Structural Stem CDR-H3 clusters.

(TIF)

S1 Table. Estimated FREAD average RMSD and precision on the human and mouse data.

FREAD performance of CDR-H3 structure prediction was validated on the human and mouse

data across three CDR-H3 length bins: 5 to 12, 13 and 14, and 15 and 16. For each length bin,

ESS cut-offs were selected to achieve an average RMSD better than 3 Å or a coverage greater

than 15%. The same ESS cut-offs were selected for both human and mouse data. Precision was

defined as the percentage of FREAD predictions within 3 Å over the total number of predic-

tions within the ESS cut-off.

(DOCX)

S2 Table. SCALOP annotation of Ig-seq data. Annotation was performed on the human and

mouse data. The human data contained 5.7 million sequences with CDR-H3 loop lengths of 16

amino acids or shorter. SCALOP predicted CDR-H1 loop shapes in 97.7% of sequences and

CDR-H2 loop shapes in 95.4% in the human data. The total number of mouse sequences was

~207 million, of which 99% of CDR-H1 and ~100% of CDR-H2 loop shapes were annotated.

(DOCX)

S3 Table. BCR repertoires used in structural diversity analysis. Ig-seq data columns states

species origin of Ig-seq data; modelled columns shows the number of BCR repertoire

sequences with predicted CDR-H3 structures; Total column shows the total number of

sequences in a given BCR repertoire whose CDR-H3 lengths are between 5 and 16 amino

acids.

(DOCX)

S1 Appendix. Species CDR-H3 template usage.

(DOCX)

S2 Appendix. Patterns of CDR-H3 cluster usage.

(DOCX)

S3 Appendix. FREAD performance assessment.

(DOCX)
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