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Abstract

Background: In silico functional genomics have become a driving force in the way we interpret and use gene
expression data, enabling researchers to understand which biological pathways are likely to be affected by the
treatments or conditions being studied. There are many approaches to functional genomics, but a number of
popular methods determine if a set of modified genes has a higher than expected overlap with genes known to
function as part of a pathway (functional enrichment testing). Recently, researchers have started to apply such
analyses in a new way: to ask if the data they are collecting show similar disruptions to biological functions
compared to reference data. Examples include studying whether similar pathways are perturbed in smokers vs.
users of e-cigarettes, or whether a new mouse model of schizophrenia is justified, based on its similarity in cytokine
expression to a previously published model. However, there is a dearth of robust statistical methods for testing
hypotheses related to these questions and most researchers resort to ad hoc approaches. The goal of this work is
to develop a statistical approach to identifying gene pathways that are equivalently (or inversely) changed across
two experimental conditions.

Results: We developed Equivalent Change Enrichment Analysis (ECEA). This is a new type of gene enrichment
analysis based on a statistic that we call the equivalent change index (ECI). An ECI of 1 represents a gene that was
over or under-expressed (compared to control) to the same degree across two experiments. Using this statistic, we
present an approach to identifying pathways that are changed in similar or opposing ways across experiments. We
compare our approach to current methods on simulated data and show that ECEA is able to recover pathways
exhibiting such changes even when they exhibit complex patterns of regulation, which other approaches are
unable to do. On biological data, our approach recovered pathways that appear directly connected to the
condition being studied.

Conclusions: ECEA provides a new way to perform gene enrichment analysis that allows researchers to compare
their data to existing datasets and determine if a treatment will cause similar or opposing genomic perturbations.
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Background

In silico functional genomics have become a standard
approach in enabling researchers to use transcriptomics
to understand biological pathways or molecular func-
tions affected by the treatments or conditions they are
studying. For example, a published protocol for the DA-
VID Bioinformatics Resources has over 15,000 citations
[1]. A paper discussing another popular approach, called
Gene Set Enrichment Analysis (GSEA), has been cited
over 13,000 times [2]. Most methods determine if a set
of modified genes has a higher than expected overlap
with genes known to function as part of a pathway
(functional enrichment testing) [1-3]. Perhaps the sim-
plest way of doing such an analysis is to perform over-
representation analysis (ORA) and test if a set of genes
(perhaps those that were statistically significantly differ-
entially expressed between the comparator groups) over-
laps a list of genes in a biological pathway more than
what would be expected by chance [1, 4, 5]. Several im-
portant annotations of biological processes or pathways
have been developed to facilitate such analyses. One of
the best known is the Gene Ontology [6] (GO), although
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
[7] and Reactome [8] have additional annotations for the
relationships between genes in a pathway. The statistical
significance of overrepresentation of a significant set of
genes in the genes of a pathway can be tested simply
using the hypergeometric test. Other methods have been
developed to improve the power and reliability of these
tests, including GSEA [2]. GSEA identifies sets of genes
that group together near the top or bottom of a list of
genes ranked by degree of differential expression (typic-
ally log,-fold change) more than one would expect by
chance. There is no requirement that individual genes
be statistically significant by whatever metric is used.

Now, some researchers are asking a different version
of this question: i.e., they want to know if the data they
are collecting show similar functional disruptions as
compared to some reference data. For example, Shen,
et al. studied whether similar pathways were perturbed
in smokers vs. users of e-cigarettes [9]. Gil-Pisa, et al.
justified the use of their mouse model of schizophrenia
based on its similarity in cytokine expression to a previ-
ously published model [10]. Martins-de-Souza, et al.
showed that responders showed the same pathways were
affected, but in opposite directions, in poor vs. good re-
sponders to anti-psychotics [11]. Clearly, this idea has
many potential applications. Unfortunately, we currently
lack statistically sound approaches for most such
analyses.

One possible approach is perform enrichment analysis
separately for genes that are up and down regulated in
each treatment and then find the intersection of path-
ways that move in the same or opposite directions [12,
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13]. GSEA can test for pathways that are significantly up
or down regulated. However, typically, researchers using
this or similar approaches do not attempt to determine
the probability of this occurring by chance, bringing the
interpretability and reproducibility of such results into
question. Also, these types of approaches do not indicate
the degree to which pathways are changed in similar or
opposing ways. We are not aware of any methods that
can specifically address these questions. Furthermore, a
substantial limitation of similar approaches is the under-
lying assumption that biological pathways depend on the
co-expression of genes in them. Some pathways likely
function in this manner, and one may be able to detect
sub-pathways with equivalent or inverse changes, but
the results will likely be biased to simple pathways.

For the case of drug-repurposing, Connectivity Map-
ping was introduced to address the need for detecting
when genes are disrupted in similar ways. This approach
assesses the correlation in ranked lists of genes, with the
intent of identifying gene profiles for drugs that are cor-
related, or anti-correlated to a researcher’s own gene sig-
nature [14], but this approach is not designed to identify
specific biological functions that are similar across ex-
periments. The same is true of other methods, such as
openSesame [15] or the extreme cosine method (XCos)
[16], which were developed later. Even for drug repur-
posing, this may be an important point. That is, it may
be important to be similar only in terms of certain path-
ways but not others. Therefore, a method that can sys-
tematically identify pathways with similar (or inverted)
perturbations could be of great use. In this work, we
propose a novel functional genomics approach called
Equivalent Change Enrichment Analysis (ECEA) that
seeks to accomplish this goal. We further introduce a
novel metric called the Equivalent Change Index (ECI),
which plays a key role in our proposed methodology.
There are many potential applications of the proposed
methodology, including the ability to focus on genes that
may be more directly relevant to the experimental ques-
tion, drug screening for treatments that have similar ef-
fects, demonstrating the viability of a new mouse model,
and many other potential uses.

Results

We present two key developments for identifying bio-
logical pathways that exhibit equivalent or inverse
changes across experiments and/or treatments: i) the
Equivalent Change Index (ECI), and ii) Equivalent
Change Enrichment Analysis (ECEA). The ECI is a
measure that is calculated at the level of individual genes
from gene expression assays that ranges from [-1,1]. A
value of 1 indicates that a gene was changed to the same
degree by both treatments (e.g. a 2-fold change by each
treatment compared to its respective control). A value of
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-1 indicates a gene was change in completely the op-
posite way (e.g. downregulated 2-fold by one treatment
and upregulated 2-fold by the other). ECEA is a func-
tional genomics approach that identifies pathways with a
non-random distribution of equivalently or inversely
changed genes.

We evaluated our approach on three datasets: one
simulated, one biological data set with expected inverse
changes, and a second biological data set with expected
equivalent changes.

We benchmarked ECEA to the current approach that
involves simply performing pathway enrichment analysis
on the datasets from each treatment separately and then
intersecting the results. We used both Gene Set Enrich-
ment Analysis (GSEA) and over-representation analysis
(ORA) for comparison. With GSEA, it is possible to get
some idea of equivalent or inverse changes as well, be-
cause it tests for enrichment of up or downregulated
genes.

Simulations

The results of the simulations are shown for equivalent
change in Fig. 1, and for inverse change in Fig. 2, using a
probability of equivalent change or inverse change of 0.5
(i.e., each gene in a pathway chosen to have equivalent
differential expression would have a probability of 0.5 of
that equivalent change). Results at other probability
levels are shown in the supplemental material. We did
100 simulations for each set of parameters. Each simula-
tion involved 1 equivalently changed pathway, 1 in-
versely changed pathway, 1 pathway with differentially
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experiments, and 7 pathways not affected by these simu-
lated treatments. In each case, there were 5 samples for
each treatment and 5 controls (N =20). The results
show the proportion of times the equivalent or inversely
changed pathway was detected. The inversely changed
pathway was more difficult to detect by GSEA, because
creating inverse changes will also tend to increase the
number of genes that are not regulated in the same dir-
ection, which is a limitation of GSEA. For most levels of
probability of differential expression and across levels of
symmetry, ECEA outperformed GSEA or ORA. For
equivalently changed pathways, GSEA outperformed
ECEA only for low levels of probability of differential ex-
pression (PDE) and when the symmetry was extreme. In
Fig. 3, the false positive rate (FPR) for detecting the
pathway with differential expression but without
enforced equivalent or inverse change is shown. For all
levels of probability of differential expression ORA had
the lowest FPR, but it is also very low for ECEA. When
the symmetry is .1 or .9 the FPR is nearly linear for
FGSEA, meaning that the greater the probability of dif-
ferential expression, the greater the likelihood of identi-
fying a pathway as having equivalent change by chance,
using this approach.

Glut4 data

ECEA was run on the Glut4 data to determine pathways
enriched for genes that are equivalently or inversely
changed when Glut4 is knocked out or overexpressed in
mice. The data were collected to determine the effect of
Glut4 on insulin sensitivity in white adipose tissue. The
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Fig. 1 The proportion of equivalently changed pathways detected by each method, when the probability of equivalent change was 0.5. The x-
axis displays the symmetry, which shows the probability of genes being up-regulated in the pathway as opposed to down-regulated (when they
were differentially expressed). With a symmetry of 0.5, approximately half of the differentially expressed genes would be up-regulated and the
rest would be down-regulated. The different lines show the sensitivity for different levels of probability of a gene being differentially expressed.
The results are shown for (A) ECEA, (B) GSEA, and (C) ORA. For nearly all levels of probability of differential expression, ECEA was more sensitive
than ORA. ECEA was also more sensitive than GSEA whenever the genes were not highly co-expressed (symmetry near .1 or .9)
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Fig. 2 The proportion of inversely changed pathways detected by each method, when the probability of inverse change was 0.5. The x-axis
displays the symmetry, which shows the probability of genes being up-regulated in the pathway as opposed to down-regulated (when they
were differentially expressed). With a symmetry of 0.5, approximately half of the differentially expressed genes would be up-regulated and the
rest would be down-regulated. The different lines show the sensitivity for different levels of probability of a gene being differentially expressed.
The results are shown for (A) ECEA, (B) GSEA, and (C) ORA. For nearly all levels of probability of differential expression, ECEA was the most
sensitive. ECEA was also more sensitive than GSEA whenever the genes were not highly co-expressed (symmetry near .1 or .9)

control was calculated using the limma package for R
[17]. The log, fold change was used to calculate the ECI,
which was then used to perform the ECEA. First, we
performed this analysis on the Kyoto Encyclopedia of
Genes and Genomes (KEGG), with a false discovery rate
cut-off of 0.25, which is the recommended threshold for
GSEA [2]. We found enrichment in equivalent or inverse
change for 8 pathways using this approach. Of these, 5
were enriched with inversely changed genes and are
listed in Table 1. It is important to note that the number
of pathways equivalently or inversely changed do not
represent a picture of overall equivalent or inverse

change as pathways have many overlapping genes. For
each enriched pathway, we have included the top 5
genes in the results, which are the genes with the great-
est inverse change for the respective pathway.

Next, we applied the GSEA intersection approach.
This involves finding pathway enriched for differentially
expressed genes in each experiment separately and then
intersecting the results. Using GSEA, for the Glut4 KO,
there were 32 significantly enriched pathways. For the
overexpressed data, there were 29. One way to search
for inversely changed pathways would be to find those
enriched in upregulated genes using GSEA in one

A 100/ B 1.00- C 1.00{

0.75- 0.75+ 0.75+
o o Method
& 0.50- a 0.504 & 0.501 - GSEA

ECEA
0.25+ 0.25+ 0.25+ ORA
0.00- 0.00 q = 0.00+
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
PDE PDE PDE

Fig. 3 The proportion of times a pathway with differentially expressed genes was erroneously identified as being equivalently or inversely
enriched by method with probability of equivalent change at 0.5. The sub-figures show the results at (A) Symmetry = 0.1, (B) Symmetry = 0.5, and
(O Symmetry =09
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Table 1 ECEA identified inversely changed KEGG pathways in the Glut4 data

Pathway FDR NES Size Top 5 Genes

mmu00280 Valine, leucine and isoleucine degradation 1.85% 10772 -2.08 34 Bckdha,Pccb,Acaa2 Mcee Hmgcs1
mmu00071 Fatty acid metabolism 244% 107" -162 32 Acaa2,Ecil Echs1,Acsl4,Acsl1
mmu00640 Propanoate metabolism 324 %1072 -1.83 21 Pccb,Mcee Echs1,Aldh7a1,Aldh1al
Mmu04080 Neuroactive ligand-receptor interaction 244 %107 -138 177 Tshr,Sstr1,Pth1rVipr2,Fpri

mmu00310 Lysine degradation 244 %107 -1.64 25 Echs1,Suv39h2,Aldh7a1,Aldh1al Ehmt2

dataset and enriched for downregulated genes in the
other (for equivalent changes we would simply inter-
sect those changed in the same direction). Between
these two results, there were 11 shared pathways. Of
these, 6 had an inverse relationship and 5 and an
equivalently changed relationship. Using this approach
there is no way to assess the statistical significance of
this relationship, but the pathways with inverse regu-
lation are shown in Table 2.

Three of the pathways identified as being inversely
regulated by ECEA were also identified by this GSEA ap-
proach. However, the total number of pathways available
in the KEGG database is relatively limited at 225. There-
fore, we also tried these approaches using the larger
Reactome database, which has 1647 total pathways,
which might allow for a more granular picture. Using
ECEA, we found 27 pathways with significant enrich-
ment, eight of which were inversely enriched (Table 3).

Using the GSEA intersection approach, we found 14
pathways with inverse changes in regulation, two of
which was also found by ECEA. These are shown in
Table 4.

An additional 31 pathways were identified using GSEA
with the intersection approach that were enriched for
differential expression with equivalent directional change
in regulation.

It is worth noting that ECEA looks for enrichment in
equivalent or inverse changes in the same genes across
treatments, while the intersection approach will simply
find overall changes in genes in the pathway that tend to
be in the same direction. This might also be a useful
thing to do, but the goals are slightly different. However,
with the overlap approach, there is no indication as to
whether the functional impact is likely to be similar,

Table 2 GSEA identified inversely changed KEGG pathways in
the Glut4 data

Pathway

mmu00280 Valine, leucine and isoleucine degradation
mmu00071 Fatty acid metabolism

mmu03320 PPAR signaling pathway

mmu00640 Propanoate metabolism

mmu04146 Peroxisome

mmu04610 Complement and coagulation cascades

such as there is for ECEA (ie. different parts of a com-
plex pathway might be affected and thus not result in
similar functional impacts).

Figure 4 shows part of the VEGFR2 mediated vascular
permeability pathway from Reactome. On the left, we
can see the effect of the Glut4 knockout compared to
the controls, on the right the effect of Glut4 overexpres-
sion. This pathway was identified by ECEA as inversely
changed but not by GSEA. The figure illustrates a pos-
sible explanation why, due to the assumptions in GSEA
about co-expression. There are clear inverse changes in
Nos3, Akt2, Calm2, and Pdpkl but some of these genes
are upregulated and some downregulated in each
treatment.

Antidepressant data

We analyzed the antidepressant data in much the same
way as the Glut4 data, except in these data we expected
to capture equivalent changes. These data were collected
to investigate the effect of two different antidepressant
drugs, ketamine and imipramine, on a mouse model of
depression. For the KEGG pathways, in this case, there
were 6 pathways with significant enrichment for equiva-
lent change across treatments (Table 5) and none for in-
verse change.

When we performed the GSEA intersection approach,
we found 2 pathways that were significantly enriched
after treatment with either drug and both had changes
in the same direction (Table 6). Both pathways were also
identified by the ECEA approach.

Next, we applied ECEA, using these data, to the Reac-
tome database. The results are shown in Table 7. A total
of 17 pathways were found to be enriched for equivalent
changes across the two experiments and none for in-
verse changes.

Finally, we used the GSEA intersection approach to
examine these same data. A total of 20 pathways were
found to be enriched for differentially expressed genes
and regulated in the same direction by both drugs.
These are shown in Table 8. Eight of these pathways
were also identified by ECEA.

Discussion
In this work we have presented a new approach to func-
tional genomic analysis that can identify key biological
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Table 3 ECEA identified inversely changed Reactome pathways in the Glut4 data

Pathways FDR NES Size Top 5 Genes

GPCR ligand binding 172% 107" —140 219 Tshr,Ccr7 Ecel,Sstr1,Pth1r

Protein localization 229% 107" —152 68 Dhrs4,Gstk1,Ech1,SIc25a17,Tysnd1
SLC-mediated transmembrane transport 6.69% 1072 -157 108 Slc26a2,Slc31a1,Slc2a4,Slco3at,Slc39a8
Transport of inorganic cations/anions and amino acids/oligopeptides 700 1072 -1.69 43 Slc26a2,Calm2,SIc7a8,SIc3a2,SIc4a8
Peroxisomal protein import 15% 107 - 1.68 40 Dhrs4,Gstk1,Ech1,Tysnd1,Pex5

VEGFR2 mediated vascular permeability 129% 107" -1.73 21 Akt2,Calm2,Pak2,Ctnnb1,Nos3
Transcriptional Regulation by E2F6 401%x1072 -1.79 15 Phc1,Rbbp4,Ezh2, Ehmt2,Suz12
SHC-mediated cascade: FGFR2 203% 107 —1.68 17 Fgf4,Fgf8,Grb2,Fgf6,Fgf18

pathways that are changed in similar (equivalent) or op-
posing (inverse) ways across diverse experiments. Due to
our unique approach, data collected at different times,
by different groups can be used, because there is no
comparison of gene expression values, just the effect
sizes, and there is no dependence on exact estimates of
those effects. This has the potential to allow researchers
to capitalize on publicly available data in new ways.
However, it works just as well when two treatments are
run as part of the same project. Equivalent change en-
richment analysis (ECEA) allows researchers to deter-
mine the specific pathways and functions that are
regulated in close to the same fashion by different treat-
ments, or pathways for which changes can be reversed
by one treatment compared to another.

As we demonstrate, a similar type of analysis can be
done by intersecting the results of two separate enrich-
ment analyses, and this is undoubtedly a useful tech-
nique. However, such approaches cannot determine if a

Table 4 GSEA identified inversely changed Reactome pathways
in the Glut4 data

Pathway

Plasma lipoprotein assembly, remodeling, and clearance
Condensation of Prophase Chromosomes
Metabolism of vitamins and cofactors

Protein localization

Glucocorticoid biosynthesis

Hemostasis

Platelet activation, signaling and aggregation
Peroxisomal protein import

Platelet degranulation

Response to elevated platelet cytosolic Ca2+
Branched-chain amino acid catabolism
Regulation of Tp53 Degradation

Regulation of Tp53 Expression and Degradation

Laminin interactions

pathway is changed in the same way (i.e. the same parts
of the pathway) or to the same extent. For larger path-
ways, the differences may be critical.

On the simulation data, all approaches were able to
capture a useful proportion of equivalently and inversely
changed pathways in most situations. However, ECEA
typically had the most consistent performance. Also, for
the GSEA intersection approach, a number of its results
are likely to be false positives, particularly if there are
many genes that are differentially expressed. For path-
ways with mostly co-expressed genes, the GSEA inter-
section approach may have somewhat more power than
ECEA, however, this approach will be unable to identify
pathways with equivalent or inverse changes when there
are genes that are both up and down-regulated by a
treatment. It is important to note that this is not a limi-
tation of GSEA, given it is its intended behavior. It is
simply a limitation of applying GSEA in this context.

Our approach is invariant to the direction of change in
gene expression, because we are determining enrichment
in similar or inverse changes across experiments. There-
fore, a change can be equivalent for multiple genes, even
if they are up or down-regulated in the same pathway.
Furthermore, our ECEA approach outlined here can cal-
culate the statistical significance of enrichment in genes
that are dysregulated in similar or opposing ways across
experiments. This should be particularly useful when ap-
plied to larger pathways, because enrichment will only
be found when the same parts of the pathway are af-
fected similarly (rather than a similar trend in expression
on average for the pathway overall).

One potential limitation of the ECEA approach is the
somewhat restrictive assumption that equivalent change
in a pathway means that the same genes change to the
same degree by different treatments. This will undoubt-
edly be more or less useful of an assumption in different
contexts and should be kept in mind when using our
approach.

In the Glut4 dataset, both ECEA and GSEA identified
the “mmu00280 Valine, leucine and isoleucine degrad-
ation” KEGG pathway as one with inverse changes.
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Fig. 4 Differentially expressed genes in part of the VEGFR mediated vascular permeability pathway from Reactome. There are clear inverse
changes between the two treatments pictured and, importantly, not all genes with inverse changes show the same direction in regulation (some
are upregulated and others downregulated). (A) The log,-fold change in expression between Glut4 knockout and control. (B) The log,-fold
change in expression between Glut4 overexpressed and control

Indeed, prior research has shown that increases in circu-
lating branched chain amino acids are associated with
insulin resistance in obese patients [18], which is rele-
vant for this dataset investigating the effect of Glut4 on
insulin sensitivity in white adipose tissue. ECEA also
identified the “VEGFR2 mediated vascular permeability”
Reactome pathway as having inverse changes across the
treatments. Interestingly, this pathway is specifically re-
lated to the experimental question, as research has
shown that VEGFR2 can modulate insulin sensitivity in
white adipose tissue [19]. However, the GSEA intersec-
tion approach identified the “Response to elevated plate-
let cytosolic Ca2+” Reactome pathway as having inverse
changes, and Ca2+ has also been linked to regulation of
insulin signaling [20]. Thus, the ECEA approach has

some statistical advantages, but there are specific cir-
cumstances for which the GSEA intersection approach
will work well. It is seldom the case in functional gen-
omics that a single method can be claimed to have every
advantage. Also, our ECEA approach will identify when
pathways are change in the same or specifically opposing
ways (i.e. same genes) while the intersection approach
will more generally identify pathways that experience
overall changes in gene expression that are similar or
opposing. Depending on one’s needs, this is a key differ-
ence that should be kept in mind. Nevertheless, these re-
sults indicate our approach can at least identify inversely
changed pathways across treatments that are relevant to
the target disease, and importantly, assign a statistical
significance to the results.

Table 5 ECEA identified equivalently changed KEGG pathways in the antidepressant data

Pathway FDR NES Size Top 5 Genes

mmu03010 Ribosome 101x107° 1.52 95 Rpl7a,Rpsa,Rpl34,mt-Rnr1,Rplp1
mmu00230 Purine metabolism 212% 107" 1.22 144 AdaNt5e Adcy4,Ak7 Pdelc
mmu00500 Starch and sucrose metabolism 212%x 107" 147 22 Gaa,Amy1,Gys1,Pgm1,Pgm2
mmu00250 Alanine, aspartate and glutamate metabolism 212%x 107" 1.44 28 Gad2 Nit2,Aldh4a1,Gad1,Ass1
mmu04080 Neuroactive ligand-receptor interaction 536x107 1.24 185 Mc3r,Sstr5,Crhr2,Glp1r,Gabrg
mmu00340 Histidine metabolism 101%x 1072 1.67 20 Aldh3b1,Aldh7a1,Hdc,Aldh3a1,Ddc
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Table 6 GSEA identified equivalently changed KEGG pathways
in the antidepressant data

Pathway
mmu03010 Ribosome

mmu04080 Neuroactive ligand-receptor interaction

In the antidepressant data, both ECEA and GSEA
identified equivalent regulation by antidepressants of
ribosome-related genes and indeed this association has
been observed in patients with depression compared to
healthy controls [21]. This suggests that both ketamine
and imipramine have similar influence on the regulation
of genes involved that might serve as biomarkers of de-
pression and suggest the utility of our approach in a pre-
cision medicine context. ECEA identified the
“Regulation of Insulin-like Growth Factor (IGF)
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transport and uptake by Insulin-like Growth Factor
Binding Proteins (IGFBPs)” Reactome pathway as
equivalently changed by ketamine and imipramine and
there is research linking this pathway with depression
[22]. However, the GSEA approach identified the “Glu-
tamate Neurotransmitter Release Cycle” Reactome path-
way as equivalently changed and this pathway has also
been linked to depression [23]. Thus, we can see that
both approaches can lead to biologically meaningful, yet
different, results. Although we highlight these specific
results as examples, there are other pathways that seem
to have a direct connection to both datasets identified by
both methods.

The results for the antidepressant data are particularly
exciting, because they demonstrate an important use
case for our approach. Data for a new drug can be col-
lected and commonalities in functional effects in

Table 7 ECEA identified equivalently changed Reactome pathways in the antidepressant data

Pathway FDR NES Size Top 5 Genes

Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor 276 % 138 78  Gpc3,Trf,Scg3,PenkF5

Binding Proteins (IGFBPs) 1072

Post-translational protein phosphorylation 3.022>< 138 73  Gpc3,Trf,Scg3,PenkF5
107

GPCR ligand binding 1.14 % 1.22 200 Mc3r,Sstr5,Crhr2,Glp1rNts
107"

L13a-mediated translational silencing of Ceruloplasmin expression 8.07 x 1.39 100 Rpsa,Rpl34,Rplp1,Rps29,
1073 Rpl8

Eukaryotic Translation Initiation 8.07 x 1.35 108 Rpsa,Rpl34,Rplp1,Rps29,
1073 Rpl8

Formation of a pool of free 40S subunits 8.07 X 145 90  Rpsa,Rpl34,Rplp1,Rps29,
1073 Rpl8

GTP hydrolysis and joining of the 60S ribosomal subunit 148 % 1.38 101 Rpsa,Rpl34,Rplp1,Rps29,
1077 Rpl8

Cap-dependent Translation Initiation 8.07 X 1.35 108 Rpsa,Rpl34,Rplp1,Rps29,
1073 Rpl8

Translation 302 x 1.23 211 Mrpl10,Mrps16,Rpsa,Rpl34,
1072 Rplp1

SRP-dependent cotranslational protein targeting to membrane 8.07 X 1.53 81  RpsaRpl34,Rplp1,Rps29,
1073 Rpl8

Major pathway of rRNA processing in the nucleolus and cytosol 8.07 x 136 156 Exosc10,Rpsa,Rpl34,Rplpt,
1073 Rps29

rRNA processing 8.07 X 136 156 Exosc10,Rpsa,Rpl34,Rplp1,
1073 Rps29

rRNA processing in the nucleus and cytosol 8.07 X 1.36 156 Exosc10,Rpsa,Rpl34,Rplp1,
10°? Rps29

Nonsense-Mediated Decay (NMD) 8.07 x 144 102 Upf2,Rpsa,Rpl34,RplpT,
1073 Rps29

Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 8.07 X 1.51 83  Rpsa,Rpl34,Rplp1,Rps29,
1073 Rpl8

Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 8.07 x 144 102 Upf2,Rpsa,Rpl34,RplpT,
1073 Rps29

Sulfur amino acid metabolism 8.07 x 1.74 19  Slc25a10,Gm4737,Ahcy,

107 Cdo1,Adi1
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Table 8 GSEA identified equivalently changed pathways in the
antidepressant data

Pathway

Signaling by GPCR

Class A/1 (Rhodopsin-like receptors)

Peptide ligand-binding receptors

GPCR downstream signaling

G alpha (i) signalling events

GPCR ligand binding

L13a-mediated translational silencing of Ceruloplasmin expression
Formation of a pool of free 40S subunits

GTP hydrolysis and joining of the 60S ribosomal subunit

G alpha (qg) signalling events

G alpha (s) signalling events

SRP-dependent cotranslational protein targeting to membrane
Nonsense-Mediated Decay (NMD)

Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex
(E)O)

Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
Protein-protein interactions at synapses

Dopamine Neurotransmitter Release Cycle

Serotonin Neurotransmitter Release Cycle

Glutamate Neurotransmitter Release Cycle

Synaptic adhesion-like molecules

comparison with existing drugs can be predicted, using a
model organism. This has clear implications for the field of
drug repositioning. One could imagine inverse enrichment
could play a similarly important role, by allowing the predic-
tion of a drug reversing the changes in genes of pathways
disrupted in a disease. Although the GSEA intersection ap-
proach will work, the ECEA approach will particularly iden-
tify pathways where the changes are equivalent or inverted
at the gene level within the pathway, which may be more
useful when considering targeted treatments.

Conclusions

ECEA is not a general-purpose functional genomics ap-
proach that will supplant existing computational func-
tional genomics methods. Rather, we have demonstrated
that it is a useful new tool that can allow researchers to
garner relevant new insights into certain kinds of data. It
allows for statistical rigor to be brought to research
questions that are already being investigated in other
ways, and potentially opens new avenues of inquiry.

Methods

Equivalent change index

Our goal is to be able to identify genomic pathways that
are changed equivalently or inversely given two sets of
experiments, each with a treatment and control. As a
first step, we need a metric for the degree of equivalent
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change for a single gene. With such a metric, we can
then search for pathways that have an unusual degree of
equivalently or inversely changed genes. Therefore, we
introduce the idea of an Equivalent Change Index (ECI).

Let /S’Ul and [3% be the estimated effect sizes (ES) of

two experiments for gene i on experiment j. The ES
could be a log, fold change, a standardized mean differ-
ence, or a simple mean difference. Then we define the
equivalent change index (ECI) for gene i to be:

)}

)-(

b

+ )Ew‘z

_ Sign(ﬁih x _Bij2>{ max( Bi/’l‘7 ‘/S)i;2 Bih

ﬁijl

ECI;

max ( ,

This is simply the ratio of the smaller ES to the larger
ES in terms of absolute value of both effects and with a
sign reflecting whether the effects were in the same direc-
tion (positive) or opposite directions (negative). Thus,
ECI; e [-1,1]. An ECI; of 1 means that the ES was exactly
the same for gene i in both experiments. Likewise, an ECI;
of —1 means the ES was exactly opposite in both experi-
ments. Therefore, ECI; indicates either the degree of
equivalence or inverseness for a gene in one experiment
compared to a separate experiment, depending on its sign.

Pathway-level equivalent and inverse change
The ECI gives us a way to find pathways enriched for
genes changed in equivalent or inverse ways across ex-
periments. A high ECI indicates equivalent change, not
the directionality of the change. Therefore, if some genes
in a pathway are up-regulated and others down-
regulated by one treatment, but the reverse happens in a
second treatment, the ECI will be low for all genes in
the pathway. This is a critical property for our approach.
As an example, we can consider an experiment to de-
termine the genomic influence of Drug B. In particular,
we want to know biological functions for which Drug B
has similar effects as Drug A. We measure gene expres-
sion for patients on Drug B and a control. We already
have similar data for Drug A. Therefore, we calculate the
ECI for Drug B and A on each gene. Next, we rank all
genes by their ECI. We can now consider a hypothetical
functional pathway, with a set of genes P. The full list of
genes in the experiment is set G. The function g(x) yields
the index of a gene in G with rank x, with genes ranked
by ECL. We further define S={i| G, P} and R={i| G; ¢
P}, where S is the indices of the genes in the pathway,
and R is the indices of the genes not in the pathway.
Now, we will consider a gene of rank x. Suppose:

= { 1if g(h)eS
0if g(h)eR

1 x
FR(x) = mzhzll—lh
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where |R| represents the number of genes not in the
pathway under consideration. This gives us the propor-
tion of genes that are not in the pathway and have a
rank of x or less. We also have:

ECly() = ECly(r) (1- max (Plg(hwl”zg(h)))

where py, o) and py 4 are the p-values for the test
used to determine the effect sizes for g(4) in experiments
1 and 2. This yields a weighted ECI, based on the max-
imum p-value of the ES from each dataset for a given
gene. This weight is useful to separate genes with a high
or low ECI based on our confidence in their differential
expression results.
Next, suppose:
~ [0}

> n—1ln ‘Ag(h)’

0]

Fs(x) = ———" %
R|+|S EY
SRRl ’A’g(h)

When w =0, this gives the proportion of genes that are
in the pathway and have a rank of x or less. When w =0,

we will get a weighted ratio, depending on ig<h>, which
we will discuss more in a minute.
Now, we can determine a quantity D:

D= sup| Fs(x)-Fr(x)|

When w =0, this D is the Kolmogorov-Smirnov statistic.
Therefore, we could use it for a hypothesis test of whether
the distribution of ranks is different for a particular path-
way vs. all other pathways. Unfortunately, this is problem-
aticc. The K-S test depends on an assumption of
independence, which gene expression data cannot claim.
The K-S test has been shown to be sensitive to violations
of this assumption, so it is important to consider. There-
fore, we will set w=1, which will provide a weighted
Kolmogorov-Smirnov statistic. Note that this is exactly
the approach taken by GSEA. The difference is, we have
substituted the ECI for the local statistic used by GSEA
(which is based on effect size) [2]. Thus, Fs(x) is adjusted
for correlation between genes that is not associated with
the treatments (this assumes that genes in a pathway
would tend be correlated), because it is higher when the
genes tend to be more equivalently expressed as the result
of two treatments and is not a simple proportion. D is
nevertheless still dependent on the size of the gene set.
Therefore, we will scale D, getting D, and perform permu-
tation testing for enrichment in the same manner as
GSEA, by using the fgsea package for R. We call this ap-
proach equivalent change enrichment analysis or ECEA.

One convenient aspect of the statistic D, is that it rep-
resents a directional effect size for the entire pathway.
Therefore, it can be used to judge the overall equivalent
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or inverse change of genes in a pathway, which is a par-
ticularly useful result for functional genomics. Unlike in
standard GSEA, ECEA makes no assumption about the
directionality of the change for gene effects. That is,
genes that are up-regulated across treatments receive a
high ECI, as do genes that are down-regulated across
treatments. Therefore, there is no implicit assumption of
co-expression for a pathway, meaning that ECEA can be
used to investigate a wider array of pathways than typical
GSEA, although for an entirely different use case.

Data

In order to assess our method in both controlled and
realistic conditions, we examined the performance of
our approach using both simulated and biological data.

Simulation

The simulated gene expression data were created using
an approach similar to the one created by Dembele
(2013) [24]. This approach simulates correlation struc-
ture between genes, like might occur in a biological
pathway in real data and allows us to simulate different
treatments that affect those simulated pathways to vary-
ing degrees. We modified the approach to create data-
sets in which genes perturbed by one treatment have a
chance of being similarly perturbed (or inversely) by a
second treatment.

We simulated 72,900 gene expression data sets, with
correlation structure (the reason for this number is ex-
plained shortly). Each dataset was constructed from dif-
ferent runs of the algorithm, using different parameters
for the proportion of equivalent or inversely changed
genes and then combined, each subset thus representing
a pathway, with its own correlation structure. Thus, we
are making the simplifying assumption that there is no
correlation between pathways in the simulation and
there are no overlapping genes between pathways. For
each dataset, we created seven pathways with no treat-
ment effect (to provide a background), one pathway with
equivalent change, one with inverse change, and finally a
pathway without equivalent or inverse change but that
was still enriched for differentially expressed genes.
Varying the probability of genes being differentially
expressed we ran 100 simulations at each probability
level (from 0.1 to 0.9 in increments of 0.1). We also var-
ied the symmetry of changes in a pathway (from 0.1 to
0.9 in increments of 0.1), and the probability of equiva-
lent or inverse change (from 0.1 to 0.9). By symmetry,
we mean proportion that were up vs down regulated.
Thus, a symmetry of .5 means there was an equal prob-
ability of up vs. down regulation for differentially
expressed genes. For each resulting dataset, we then cal-
culated the number of times each equivalently or in-
versely changed pathway was detected by our method
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and calculated the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives
(FN), which were used to calculate other statistics, such
as the sensitivity. We applied ECEA, GSEA, and ORA to
these data and determined sensitivity and false positive
rate for the recovery of pathways with varying levels of
equivalent or inversely changed genes.

Biological data

The first biological dataset was created by Kraus, et al.
[25], to study the effect of the Glut4 gene in adipose tissue
on insulin sensitivity in a mouse model. These data were
specifically created to have opposing effects and represent
a dataset with expected inverse changes between two
treatments. These samples are available in the National
Center for Biotechnology Information’s (NCBI’s) Gene Ex-
pression Ominbus (GEO) ([26, 27] under accession
GSE35378. This study involved 12 mice: 3 were adipose-
Glut4—/-, 3 were aP2-Cre transgenic mice (controls for
the Glut4-/-), 3 were adipose-Glut4-Tg mice with Glut4
transgenically overexpressed, and 3 were FVB mice (con-
trols for the adipose-Glut4-Tg mice). Gene expression
was assayed using the Affymetrix Murine Genome U74A
Version 2 Array. These were background subtracted and
normalized using the rma function of the oligo package
[28] for the R statistical environment [29]. Differential ex-
pression was assessed using the limma package [17] for R.

The second biological dataset was created by Bagot,
et al. [30] to investigate the effect of two antidepressants
on the transcriptome in a mouse model of depression.
Therefore, we expect to find some equivalent changes in
this dataset. Gene expression was assayed using RNA se-
quencing on the Illumina HiSeq 2500 platform. Two
drugs were examined, ketamine and imipramine, and vari-
ous brain regions were examined. We limited our analysis
to mice that were susceptible to depression and only used
samples from the prefrontal cortex (PFC), in order to con-
trol confounding and because PFC had the greatest num-
ber of these samples available. Differential expression was
assessed using the DESeq2 [31] package for R.

For the biological data, we do not have a ground truth.
Here, our focus will be on determining whether our ap-
proach can detect equivalent or inverse changes that ap-
pear to make sense given the models and treatments.
For each dataset, we will be examining the ability of
ECEA and GSEA to identify disease relevant pathways.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6589-x.

Additional file 1: Supplemental Material: contains additional figures
showing the results of the simulation when using varying probabilities of
equivalent or inverse change.
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