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Transfer RNA (tRNA) genes are among the most highly transcribed genes in the genome owing to their central role in

protein synthesis. However, there is evidence for a broad range of gene expression across tRNA loci. This complexity, com-

bined with difficulty in measuring transcript abundance and high sequence identity across transcripts, has severely limited

our collective understanding of tRNA gene expression regulation and evolution. We establish sequence-based correlates to

tRNA gene expression and develop a tRNA gene classification method that does not require, but benefits from, com-

parative genomic information and achieves accuracy comparable to molecular assays. We observe that guanine+ cytosine

(G+C) content and CpG density surrounding tRNA loci is exceptionally well correlated with tRNA gene activity, support-

ing a prominent regulatory role of the local genomic context in combination with internal sequence features. We use our

tRNA gene activity predictions in conjunction with a comprehensive tRNA gene ortholog set spanning 29 placental mam-

mals to estimate the evolutionary rate of functional changes among orthologs. Our method adds a new dimension to large-

scale tRNA functional prediction and will help prioritize characterization of functional tRNA variants. Its simplicity and

robustness should enable development of similar approaches for other clades, as well as exploration of functional diversi-

fication of members of large gene families.

[Supplemental material is available for this article.]

Transfer RNAs (tRNAs) are essential for the translation of messen-
ger RNA (mRNA) into proteins for all life. At the gene level in eu-
karyotes, they are of special interest for their high copy number,
strong nucleotide sequence conservation, and variation in expres-
sion (Kutter et al. 2011; Schmitt et al. 2014; Pan 2018). tRNAmol-
ecules are required in large abundance to meet the dynamic
metabolic needs of cells, and tRNA genes are believed to be among
the most highly transcribed genes in the genome (Palazzo and Lee
2015; Boivin et al. 2018).

Despite high cellular demands, numerous individual tRNA
genes have no direct evidence for expression (Kutter et al. 2011;
Palazzo and Lee 2015; Gogakos et al. 2017; Hummel et al. 2019).
High duplication rates and consequent weakened purifying selec-
tion may lead to an abundance of pseudogenes. Additionally,
many of these genes may be tRNA-derived short interspersed nu-
clear elements (SINEs), which often retain strong promoter ele-
ments. However, even after removal of apparent pseudogenes
and SINEs, more than 60 human tRNA genes and more than 100
mouse tRNA genes are in constitutively silenced regions of the
genome for all tissues and cell lines, suggesting they are never
or rarely transcribed (Roadmap Epigenomics Consortium et al.
2015; Bogu et al. 2016; Holmes 2018; Thornlow et al. 2018).
Chromatin immunoprecipitation sequencing (ChIP-seq) data sup-
port this conclusion, as one multispecies study detected occupan-
cy by RNA Polymerase III (Pol III) for only 224 of 417 high-
confidence tRNA genes in human liver, with other mammals
showing similar patterns (Kutter et al. 2011).

tRNA gene expression may coevolve with phenotypic differ-
ences between species. Data from previous studies suggest that
the rate of evolution of protein-coding gene expression levels dif-
fers by clade (Li et al. 1996; Brawand et al. 2011; Necsulea and
Kaessmann 2014). The rate of evolution of gene expression also
varies among noncoding RNA gene families (Meunier et al. 2013;
Necsulea and Kaessmann 2014; Necsulea et al. 2014). Because of
difficulties in high-throughput, accurate quantification of tRNA
abundance, the complexity of tRNA gene expression across mam-
mals is not well understood. The expanding functional repertoire
of tRNA transcripts and tRNA-derived small RNAs (Mleczko et al.
2014; Goodarzi et al. 2015; Kirchner and Ignatova 2015; Sun
et al. 2018) indicates that changes in tRNA gene expression
between species could have profound cellular effects.

Expressionof tRNAgenes has clear importance for organismal
development and contribution to disease, but our understand-
ingof its regulation and evolution is severely lacking for several rea-
sons (Hanada et al. 2013; Schaffer et al. 2014; Yoo et al. 2016).
Measuring expression of unique mRNA transcripts has become
relatively straightforward. However, tRNA sequencing by the
methods originally developed for unmodified small RNAs (e.g.,
microRNAs) is frequently impeded by numerous RNA modifi-
cations at the reverse transcription phase. Only very recently
have specialized sequencing library preparation methods been
developed to remove or overcome these modifications, enabling
effective sequencing (Cozen et al. 2015; Zheng et al. 2015).
Furthermore, because fully processed tRNA gene transcripts from
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different loci are often identical, simple tRNA-seq abundancemea-
surements are often insufficient to determine the true transcrip-
tional activity at each gene locus. Therefore, to determine which
tRNA genes are potentially constitutively active, highly regulated,
or silenced, othermethods areneeded. Several genome-widemeth-
ods examine tRNA loci in their generally unique genomic contexts,
bypassing the problem of identical mature tRNA transcripts. Such
assays include chromatin immunoprecipitation (ChIP) (Roadmap
Epigenomics Consortium et al. 2015; Bogu et al. 2016; Thornlow
et al. 2018), RNA Polymerase III (Pol III) ChIP-seq (Kutter et al.
2011), and ATAC-seq (Foissac et al. 2019), among others. These
high-throughput assays remain cost and resource intensive, so cur-
rently available data are often limited to few species and tissues.
Nonetheless, these data show that identical tRNA genes do vary
in expression profiles (Kutter et al. 2011; Schmitt et al. 2014; Pan
2018), supporting the need to incorporate extrinsic factors into
the prediction of when or if tRNA genes are active. The study of
the local genomic context is therefore essential and has not been
tackled comprehensively by any tRNA gene prediction method.

Here, we begin to resolve these concerns by developing a
model to predict whether individual tRNA genes are actively tran-
scribed in at least one tissue, or transcriptionally silent. Previous
work has shown that tRNA gene transcription may be inferred
based on DNA variation driven by transcription-associated muta-
genesis (Thornlow et al. 2018). We leverage this correlation, fur-
ther enhanced by other genomic features, to infer expression of
tRNA genes with high accuracy. This novel advance in tRNA re-
search uses, but does not require, comparative genomic informa-
tion, enabling its broad application. We show our method using
29 placental mammalian genomes, most of which have no tRNA
expression data. We also developed a robust mapping of syntenic
tRNA genes across all 29 species. By combining our new method
with this comprehensive ortholog set, we have analyzed and com-
pared expression classifications of more than 10,000 tRNA genes,
yielding a first look at the rate of tRNA gene regulation evolution
in placentalmammals, aswell as bringing attention to the high fre-
quency of silenced “high-scoring” canonical tRNA genes.

Results

Our goal was to develop a tRNA activity–predictive model that
could be applied to as many species as possible. To date, the
most facile method for inferring tRNA gene function has been

the use of tRNAscan-SE covariance model bit scores, which quan-
tify similarity to primary sequence and secondary structure profiles
derived from an alignment of reference tRNAs (Lowe and
Eddy 1997; Chan et al. 2019). However, comparison to RNA
Polymerase III ChIP-seq data from multiple mouse tissues (Kutter
et al. 2011) suggests that high covariance model bit scores do
not always correspond to occupancy by RNA Polymerase III
(Pol III) (Supplemental Fig. S1). More generally, this is consistent
with the idea that tRNAscan-SE bit scores alone are not strongly
predictive of gene expression.

To improve prediction of tRNA functional roles and better
understand the basis of tRNA gene regulation in mammals, we
evaluated many additional sequence features easily obtained
from a single reference genome (Fig. 1). We explored genomic fea-
tures correlated with activity based on comprehensive epigeno-
mic data across 127 human tissues and cell lines (Roadmap
Epigenomics Consortium et al. 2015) and then reduced this set
to just those yielding the best predictions for our training data
(Table 1; Supplemental Table S1).

To create our predictive model, we evaluated and incorporat-
ed two types of function-predictive statistics: intrinsic features re-
lated to tRNA gene sequence, and extrinsic features derived
entirely from the genomic context. First, we reasoned that highly
expressed tRNA genes should generally encode strong internal
promoter sequences, and their transcripts must fold stably into
the canonical tRNA structure. Both types of information are
incorporated into tRNAscan-SE bit scores (Chan et al. 2019).
Furthermore, our previous study found that tRNA gene conserva-
tion is highest for actively transcribed tRNA genes, presumably
because of stronger purifying selection on required sequence fea-
tures (Thornlow et al. 2018). Thus, we included tRNA gene con-
servation in the form of the phyloP score, a nucleotide-level
quantitative measure of conservation using multiple alignments
(Pollard et al. 2010). We also assessed the correlation of gene activ-
ity with the length of each pre-tRNA’s 3′ tail, measured by the
nucleotide distance from the end of the mature tRNA gene to
the beginning of the poly(T) transcription termination sequence
(Koski et al. 1980; Allison and Hall 1985). Multiple studies on
tRNA transcription termination (Maraia et al. 1994; Hamada
et al. 2000; Orioli et al. 2011; Arimbasseri et al. 2013) observed
that the RNase Z-trimmed 3′ sequences vary in overall length,
composition, and terminator strength [poly(T) length], each po-
tentially affecting tRNA maturation and processing.

A B

Figure 1. Schematic of tRNA activity classifier and key features used in prediction. (A) Flowchart of analysis pipeline, which extracts tRNA information
solely from genomic data and classifies tRNA genes as active or inactive. Green blocks indicate files not created by the pipeline. By default, the method
uses a Cactus graph (Armstrong et al. 2019), which is a reference-free whole-genome alignment, and a genome annotation file as input. (B) Active
tRNA genes generally have more CpG dinucleotides in their 350-bp upstream flanking regions, more proximal transcription termination sequences
(“TTTT”), are within 75 kb of more exons, and have more highly conserved gene sequences and more evolutionarily divergent 20-nt 5′ flanking regions.
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We found that tRNAscan-SE bit scores and average phyloP
scores across tRNA gene sequences are significantly correlated
with tRNA gene activity based on epigenomic data. We also found
that the total number of tRNA geneswith identical anticodons and
the distance to transcription termination sites are significantly
anti-correlated with activity, as higher anticodon redundancy in
tRNA genes and tRNA genes with more distal transcription termi-
nation sites are more frequently inactive (Spearman’s rank correla-
tion, P<1×10−4 for all comparisons) (Roadmap Epigenomics
Consortium et al. 2015; Thornlow et al. 2018).

Second, because mRNA expression depends heavily on
local chromatin context, we explored features of the genomic en-
vironment. Protein-coding genes in regions rich in CG, or CpG,
dinucleotides are known to be more frequently expressed
(Gardiner-Garden and Frommer 1987; Krinner et al. 2014).
Gardiner-Garden and Frommer define CpG islands scores as the
observed frequency of CpG dinucleotides compared to their ex-
pected frequency given the G+C content of a region. We found
that these scores, when calculated for the 350 bases upstream of
each gene, are significantly correlated with active tRNA genes
(Spearman’s rank correlation, P<2.1 × 10−24). Similarly, the fre-
quency of CpG dinucleotides spanning from 350 bases upstream
to 350 bases downstream from each tRNA gene is evenmore signif-
icantly correlated with expression (P<1.9 ×10−27) (Roadmap
Epigenomics Consortium et al. 2015; Thornlow et al. 2018).

We also previously found that the putatively neutral regions
flanking highly expressed tRNA genes are more divergent, con-
sistent with transcription-associated mutagenesis (Thornlow
et al. 2018). We observed that the average phyloP score of the
20-nt 5′ flanking regions of tRNAs is significantly anti-correlated
with tRNA gene activity, because active tRNA genes more often
have highly divergent flanking regions (P<8.9 ×10−16)
(Roadmap Epigenomics Consortium et al. 2015; Thornlow et al.
2018). Finally, based on an expectation for increased chromatin
accessibility for tRNA genes near other genes, we found that
tRNA genes are indeed more likely to be in an active chromatin
state if near protein-coding genes (P<8.9 ×10−5) or other tRNA
genes (P<9.7 ×10−7).

We hypothesized that some combination of both intrinsic
and extrinsic features could enable robust computational infer-
ence of potential for tRNA gene activity (Fig. 1). To develop an in-
tegrated model, we tested several common frameworks, including
random forest (RF), logistic regression, and support vector ma-
chines. The RF classifier was most effective, achieving the greatest
area under the Receiver Operating Characteristic curve (AUC) (Fig.
2A,B) based on 10-fold cross-validation of human tRNA gene
data and subsequent application, without retraining, to mouse
tRNA gene data (Methods). For reference, we have included infor-
mation for all data sets used for testing, training, and validation of
our classifier in Supplemental Table S2.

Table 1. Both intrinsic (tRNA-specific) and extrinsic (genome context) features are integral to the model

Feature
group

Feature
name

Feature
importance

Active mean
(95% CI)

Inactive mean
(95% CI)

TRE-
CTC1-1

TRK-
CTT11-1

TRQ-
TTG3-1

TRQ-
TTG4-1

Activity — — — Active Inactive Active Inactive
Probability — — — +0.994 −0.975 +0.984 −0.895

Intrinsic Total number of tRNA
genes with identical
anticodon

0.089 11.1 (10.4, 11.8) 17.9 (15.3, 20.2) 14 15 6 6

Minimum free energy of
canonical tRNA
secondary structure

0.074 −27.4 (−27.8, −27.0) −23.5 (−24.6, −22.5) −26.4 −16.0 −22.0 −24.1

tRNAscan-SE general bit
score

0.070 76.2 (75.3, 77.3) 69.9 (67.3, 72.6) 73.2 56.6 66.9 58.1

Average phyloP score in
tRNA sequence

0.063 0.86 (0.79, 0.92) 0.35 (0.25, 0.46) 1.37 −0.081 0.51 −0.047

Distance to nearest TTTT
transcription
termination sequence

0.040 15.9 (13.1, 19.2) 66.9 (43.5, 94.7) 8 351 7 14

Extrinsic CpG density across tRNA
locus

0.303 0.043 (0.041, 0.045) 0.018 (0.014, 0.023) 0.045 0.014 0.024 0.014

Observed/expected CpG
islands score upstream
of tRNA gene

0.225 0.67 (0.64, 0.69) 0.27 (0.21, 0.33) 0.68 0.092 0.62 0.11

Average phyloP score in
5′ flanking region

0.092 −2.61 (−2.74, −2.45) −1.21 (−1.44, −0.99) −3.88 0.17 −2.50 0.009

tRNA genes within 10 kb 0.023 1.97 (1.75, 2.18) 0.84 (0.54, 1.19) 3 0 5 0
Exons within 75 kb 0.019 35.3 (32.2, 38.7) 21.6 (17.2, 26.7) 88 43 37 0

All features included in the model with their relative importance values as measured by decrease in node impurity by scikit-learn (Pedregosa et al.
2011; Methods). Greater feature importance scores indicate greater contribution to discrimination between active and inactive tRNA genes by the
model. The active mean and inactive mean columns refer to the mean value across all human tRNA genes in our training set that are known to be
active and inactive, respectively, with 95% confidence intervals (CI) in parentheses, calculated for each mean using bootstrapping. Minimum free
energy of canonical tRNA secondary structure refers to the minimum free energy when constrained to folding into the canonical cloverleaf secondary
structure (Lorenz et al. 2011). For calculating CpG-related statistics, we consider the tRNA locus to begin 350 bp upstream and end 350 bp
downstream from the gene. To calculate the phyloP score in the 5′ flanking region, we considered only the 20 bp immediately upstream of each
tRNA gene. As examples, the human tRNA genes predicted most likely active (TRE-CTC1-1; GtRNAdb ID: Glu-CTC-1-1) and most likely inactive
(TRK-CTT11-1; GtRNAdb ID: Lys-CTT-11-1), across all human tRNAs, are shown, as well as two examples from the same anticodon family (tRNA-Gln-
TTG), one active and one inactive. For the distance to the nearest transcription termination sequence, if the motif “TTTT” was not found within 350 nt
of a tRNA gene, 351 was used as its value, as is the case for TRK-CTT11-1.
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Features derived from CpG islands are most informative

To better understand and improve our classifier, we determined
the relative importance of each feature in our random forestmodel
(Table 1; Pedregosa et al. 2011). All features contribute tomodel ac-
curacy and are significantly correlated with the activity labels
(Spearman’s rank correlation, P< 1×10−4 for all features). Among
high-confidence tRNA genes, as determined by tRNAscan-SE
(Chan et al. 2019), the most informative features predictive of ac-
tivity (feature importance) (Table 1; Pedregosa et al. 2011), are de-
rived from CpG content at each tRNA locus. On comparing our
CpG data to epigenomic data for each mouse tRNA gene (Bogu
et al. 2016), we find that both CpG density and CpG islands scores
are exceptionally highly correlated with breadth of activity
(Spearman’s rank, P<2.4 ×10−78 for CpG Density, P<5.0 ×10−61

for CpG Islands Score) (Supplemental Fig. S2). This supports the
idea that CpG-derived genomic data are particularly highly infor-
mative of tRNA gene activity.

One might expect that the tRNAscan-SE general bit score
should be the most informative single feature. However, we start
with relatively high-quality tRNAswith likely pseudogenes already
removed using the tRNAscan-SE bit score-based high-confidence
filter (Chan et al. 2019). Thus, for a starting set of tRNAs already
vetted for reasonably strong features, the contribution of the
tRNAscan-SE bit score to the model is marginally smaller than
other features not previously used to estimate gene function. By
incorporating both tRNA gene sequence and genome context
(Supplemental Fig. S3), our classifier represents a substantial im-
provement over using tRNAscan-SE covariance bit scores alone
(Supplemental Fig. S1B).

Our classifier is 94% accurate in classifying mouse tRNA genes

based on epigenomic data

Because our classifier was trained using comprehensive epige-
nomic data mined from human tRNA gene loci (Supplemental
Table S3; Roadmap Epigenomics Consortium et al. 2015), we re-
quired an independent data set to test our model. Therefore, we
tested the accuracy of our classifier using epigenomic data evaluat-
ing histone marks at mouse tRNA genes across nine tissues from
Bogu et al. (2016) (Supplemental Tables S2, S4). Our mouse tRNA
gene set contains 376 genes, with 259 observed as active and
117 believed silent based on epigenomic data (Supplemental
Table S4;Methods). Our classifier predicted that 264 of these genes
are active and 112 are inactive, correctly categorizing 353 tRNA

genes and achieving 93.9%accuracy (Fig. 2B–D).Of the 23misclas-
sifiedmouse tRNA genes, 14 aremisclassified as active and nine are
misclassified as inactive. We note that these genes are not biased
by isotype, nor by genomic location, and are therefore most likely
misclassified for a variety of reasons (Supplemental Table S5). To
ascertain the performance of our classifier on nonconserved
tRNA loci between human and mouse, we also tested the classifier
on only the 184mouse tRNA genes in our test set without syntenic
human orthologs. We correctly classify 167 such genes, achieving
90.8% accuracy in this highly biased subset of tRNA genes.

Classification without alignment or annotation is similarly

accurate

Wedeveloped ourmethod such that it could potentially be applied
to any species with a sequenced genome. For best performance, we
used a Cactus graph (Paten et al. 2011a,b; Nguyen et al. 2015;
Armstrong et al. 2019), which is a reference-free whole-genome
alignment. Usage of a Cactus graph enhances detection of synteny
and facilitates extraction of alignments for specific regions inmul-
tiple genomes. The Cactus graph used in this study includes 29
mammalian genomes (Supplemental Table S6).

Nonetheless, we recognize that Cactus graphs are not yet
available for all species. To accommodate species for which no
alignments or protein-coding gene annotations have been devel-
oped, we included an option to omit the requirement of this fea-
ture information. Use of this simplified classifier led to decreases
in accuracy in both human (AUC=0.927, 91.8% accuracy com-
pared to AUC=0.942 and 93.2% accuracy in the full model) and
mouse (AUC=0.974, 92.6% accuracy compared to AUC=0.979
and 93.9% accuracy in the full model), which may be exacerbated
upon application to more phylogenetically distant species.

ChIP-seq, DM-tRNA-seq, and ATAC-seq data independently

validate our classifications in additional species

To further validate our model, which was trained on human chro-
matin data, we compared our predictions to RNA Polymerase III
(Pol III) ChIP-seq data previously collected from the livers of four
species (Mus musculus, Macaca mulatta, Rattus norvegicus, and
Canis lupus familiaris) (Kutter et al. 2011). Although Pol III ChIP-
seq measures Pol III occupancy rather than transcription, it is a
requirement for transcription, and our usage of ChIP-seq data in-
stead of transcription data ameliorates the common problem of

A B C

D

Figure 2. Random forest classifier achieves 94% accuracy on mouse tRNA genes. Receiver operating characteristic curves for random forest (blue),
logistic regression (red), and support vector machine (yellow) upon application to human training data with 10-fold cross-validation (A) and mouse
test data (B) are shown. The number of mouse tRNA genes predicted as active (C) and inactive (D) are compared to the number of tissues in which
they are actively transcribed according to Bogu et al. 2016. We considered a mouse tRNA gene active if it is actively transcribed in at least one tissue.
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mature tRNA transcripts mapping ambiguously to multiple tRNA
loci.We found roughly expected agreement between our classifica-
tions and the Pol III ChIP-seq read counts from a single tissue (Fig.
3A–D; Supplemental Fig. S4). Our predictions are similarly accurate
when compared to mouse muscle and testes ChIP-seq data
(Supplemental Figs. S4A,B, S5).

We predicted many tRNA genes as active despite a lack of Pol
III binding at these loci in liver, muscle, and testes. This is a conse-
quence of ourmethodology, as ourmodel does not predict activity
in specific tissues, but is instead trained to predict tRNA genes as
active if epigenomic data indicates active transcription in at least
one of many tissues (Roadmap Epigenomics Consortium et al.
2015). For example, in mouse, 259 total tRNA genes are active in
at least one tissue based on the epigenomic data, but 90 of these
(35%) are not expected to be active in the liver based on the
same data. Based on human and mouse epigenomic data, a large
proportion of tRNA genes are expressed exclusively in stem cells
and cell lines (Holmes 2018). This may explain many of the dis-
crepancies we observe in predicting tRNA genes as active that do
not have any evidence for Pol III occupancy in one or a small num-

ber of differentiated tissues. We predict the brain-specific mouse
tRNA gene, n-TRtct5 (GtRNAdb ID: Arg-TCT-4-1) (Ishimura et al.
2014), which has no ChIP-seq reads in mouse liver, muscle, or
testes (Kutter et al. 2011), as active with 0.664 probability
(Supplemental Table S4). This is consistent with our goal to predict
any tRNA gene with known activity in any tissue as active.

Our model predicted 120 (macaque), 67 (rat), and 142 (dog)
tRNA genes as active despite Pol III ChIP-seq read counts of zero
in the liver (Kutter et al. 2011). Although ChIP-seq has not been
performed on macaque, rat, and dog tRNA loci for any other tis-
sues, we find that virtually all tRNA genes with measured Pol III
binding are predicted to be active by our classifier. Among tRNA
genes with Pol III ChIP-seq read counts greater than zero, we pre-
dicted that 95.3% are active in mouse, 97.3% in macaque, 98.3%
in rat, and 98.5% in dog. This consistency in tRNA distributions
and classifier behavior across species suggests that the classifier
is similarly accurate in mouse, macaque, rat, and dog (Fig. 3;
Supplemental Fig. S4).

As additional validation, we compared our predictions to new
tRNA transcript abundance data for mouse brain and liver,

A B

C D

E F

Figure 3. Classification of gene activity based on genomic data achieves similar results to Pol III ChIP-seq analysis in four species and DM-tRNA-seq in two
tissues. Probability scores output by the classifier are shown on the x-axis, where tRNA genes further left are predicted inactive with greater probability, and
tRNA genes further right are predicted activewith greater probability: (A) mouse; (B) macaque; (C) rat; (D) dog. The y-axis shows Pol III ChIP-seq read counts
from the liver of each species for each tRNA gene, from Kutter et al. (2011). Similar patterns are observed for predicted active versus inactive mouse tRNA
genes with uniquely mapping DM-tRNA-seq data, comparing to the average normalized read count across three replicates: (E) mouse liver; (F) mouse
brain.
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collected by our laboratory using DM-tRNA-seq (Supplemental
Table S7; Zheng et al. 2015). Compared to other assays, DM-
tRNA-seq is a more direct measure of transcript abundance.
However, because this sequencingmethod capturesmostlymature
tRNA transcripts, we were limited to only the 153 single-copy
mouse tRNA loci in our data set, as it is impossible to determine
the source loci for transcripts produced by multicopy tRNA genes.
We conductedDM-tRNA-seq inmouse liver and brain in three rep-
licates each and compared the average normalized read counts
across each tissue to our activity predictions for each single-copy
tRNA gene (Fig. 3E,F; Methods). Our DM-tRNA-seq data support
the tissue specificity of n-TRtct5, as we see moderate expression
across all of our brain replicates and detect no expression in any
of our liver replicates (Supplemental Table S7). We also found
that our DM-tRNA-seq data frommouse liver is significantly corre-
lated with the Pol III ChIP-seq data from mouse liver (Spearman’s
rank, P<3.6 ×10−29). When we consider tRNA genes with an aver-
age of at least 20 reads in either tissue to be active and all others to
be inactive, we achieve 84%accuracy, whichmaybe a lowestimate
based on the small number of tissues tested.

Tovalidate our predictions inmore species, weusedATAC-seq
data captured in liver, CD4+, and CD8+ cells for the cow, pig, and
goat genomes (Foissac et al. 2019).We compared our predictions to
the ATAC-seq peaks across these tissues for the regions spanning
250 bp upstream of and downstream from each tRNA gene
(Supplemental Figs. S6, S7). Again, because of the inclusion of
only a small subset of tissues in this
data, many tRNA loci that do not show
activity in these tissues but were predict-
ed as active by ourmodelmay be active in
other tissues. Among tRNA genes with
ATAC-seq peaks, we predicted 90.4%,
95.1%, and 90.8% as active in cow,
goat, and pig, respectively. These results
are comparable to measurements ob-
tained fromChIP-seq data inmouse, ma-
caque, rat, and dog.

tRNA gene classifications follow similar

distributions across the eutherian

phylogeny

We applied our model to 29 mammalian
species (Fig. 4; Supplemental Tables S6,
S8, S9) to gleannew insights into the evo-
lution of tRNA complements. We deter-
mined the distributions of active and
inactive tRNA genes by anticodon across
these species (Supplemental Table S10),
finding that most species have about
250–350 predicted active genes, compris-
ing ∼75% of their tRNA gene sets. We
observe similar distributions by clade,
with a few exceptions. Bos taurus, Capra
hircus, and Orcinus orca (cow, goat, and
orca, respectively) have more than 300
tRNA genes predicted to be inactive, but
no other species has more than 154.
This most likely reflects decreased ability
of tRNAscan-SE to discriminate tRNA-de-
rived SINEs from tRNA genes in these
species (Chan et al. 2019). Furthermore,

we verified that all species had at least one tRNA gene predicted
as active for each expected anticodon (Supplemental Tables S10,
S11; Grosjean et al. 2010), with only three minor exceptions
that may represent genome assembly or classification errors
(Supplemental Material).

Establishing mammalian ortholog sets enables further

evolutionary analysis of tRNA gene regulation

To investigate the relationship between evolutionary conservation
and transcriptional activity, we developed a complete set of pla-
cental mammal tRNA gene orthologs using a Cactus graph
(Supplemental Tables S6, S12; Armstrong et al. 2019). Cactus
graphs are state-of-the-art alignments that allow greater detection
of synteny across many species. Of the 11,724 tRNA genes in our
29-species alignment, 3554 genes in total, or about 123 per species
on average, appear to be species-specific. The rest were grouped
into 1097 ortholog sets. Of these, 750 ortholog groups contain
only tRNA genes predicted to be active, approximately mirroring
the distribution of active to inactive tRNA genes predicted at the
species level (Fig. 4B). On average, each of our 1097 ortholog
sets spans 7.4 species, indicating that tRNA genes are generally
either fairly deeply conserved or recently evolved (Supplemental
Fig. S8). In aggregate, this is consistent with prior studies in
Drosophila showing that tRNA genes can be “core” or “peripheral”
(Rogers et al. 2010).

BA

Figure 4. Placental mammals show consistent distributions of predicted active and inactive tRNA
genes. (A) Estimated transition probabilities between each predicted activity state over a branch length
of 1 million years using RevBayes. The probabilities of transition from inactive to active (0.001) and from
active to inactive (0.002) are in bold. (B) The number of tRNA genes in each predicted activity class are
shown for each species in our phylogeny (Hedges et al. 2006), after removal of tRNA genes in segmental
duplications. For human and mouse, tRNA genes with no epigenomic data are also excluded from this
table (Methods).
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We identified a “core” set of 97 primate tRNA genes for which
all seven primate species (human, chimpanzee, gorilla, orangutan,
macaque,Microcebusmurinus [graymouse lemur], andAotus nancy-
maae [Nancy Ma’s night monkey]) have a syntenic ortholog,
which are of interest for future experimentation (Supplemental
Fig. S9). These represent tRNA genes likely present in the primate
common ancestor that have not been lost in any lineage leading
to the sampled genomes. These genes encode 19 amino acids
(Supplemental Fig. S9A). A single standard amino acid isotype is
not represented: cysteine. tRNA-Cys genes are often present in
high numbers, and every species in the primate phylogeny has
at least 19 of these genes. However, these genes are prone to accu-
mulating nucleotide substitutions, as the humangenome contains
23 unique high-confidence tRNA-Cys-GCA gene sequences, the
most of any isotype. Therefore, the lack of a “core” eutherian
tRNA-Cys gene may be a result of relatively rapid evolution of
this gene family, or perhaps difficulty in alignment owing to their
high variation in sequence.

In 15 of these 97 “core” ortholog sets, we predicted at least
one member of the ortholog group to be active and at least one in-
active among the different primate species. Across all 97 “core”
ortholog sets, we predict 98% of all member tRNA genes as active,
suggesting that deeply conserved tRNA genes are highly likely to
be active. Additionally, upon comparison to measurements of
Pol III–specific transcription factors (Canella et al. 2010), we find
that all 97 “core” human tRNA genes have peaks greater than
zero, further demonstrating correlation between conservation
and activity.

Transitions between active and inactive are rare

We fit all of our ortholog sets and the predicted activity states of
their constituent genes to a Markovmodel of evolution of discrete
characters using RevBayes (Methods; Fig. 4A; Höhna et al. 2016).
By fitting our data to the model, we estimated transition probabil-
ities to and from three states: active, inactive, and absent (no de-
tected ortholog). We held the phylogeny constant and solved
only for the transition rate parameters. Our model finds that the
probability of observing a tRNA gene transition from active to in-
active for a given tRNA gene over 1million years is only 0.002 (Fig.
4A), suggesting that activity state transitions are rare.

Our classifier does well to detect these rare transition events.
There are 183 human/mouse ortholog pairs spanning our training
and test data sets, and in 171 (93%) of them, human and mouse
have the same activity state based on epigenomic data. However,
we correctly classified 180 human (98%) and 177 mouse (97%)
tRNA genes within this set, indicating that we detected activity
state changes between these species, including 11 human tRNA
genes and eight mouse tRNA genes whose activity states differ
from their orthologous counterparts. Assuming that the activity
state of orthologous tRNAgenes remains constant across closely re-
lated species would yield largely accurate activity state predictions
for annotating tRNAs in additional new species. However, our
classifier represents an improvement over this assumption and is
particularly applicable to species-specific tRNA genes, which are
especially common and have no ortholog data.

Inactive tRNA genes that are conservedmost often remain in-
active (Fig. 4A), hinting at undiscovered biological roles for con-
served, apparently silent tRNA genes. We also observed some
variation in the relative transition probabilities within clades
(Supplemental Fig. S10A–D). Primate tRNA genes are less likely
to remain in their initial predicted activity state than rodent

tRNA genes. This is consistent with prior studies on the rate of evo-
lutionary change of protein-coding gene expression between
clades (Brawand et al. 2011; Necsulea and Kaessmann 2014) but
may also reflect differences in sample size between clades. Based
on our results, turnover in tRNA gene expression class generally
appears to be slow, similar to protein-coding genes (Brawand
et al. 2011).

Discussion

Greater understanding of tRNA regulation is a difficult and unmet
challenge. There are many obstacles preventing direct measure-
ment of expression at the gene level, including extensive post-
transcriptional modifications impeding sequencing, and multiple
genomic loci encoding identical transcripts. Nonetheless, we show
that accounting for the genomic context allows for improved
tRNA gene annotation, and that to determine the transcriptional
potential of tRNA genes, direct measurement across many
tissues is not necessarily required if the gene sequence and geno-
mic context is known. We leverage features intrinsic to tRNA
genes, which relate directly to tRNA function and processing, as
well as those extrinsic, which relate to regulation of the chromo-
somal region.

There are numerous challenges to validating any method for
predicting tRNA transcriptional potential. Comprehensive epige-
nomic data is available for only a few species. Similarly, ChIP-
and ATAC-seq data are generally conducted only on a few tissues
for a few species of interest. The prevalence of identical tRNA genes
in most placental mammal genomes also prevents the identifica-
tion of source loci for tRNA transcript sequencing data and further
limits our ability to support our predictions. However, the relative
scarcity of available data motivates the creation of our classifier.
Our estimates are comparable to experimental results, but with
much greater ease of use and cost-effectiveness. Epigenomic data
(Bogu et al. 2016; Holmes 2018) indicate that only 8% of mouse
tRNA genes in our test set are active in all nine tissues, and 13%
are expressed in onlyone tissue. This suggests that tissue specificity
of tRNA expression is common. This area is of great interest
(Ishimura et al. 2014), but few examples have been characterized.
Because our classifier infers expression in at least one tissue, our
methods will be useful in guiding experiments to findmore exam-
ples of tightly regulated tRNA genes.

The genome-based nature of this method allows for ex-
pansion to incorporatemuchmore data in the future. For example,
variation within populations may be useful for predicting rela-
tive transcript expression within gene families. We previously
determined that actively transcribed tRNA genes accumulate
more rare single-nucleotide polymorphisms (SNPs) in both their
flanking regions and gene sequences (Thornlow et al. 2018).
Therefore, we expect that when population variation data is avail-
able for more species, we may infer expression differences at
narrower timescales. The model may also be expanded to accom-
modate nonbinary classification of expression levels in different
tissue types and capture the nuance of tRNA gene expression reg-
ulation. This approachmight also be adapted for the study of other
large gene families, because we have previously shown that his-
tone protein-coding genes show similar genetic variation to
tRNA genes (Thornlow et al. 2018).

In conclusion, we show reliable classification of tRNA genes
using an algorithm that requires little input data and can easily
be expanded in the future. Annotations created by our method
will be useful in prioritizing tRNA characterization experiments,
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as well as interpreting the biological effects of mutations in and
surrounding tRNA genes. This work informs the broader question
of tRNA gene function evolution, illustrating that tRNA gene ex-
pression regulation is dependent on the tRNA gene sequence as
well as the varied genomic environment.

Methods

Developing and testing the classifier

For the training data, we used coordinates fromhuman genome as-
sembly GRCh38 for tRNA genes not removed by the tRNAscan-SE
high-confidence filter (Chan and Lowe 2016; Chan et al. 2019).
For all species, including human and mouse, we extracted the ge-
nomes from our Cactus alignment (Supplemental Table S6;
Armstrong et al. 2019), ran tRNAscan-SE 2.0, and applied the
EukHighConfidenceFilter to exclude tRNA pseudogenes and
tRNA-derived SINEs (Chan et al. 2019). We used custom Python
scripts to find tRNA loci that were identical from 80 nt upstream
to 40 nt downstream from the gene start and end. We considered
these segmental duplications and excluded them from classifica-
tion. If any of these loci also did not align to any tRNA loci in
any other species, they were also removed from our ortholog calls,
because they most likely represent assembly errors. For genome
assemblies in which at least 85% of nucleotides were found on
chromosomes, we excluded all tRNA genes not found on chromo-
somes. For the human tRNA gene set, because our epigenomic data
is based on GRCh37 assembly gene annotations, we removed any
tRNA genes that were not included in the older assembly, which
was determinedby performing liftOver (Casper et al. 2018) conver-
sion fromGRCh38 toGRCh37, aswell as genes in segmental dupli-
cations in either assembly.

We used the PHAST (Hubisz et al. 2011) and HAL (Hickey
et al. 2013) toolkits to generate phyloP data, and RNAfold
(Lorenz et al. 2011) to estimate minimum free energy, using the
constraints on secondary structure output by tRNAscan-SE 2.0.
We used custom Python scripts in conjunction with tRNAscan-
SE 2.0 output and genome annotation files (accession numbers
listed in Supplemental Table S6) to obtain data for all other features
(Supplemental Code). tRNA alignments generated by the Cactus
graph are available in the Supplemental Material. When phyloP
data were unobtainable because of lack of alignment, we replaced
feature values for each tRNA genewith themean value for that fea-
ture across all tRNAgenes in that species, using the SimpleImputer()
module in scikit-learn (Pedregosa et al. 2011). We used scikit-learn
to train the model and classify each gene (Pedregosa et al. 2011).
Our pipeline and corresponding data are available in the
Supplemental Material, as well as at https://github.com/bpt26/
tRNA_classifier/. We used Spearman’s rank correlation test to en-
sure that no features were perfectly correlated (Guyon and
Elisseeff 2003). We used CfsSubsetEval (Hall et al. 2009) to remove
uninformative features and scikit-learn to determine feature impor-
tance (Pedregosa et al. 2011). To determine the threshold distances
for the “Exons Within 75 Kilobases” features, we conducted the
Mann–Whitney U test for several threshold distances and selected
the distance that yielded the smallest P-value (Supplemental Table
S13). See Supplemental Methods for more details.

To train and test our model, we used epigenomic data from
the NIH Roadmap Epigenomics Program (Roadmap Epigenomics
Consortium et al. 2015) and the chromatin state-associated gene
study in mice (Bogu et al. 2016) for human and mouse tRNA
gene activity states, respectively. These studies used histone marks
to identify regions of active transcription across 127 human tissues
and nine mouse tissues, respectively. In both species, we excluded
tRNA genes for which epigenomic datawas not available and tRNA

genes containedwithin large segmental duplications. Our training
set includes 366 human tRNA genes, 303 active and 63 inactive.
For both species, we considered tRNA loci as active if they had
an open chromatin state in at least one tissue. We considered all
others to be inactive. To determine performance on the human
data, we used 10-fold cross-validation, which is commonly
used for gene classification studies (McLachlan et al. 2005;
Chen et al. 2018; Sethi et al. 2018). We also tested threefold
cross-validation but observed very little difference in the model
(Supplemental Fig. S11; Supplemental Code). To validate ourmod-
el, we compared our classifications to ChIP-seq read counts taken
directly from Kutter et al. (2011) and ATAC-seq peaks taken
directly from Foissac et al. (2019), using liftOver (Casper et al.
2018) conversion to accommodate differences in genome assem-
bly. Sources for training, testing, and validation data are available
in Supplemental Table S2. All tRNA data used to generate predic-
tions for each species, as well as their associated predictions and
probability scores, are available in Supplemental Tables S8 and S9.

Comparison of predictions to DM-tRNA-seq data

For information on library preparation methods for DM-tRNA-seq
assays, see Supplemental Methods. Following sequencing, we used
a specialized tRNA sequencing data analysis pipeline, available at
https://github.com/UCSC-LoweLab/tRAX, which aligns reads to
the tRNA transcripts and reference genome, and computed nor-
malized read counts for each transcript. Because some tRNAs
have multiple identical copies in the genome, those sequencing
readswere aligned to all corresponding gene loci. To avoid ambigu-
ities, we analyzed only the single-copy tRNA gene loci in this
study, as well as only the reads corresponding to whole tRNA
molecules.

Creating an ortholog set

We used hal2maf to create 29-way alignments for all tRNA loci of
interest for the species in our phylogeny (Hickey et al. 2013). For
each tRNA locus, we considered the best aligning tRNA locus
from all other species as orthologous, allowing only one ortholog
per species per locus. We allowed tRNA genes in segmental dupli-
cations to be included, but only if they had an ortholog in at least
one other species, because species-specific segmental duplications
may be the result of assembly errors. We augmented our ortholog
sets with syntenic human/mouse, human/dog, and human/ma-
caque tRNA gene ortholog pairs from Holmes (2018). For all in-
stances in which each tRNA gene in a Holmes (2018) ortholog
pair aligned to mutually exclusive sets of species in our Cactus
graph, we combined them into one ortholog set. We found that
29 Holmes (2018) human–mouse ortholog pairs align to each
other in the Cactus graph, 152 align to mutually exclusive sets of
species in our Cactus graph, and 17 align to overlapping sets
of species in our Cactus graph. Therefore, we combined the
152 human–mouse tRNA gene pairs with the corresponding
ortholog sets defined by our Cactus graph into larger ortholog
sets (Supplemental Code).

Fitting a Markov model

We used a phylogeny from TimeTree (Kumar et al. 2017) and
fit our data to a Markov model using RevBayes (Höhna et al.
2016). We held the phylogeny constant and allowed RevBayes to
optimize only the Q matrix using our tRNA data (Supplemental
Code). We then determined transition probabilities over 1 million
years using the RevBayes function getTransitionProbabilities()
across all species (Fig. 4A) and by clade (Supplemental Fig.
S10A–D).
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Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE140096 and GSE140099. The DM-tRNA-seq data generated
in this study have been submitted to the NCBI BioProject
database (https://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession numbers PRJNA588252 and PRJNA588256. All custom
scripts generated in this study are available at https://github
.com/bpt26/tRNA_classifier and as Supplemental Code.
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