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Estrogens such as estradiol (E2) are potent effectors of neural structure and function

via peripheral and central synthesis. In the zebra finch (Taeniopygia guttata), neural

E2 synthesis is among the highest reported in homeotherms due to the abundant

constitutive expression of aromatase (E-synthase) in discrete neuronal pools across

the forebrain. Following penetrating or concussive trauma, E2 synthesis increases even

further via the induced expression of aromatase in reactive astrocytes around the site of

damage. Injury-associated astrocytic aromatization occurs in the brains of both sexes

regardless of the site of injury and can remain elevated for weeks following trauma.

Interestingly, penetrating injury induces astrocytic aromatase more rapidly in females

compared to males, but this sex difference is not detectable 24 h posttrauma. Indeed,

unilateral penetrating injury can increase E2 content 4-fold relative to the contralateral

uninjured hemisphere, suggesting that glial aromatization may be a powerful source

of neural E2 available to circuits. Glial aromatization is neuroprotective as inhibition

of injury-induced aromatase increases neuroinflammation, gliosis, necrosis, apoptosis,

and infarct size. These effects are ameliorated upon replacement with E2, suggesting

that the songbird may have evolved a rapidly responsive neurosteroidogenic system to

protect vulnerable brain circuits. The precise signals that induce aromatase expression in

astrocytes include elements of the inflammatory cascade and underscore the sentinel role

of the innate immune system as a crucial effector of trauma-associated E2 provision in the

vertebrate brain. This reviewwill describe the inductive signals of astroglial aromatase and

the neuroprotective role for glial E2 synthesis in the adult songbird brains of both sexes.

Keywords: astrocyte, songbird, estradiol (17ß-estradiol), inflammation, neuroplasticity

The effects of estrogens such as 17β-estradiol (E2) on the structure and function of the vertebrate
central nervous system (CNS) are well known (1–6). These include organizational effects such
as the masculinization and feminization of neural circuits perinatally (1, 5, 7), organizational
and activational effects during adolescence [reviewed in (8)], and activational effects on a diverse
set of physiological endpoints during adulthood including, but not limited to, reproductive and
aggressive behaviors, cognition, mood, motor control, and mood [see (9)]. We have more recently
learned that the influence of this steroid extends even further than the physiology of the normal
brain and potentlymodulatesmany processes involved in pathological conditions such as traumatic
brain injury (TBI).
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INFLUENCE OF E2 ON THE INJURED
BRAIN

Traumatic brain injury is defined in the clinical realm as a
disruption in the normal function of the brain caused by
percussive, concussive, or penetrating head injury. The incidence
of TBI is strongly sexually dimorphic and male biased: a
demographic characteristic attributed to higher rates of risky
behavior in younger males [see (10) for review]. Following
TBI, however, the predicted outcome and recovery of females
are better than those of males (11). The underlying reason
for this is hinted at by the observation that premenopausal
women and those on hormone replacement have a lower risk of
neurotraumatic events such as stroke, compared to the respective
groups of age-matched men (12, 13). Following TBI in humans,
both E2 and testosterone (T) decreased in the cerebrospinal fluid
(CSF) over time. Importantly, a higher E2/T ratio was associated
with lower mortality and better scores on the Glasgow Outcome
Scale (GOS) 6 months after TBI (14). It is noteworthy that
aromatase gene expression itself has been implicated in human
TBI. More specifically, three single-nucleotide polymorphisms
on the aromatase gene are associated with worse GOS-6 scores,
suggesting that the expression of aromatase following TBI may
be associated with differences in clinical outcomes post-TBI
(14). The location of altered aromatase gene expression and the
source of steroids in the CSF are unknown, but the pattern of
data suggests the possibility that ovarian steroids may protect
the brain from injury and/or damage and perhaps may even
accelerate recovery.

Among the several steroids synthesized in the vertebrate
ovary, E2 appears to be a powerful neuroprotectant as evidenced
by multiple studies, using different types of TBI, in many
vertebrate species. In rats, gerbils, and mice, females respond
more favorably to medial carotid artery occlusion (MCAO)
and other experimental inducers of ischemia (15–17). More
recently, in mice subjected to controlled cortical impact, males
demonstrated larger lesions compared to females (18). All these
effects are apparently linked to circulating ovarian steroids
because MCAO causes greater neural damage when it is
conducted during metestrus compared to estrus, times of the
rodent ovarian cycle when circulating E2 levels are low and high,
respectively (15). In addition, infarct sizes increase following
ovariectomy, and damage is exacerbated further the longer
the animal is deprived of ovarian estrogens (19). The data
demonstrate a neuroprotective effect of peripheral E2 across
several species and types of damage. While it is true that all the
aforementioned effects of E2 on the normal and injured brain
reflect influences due to circulating levels of this steroid, there
is excellent support for the notion that centrally synthesized E2
is a critical modifier of neurophysiological variables in both the
normal and the injured CNS.

CENTRAL AROMATIZATION AND THE
NORMAL BRAIN

The developing, juvenile, adult, and aging brains of mammals
and birds are exquisitely sensitive to neural E2 synthesis

[(1, 5, 7, 20–22); see (4) for review]. Much more recently,
however, technological and conceptual developments have
helped to reveal critical roles for central aromatization
on other complex behaviors such as spatial memory in
birds, rodents, and marmosets (23–26); seizure activity in
rodents (27); and auditory perception and singing behavior in
birds (28, 29).

The development of molecular, immunocytochemical, and
ultrastructural tools to study the central expression of aromatase
in situ revealed that with the exception of some teleost fish
(30, 31) the expression of this enzyme is neuronal in the vast
majority of species studies across all classes of vertebrates (32–
41). Taken together, there is excellent reason to consider central,
constitutive aromatization in neurons as key in the regulation
of multiple physiological and behavioral endpoints in multiple
vertebrate species.

GLIAL AROMATIZATION AND THE
INJURED BRAIN

The songbird and rodent brains, however, have an additional
source of E2, one that is revealed following perturbation of the
neuropil via multiple insults including excitotoxicity, concussive
injury, penetrating injury, or edema. Specifically, aromatase
expression can be induced in astrocytes at and around the site
of brain damage in mice, rats, and zebra finches (Taeniopygia
guttata) following all the types of injury mentioned [(42, 43);
see (44)]. Importantly, this induction has been documented
in the brains of both sexes [see (44–47) for review]. In rats
and zebra finches, immunocytochemical studies using astrocytic
markers and antibodies specific to aromatase reveal that injury-
associated induction of aromatase appears localized to the area of
damage and is limited to astrocytes and radial glia (42, 43, 48–
50). It is important to point out, however, that, to the best of
my knowledge, no study has specifically reported on changes
in neuronal aromatase expression following neurotrauma in
any species [but see (51)]. Because much of this special issue
focuses on neurotrauma and neuroprotection in mammalian
systems, to avoid redundancies, the rest of this review will focus
on the induction, sex-specific expression, and consequences of
glial aromatization in the zebra finch brain, but will mention
similarities and differences between songbirds and rodents. We
begin with a discussion about the induction of glial aromatase
with emphasis on sex-specific mechanisms. We then describe the
neuroprotective mechanisms of glial E2 provision highlighting
some interesting sexually monomorphic and dimorphic patterns.

THE SONGBIRD MODEL IN THE
NEUROENDOCRINOLOGY OF BRAIN
INJURY

The songbird has proven an invaluable animal model for
studies of sexual differentiation (7), sex differences in brain and
behavior (52), and the neural synthesis of estrogens (53). The
obvious sensitivity of the songbird brain to locally synthesized
E2 makes it, yet again, a perfect model toward understanding
the role of centrally synthesized steroids on neuroplasticity. In
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our laboratory, we employ penetrating brain injury as a model
toward understanding TBI in the songbird model. The vast
majority of experiments in our laboratory are conducted, “within
subject,” with contralateral telencephalic lobes of the finch brain
treated as the experimental or control condition. In addition
to halving the number of animals necessary for each study,
this yields several additional advantages in experimental design,
conduct, and interpretation. First, the injection needle used to
deliver independent variables, such as inhibitors, antagonists,
or cofactors itself, is the mechanical injury under study. It is
therefore possible to study the effects of these variables both
during and after the physical insult. Second, any observed
differences between telencephalic lobes can be safely attributed
to central effects and not those reflective of circulating factors.
Third, because aromatase is a membrane-bound, nondiffusible
protein [see (54, 55)], changes in the expression of this enzyme
and differences between hemispheres, at least during the early
stages postdamage, may be judged as independent and unlikely
because of the influence of the contralateral lobe. Finally, because
the product of aromatization is a lipophilic steroid, a conservative
explanation of any lack of difference between lobes can be
hypothesized to reflect diffusion and equilibration of E2 across
the brain. This allows for the possibility that lessening the
severity of injury, dose of experimental manipulation, and/or
duration following the injury may reveal specific effects. As
described below, this model has proven invaluable in testing
specific hypotheses about the induction and influence of injury-
induced aromatization.

INFLAMMATION INDUCES AROMATASE
EXPRESSION

There is a host of peripheral and central responses
to TBI [see (56–58)]. Of these, perhaps one of the
earliest, dramatic, and long-lasting is the activation of
the innate immune system including the inflammatory
response [see (59, 60)]. As such inflammatory processes
themselves may play an inductive role in the expression
of aromatase following brain damage. Consequently, our
laboratory has focused on inflammatory signaling as one
candidate that may be well-positioned as an inducer of
astrocytic aromatase.

We reasoned that the induction of an inflammatory state
with minimal mechanical damage to the neuropil would be
helpful. Contralateral lobes of the zebra finch were exposed to
either phytohemagglutinin (PHA) or saline. Importantly, the
treatments were dripped onto the brain surface, thereby making
mechanical penetration unnecessary (61). Astrocytic aromatase
expression was abundant and confined to the lobe treated with
PHA with no glial aromatase detectable on the saline-treated
lobe. In contrast, the expression of neuronal aromatase was
bilateral and similar across lobes suggesting a specific effect of
PHA on glial aromatase expression (61). Finally, in an attempt
to ascertain the specificity of the inductive signal responsible for
the observed lateralized effect on glial aromatase, we measured
the number of apoptotic cells in the lobe treated with PHA

and compared it to one subjected to a penetrating injury.
While abundant apoptosis was observed in the injured lobe,
no apoptosis was detectable in the lobe exposed to PHA (61).
This strongly suggested that the induction of aromatase could
be induced by inflammatory signaling bypassing those associated
with mechanical damage per se.

Of the many signals associated with the inflammatory
cascade, we have focused our studies on the cytokines and
the enzyme cyclooxygenase (COX). In our hands, injury
causes a rapid increase in the cytokines TNF-α and IL-
1β and the transcription of both COX1 and COX2 within
hours (62, 63). We have capitalized on these changes in
expression and directly measured the product of COX
activity, the prostanoid prostaglandin E2 (PGE2). Indeed,
the neural levels of PGE2 are dramatically increased following
penetrating injury in the finch and have provided us with
a powerful index of neuroinflammation and its stimulatory
role in injury-induced aromatase expression. To test this
hypothesis directly, we have conducted a systematic series of
experiments that, in addition to revealing the mechanisms
associated with the induction of glial aromatase and the
neuroprotective effect of glial E2 provision, have suggested
important sex-specific pathways that may prove crucial in the
development of targeted therapies for TBI and neural damage
in general.

SEX DIFFERENCES IN THE INDUCTION
AND ACTION OF GLIAL E2 SYNTHESIS

Our early work on brain injury and aromatase expression in
the songbird was restricted to male animals (43, 49, 51). The
reason for this was because, in males of this species, the brain
seems to be the major if not the only source of central and
peripheral E2 (53). This approach proved to be shortsighted,
as our first foray into understanding the female response to
penetrating brain injury revealed that females upregulate glial
aromatase more quickly than males (64). More specifically,
while aromatase-positive glia are detectable around the injury
site ∼4 h after injury in the female, these cells are not reliably
detected in the male until 12 or 18 h postdamage [see (64);
Figure 1]. While the reason for this difference is yet unknown,
it is important to state that no sex difference is detectable 24
or 48 h following a penetrating injury (49, 66, 67). The more
rapid induction of aromatase following injury does not appear
specific to a particular brain area, as a similar female-biased sex
effect occurred following penetrating injury to the zebra finch
cerebellum (68).

The more rapid response to injury in females has important
implications whenwe began to study themechanisms responsible
for the induction of aromatase in astrocytes. As mentioned
prior, there is good reason to hypothesize that elements of
the inflammatory cascade, such as PGE2, may be excellent
inducers of aromatase (see above). We therefore administered
indomethacin, a nonspecific COX-1/2 inhibitor or vehicle into
contralateral telencephalic lobes during a penetrating brain
injury in adult male and female zebra finches (63). Subjects
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FIGURE 1 | Schematic depicting the interactions among TBI,

neuroinflammatory indices, and neurosteroidogenesis in female (red) and male

(blue) zebra finches. While many components of the schematic are

monovalent between the sexes, PGE2 results in a more rapid upregulation of

aromatase in females and depends on signaling via the EP4 receptor. Males

show a slower increase in aromatase via PGE2 action on the EP3 receptor

(64, 65). E2 acts on ERα in both sexes and downregulates COX2 by actions

predominantly on IL-1β in females and TNF-α in males.

were killed either 6 or 24 h postinjury. To determine the
efficacy of our manipulation, PGE2 levels were measured
and at both time points, and indomethacin decreased the
levels of this prostanoid in both sexes. In addition, COX-
inhibition via indomethacin decreased aromatase expression
and E2 content in both sexes, but this effect is detectable
in temporally distinct patterns between the sexes. In females,
the sex with the more rapid upregulation of injury-associated
aromatase (see above), the influence of indomethacin is
observed 6 h postinjury; however, at this time point, there is
no sign of injury-induced aromatase expression in males. At
24 h postinjury, however, when the vehicle-treated lobes of
males show dramatic increases in aromatase and E2, this is
severely inhibited in the lobe treated with indomethacin (63,
65). The data strongly suggest that the inductive mechanism
underlying astrocytic aromatase expression is similar between
the sexes.

Sex differences are also revealed in the mechanism that may
underlie the stimulatory role of PGE2 on aromatase expression.
Pedersen et al. (65) have suggested that while EP3 receptors
are necessary for the induction of aromatase and E2 following
TBI in males, this effect is EP4 dependent in females (65).
Taken together, these data strongly suggest that aspects of injury-
induced inflammatory signaling are, in part, responsible for the
induction of E2 following brain damage in both sexes, although
the factors that sustain injury-induced aromatase expression in
either sex are unknown. In both sexes, however, the product
of aromatization is available at high levels to mediate the CNS
response to trauma.

These data are in good agreement with studies conducted
in mammalian systems both in vitro and in vivo. More
specifically, inflammatory signals including IL-6 and PGE2
increase aromatase expression in breast cancer cells and benign
cultures of breast cells in vitro (69–72). This remains true
in vivo, at least in the normal developing brain. Aromatase
expression and activity, as well as E2 levels, are all increased in

the developing rat cerebellum following administration of PGE2
(73). In agreement, inhibition of the PGE2 synthetic enzyme,
COX, causes a decrease in cerebellar aromatase and E2 levels (73,
74). These data underscore the viability of signals associated with
inflammation as candidates that may regulate injury-induced
aromatization in the brain.

The mechanisms associated with the more rapid induction of
aromatase in females are unknown. It is possible that penetrating
injury causes a more rapid induction of inflammation in females,
resulting in a more rapid induction of aromatase. Alternatively,
COX activity in females could be more responsive to cytokine
signaling, and/or the aromatase gene in female astrocytes may
be more responsive to PGE2 relative to males. Investigating
these possibilities requires a very fine analysis of the time course
of multiple inflammatory and steroidogenic profiles following
injury in both sexes. These studies are ongoing in our laboratory.

The induction of aromatase expression specifically in glia
around the injury site is also intriguing. We have long known
that TBI is associated with rapid gliosis. However, the specific
mechanisms that result in astrocytic aromatase expression (as
opposed to all neural sources of aromatase) are unknown at
the present time. Cell-specific deletions of astrocytic or neuronal
aromatase would be very useful in unraveling these mechanisms.
The latter has been used to study synaptic plasticity (75), but to
the best of my knowledge, knockout animals lacking aromatase
expression in glia remain to be described.

As discussed above, there appears to be ample support for the
idea that inflammatory signals can induce aromatase expression.
It is unclear if the sex-specific pathways discussed above translate
to studies in other species, including mammals. Regardless, in
both sexes, there is excellent support for the possibility that E2
can be induced in response to TBI, and as discussed below, that
locally synthesized E2 can have dramatic effects on cell turnover,
gliosis, and neuroinflammatory condition, among others.

ASTROCYTIC E2 PROVISION IS
NEUROPROTECTIVE

The upregulation of aromatase and consequently the increase
in neural levels of its product E2 are not trivial. In our hands,
a single penetrating injury increases immunoreactive aromatase
levels 2- to 3-fold, and local E2 levels 4- to 5-fold, in the injured
hemisphere 48 h later relative to the uninjured lobe (67). To
the best of my knowledge, this is the most dramatic and rapid
change in aromatase expression reported following injury to the
vertebrate CNS. Our first attempts at understanding the function
of glial aromatization strongly suggested that the upregulation of
aromatase in astrocytes following penetrating brain injury was
neuroprotective. Site-specific injection of the aromatase inhibitor
fadrozole results in greater damage andmore gliosis, possible due
to increased apoptosis relative the vehicle alone (51, 66). The
influence of induced aromatization on indices of degeneration
is similar but not identical in the rodent brain. Aromatase
expression is induced in astrocytes following various forms of
insult in the rodent brain (42, 76–78). In addition, aromatase
inhibition following controlled cortical impact in mice results in
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higher gliosis as measured by the expression of astrocyte-specific
markers (18). However, the dramatic injury-induced astrocytic
aromatase expression in the finch relative to the murine rodent
is perhaps best reflected in the following comparison. In the
rodent, despite injury-induced glial E2 provision, the ensuing
degeneration demonstrates a clear wave of secondary damage
that peaks 24–48 h postinjury (79). In the zebra finch, the
inhibitory influence of local aromatization on apoptosis is potent
enough to completely mask this wave of secondary degeneration
consistently observed in the injured mammalian brain (66). This
wave of secondary degeneration, however, is clearly observable
upon aromatase inhibition in the injured songbird brain (66).
These data suggest that the induction of aromatase is key in
controlling brain damage following neural insult in multiple
species and highlights the dramatic nature of this response in
the songbird.

E2 administration and/or aromatase inhibition with E2
replacement dramatically reverses effects described above with
documented decreases in necrosis, gliosis, apoptosis, and injury
size in songbirds (49). Further, central E2 provision increases
injury-induced cytogenesis and neurogenesis relative to controls
(80). In agreement, peripheral or central administration of E2
is neuroprotective in rats and mice [see (81)]. The influence
of injury-induced aromatization and E2 provision on multiple
indices of cell turnover may reflect the rebuilding of circuits
affected by brain damage, including TBI. It is perhaps not
surprising that the precise factors that increase glial aromatase
expression have been and intense focus of the scientific
community in an attempt to develop targeted and specific
therapies that ameliorate TBI-associated neural damage and/or
accelerate recovery following TBI.

INJURY-INDUCED AROMATIZATION IS
ANTI-INFLAMMATORY—SEX-SPECIFIC
MECHANISMS

As mentioned earlier, mechanical damage to the finch brain
increases local E2 by about 4-fold (67). We hypothesized that
elevations in aromatase expression and the consequent rise in
local E2 levels may serve as an anti-inflammatory agent via
inhibitory actions on the inflammatory cascade. To test this, in
individual birds, we compared the levels of various cytokines and
enzymes in the inflammatory cascade between hemispheres that
were injured in the presence of the aromatase inhibitor fadrozole
or vehicle. The results were unequivocal. Across all subjects, 24 h
following the injury and drug administration, hemispheres in
which the upregulation of aromatase was inhibited with fadrozole
showed elevated levels of TNF-α, IL-1β, and COX transcription
relative to those that had received vehicle (62). These data
support the possibility that local elevations in aromatase activity
following injury result in a decrease in several indices of
inflammation in male and female zebra finches. This does indeed
seem to be the case as the inhibition of injury-induced aromatase
via fadrozole also decreased the level of the prostanoid PGE2
relative to the vehicle-treated lobe in both sexes. Taken together,
these data point strongly toward local E2 levels as one effector

of this anti-inflammatory effect. This possibility was tested in the
manner described below.

In a classic replacement experiment, we then tested the levels
of cytokine and COX expression in birds where one lobe had
been treated with the inhibitor fadrozole (low E2) and the other
treated with fadrozole and E2 (replaced E2). Following a 24-h
period, hemispheres in which E2 had been replaced had lower
levels of certain cytokines (to be discussed later) and COX2
expression relative to the contralateral hemisphere where the
expression of aromatase was inhibited without E2 replacement
(62). In excellent agreement, E2-replaced hemispheres also
had lower levels of PGE2 compared to the fadrozole-treated
lobe (62). Thus, injury-induced aromatization serves to control
sustained neuroinflammation following penetrating injury in
zebra finches and may further protect the brain from the
deleterious effects of chronic inflammation. To test the E2
dependency of the effect above, we inflicted bilateral penetrating
injuries and injected the aromatase inhibitor fadrozole to adult
zebra finches of both sexes. In one hemisphere, however, we
concurrently injected E2 to assess the potential local influence
of this steroid on multiple indices of inflammation (44). We
are unaware of similar studies in other animal models and
hope to perform similar experiments in nonavian species in
the future. We have, however, recently begun probing the
mechanism that may underlie the anti-inflammatory effects of E2
in zebra finches.

We followed these studies by examining the mechanism of
this action by injuring hemispheres in the presence of ERα or
ERβ blockers in both sexes. The results were clear and identical
between sexes; whereas E2 continued to demonstrate anti-
inflammatory effects in the presence of ERβ antagonist, this effect
was completely blocked in the presence of an ERα antagonist
(65). These data strongly support an anti-inflammatory role for
E2 during brain injury, an effect mediated via ERα receptors in
both sexes.

We have long known about the neuroprotective effect of
circulating E2 following brain trauma in multiple species. Several
studies using in vivo preparations and in vitro techniques have
implicated E2 as an effective protectant across a broad range
of neural insults including, but not limited to, excitotoxicity
(42, 82), mechanical injury (43, 49, 66), and serum deprivation
(83). These findings are in excellent agreement with many data
sets supporting a potent anti-inflammatory effect of circulating
E2 in multiple species including humans. Indeed, treatment of
ovariectomized mice with endotoxin results in larger increases
in neural cytokine expression relative to sham controls and
ovariectomized mice that have received E2 replacement (84).
This pattern is also seen in humans where a decrease in
circulating estrogens such as those associated with surgical or
natural menopause is coincidental with increases in circulating
cytokines [(85); see (86)]. In further support of this anti-
inflammatory role, ovariectomized mice demonstrate higher
neural cytokine levels upon peripheral endotoxin treatment
relative to sham controls [see (78)]. Take together, these
data support the notion that estrogens including E2 can
be anti-inflammatory agents, and this influence extends into
neural tissue.
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There do appear to be some interesting wrinkles in this
story. In our hands, E2 has potent anti-inflammatory effects in
both sexes. However, we have documented some interesting sex
differences in the influence of E2 on specific components of the
inflammatory cascade. While the inhibition of injury-induced
aromatase greatly increases several indices of inflammation in
females and males (62), including elevations in TNF-α, females
appear to also upregulate the expression of IL-1β, whereas
males do not. These differences seem to hold true during E2
replacement as well. Specifically, E2 provision during brain injury
decreases TNF-α in males, and IL-1β in females. No effect of
E2 is observed on male levels of IL-1β or female levels of
TNF-α (62). Thus, the initial stages of inflammation appear
to be modulated differently by injury-induced aromatization
between the sexes. Despite these differences in the initial
components of the inflammatory cascade, however, both sexes
show dramatic increases in COX expression upon aromatase
inhibition, and this is completely ameliorated by replacement
with E2 (44, 62). This pattern suggests the possibility that
females and males may appropriate different responses to TBI
early in the neuroinflammatory cascade, but these differences
result in identical downstream signaling further down the
biochemical response to inflammation (see Figure 1).We already
know that cytokines, while ubiquitous across species, may work
differently in females and males (87), and this seems to be
true of the neuroinflammatory response to TBI in songbirds.
Whether a similar pattern is demonstrated by mammals is
currently unknown. However, therapies that seek to harness
the anti-inflammatory actions of E2 may prove differentially
efficacious between the sexes. It is critical that these differences
are documented and understood completely prior to developing
potential therapies for all types of TBI.

SUMMARY AND CONCLUSIONS

Twenty years of study using the zebra finch as an animal
model has provided several important insights into the

neuroendocrinology of brain injury. It is noteworthy that
the actual incidence of injury-induced aromatase expression
following the disruption of the neuropil via a penetrating stab
wound is a fairly general phenomenon and has been described
in songbirds, rats, and mice by multiple laboratories [see (44)].
It would be interesting to ask if this phenomenon also occurs
in humans and other mammalian species. The rapid and
dramatic increase of aromatase expression in astrocytes in this
species far exceeds that seen in its mammalian counterparts.
Not only does local E2 increase at least 4-fold around the
site of injury relative to the contralateral hemisphere, but also
the upregulation of aromatase responsible for this increase
is rapid and/or dramatic enough to completely mask the
wave of secondary degeneration observed in the mammalian
response to TBI. Interestingly, there seems to considerable
feedback between components of the inflammatory response
and astrocytic E2 provision in the zebra finch. While the
initial response to TBI upregulates prostanoids, which in
turn upregulates aromatase and therefore E2, the subsequent
action of this E2 provision is a potent downregulation of
inflammatory indices. This pattern suggests that the zebra
finch may have evolved not only a dramatic response to
TBI, but through evolution may have coopted the interactions
between inflammation and neurosteroidogenesis to protect
vulnerable neural circuits against the deleterious effects of
chronic neuroinflammation.
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