Stereoselective Olefination with Sterically Demanding Julia-Kocienski Reagents: Total Synthesis of Oxo-prothracarcin, Oxo-tomaymycin, and Boseongazepine B

Zigmārs Leitis, Guna Sakaine, Artis Kinēns, and Gints Smits*

Cite This: ACS Omega 2022, 7, 30519-30534

Read Online

Abstract

Total syntheses of three pyrrolo[1,4]benzodiazepine anticancer antibiotic family members oxo-prothracarcin, oxotomaymycin, and boseongazepine B are described. The total syntheses feature late-stage stereoselective olefination employing modified Julia-Kocienski reagents that can be conveniently prepared in only two steps and allows for a significant reduction in the number of linear steps. Detailed density functional theory (DFT) studies explain the stereochemical outcome of the key step.

- INTRODUCTION

Pyrrolo[1,4]benzodiazepines (PBD) are a class of naturally occurring anticancer antibiotics. ${ }^{1,2}$ A characteristic structural feature of PBDs is the right-hand twisted three-ring system possessing electrophilic imine functionality at N10-C11 (Figure 1) known to bind covalently to the minor groove of DNA via an exocyclic amino group of the guanine base. ${ }^{3-5}$ As a consequence, interference with DNA repair, replication, transcription, and thus cell division is observed. Also, the N10C11 amide group-possessing PBDs exhibit considerable cytotoxicity in various cancer cell lines acting as noncovalent binders. ${ }^{6}$ A number of naturally occurring and synthetic PBDs have been studied in clinical trials, and nowadays, the PBDs are considered a privileged warhead scaffold in the development of antibody-drug conjugates (ADCs). ${ }^{7-9}$ Structurally, several naturally occurring PBDs possess an exocyclic alkylidene group at the C2 position. Studies in synthetic PBD series also reveal that this alkylidene substituent is crucial for the superior cytotoxicity of these compounds. ${ }^{10}$

- RESULTS AND DISCUSSION

Recently, a scalable route toward ethylidene group-containing oxo-tomaymycin has been reported by Sanofi, revealing an important role of alkylidene PBDs in the ADC development process. ${ }^{11}$ Although several total syntheses of alkylidene PBDs
have been reported, a stereoselective introduction of the C2 exocyclic double bond remains a considerable challenge. For example, direct carbonyl olefination methods (Wittig and Julia-Kocienski) on PBDs or closely related proline scaffolds mainly give the undesired Z-isomer predominantly or lack E / Z selectivity at all. ${ }^{11-15}$ As an alternative, strategies based on Ireland-Claisen rearrangement ${ }^{16-18}$ or asymmetric enolate α alkylation ${ }^{19}$ for the stereoselective introduction of an alkylidene substituent have been developed. However, the desired 3-ethylideneproline building block is typically obtained in a 9-12 step linear sequence and a low overall yield. In 2018, our group reported a formal total synthesis of limazepine E (3) based on late-stage Julia-Kocienski olefination with sterically demanding phenyltetrazole sulfones. ${ }^{20}$ Herein, we report a further extension of this methodology, resulting in the total synthesis of oxo-prothracarcin (4), oxo-tomaymycin (5), and boseongazepine B (6).

[^0]

2 Tomaymycin $R_{1}=H, R_{2}=O H, R_{3}=O M e$
3 Limazepine E $R_{1}=O H, R_{2}=O M e, R_{3}=H$

4 Oxo-prothracarcin $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
5 Oxo-tomaymycin $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{OMe}$
6 Boseongazepine $B R^{1}=O M e, R^{2}=R^{3}=H$

Figure 1. Representative examples of the C 2 ethylidene group-possessing PBD natural products.

Our retrosynthetic analysis (Scheme 1) was based on latestage Julia-Kocienski olefination of trione 8. The tricyclic

Scheme 1. Retrosynthetic Analysis of Ethylidene PBD Natural Products

PBD scaffold can in turn be constructed from readily available anthranilic acids and trans-4-hydroxy-L-proline ester (H-HypOMe) via a one-pot coupling-cyclization sequence ${ }^{21}$ followed by oxidation of the C 2 hydroxy group.

We started our synthetic studies on simple A-ring unsubstituted PBD trione 10a and studied the key JuliaKocienski olefination step (Table 1). During our previous studies on olefination in the PBD series, the phenyltetrazolebased sulfones turned out to give the best results in terms of $E /$ Z selectivity and yield; ${ }^{14,20}$ therefore, further studies in this direction were conducted. After the initial assessment of reaction conditions (see the Supporting Information, Table S1), a series of new and known phenyltetrazole sulfones were examined in Julia-Kocienski olefination of A-ring unsubstituted PBD trione 10a (Table 1).
First, the electronic effects of substituents in the phenyl ring of phenyltetrazole sulfones 11 were studied (Table 1, entries $1-5$). In general, good selectivity (up to 88:12) toward the desired E double-bond isomer of $\mathbf{1 2 a}$ was observed in all cases. The electron-donating methoxy group in the phenyl ring (entry 2) gave a comparable E / Z ratio compared to simple phenyl (entry 1) but a slightly lower yield (72 vs 86%). In contrast, the electron-withdrawing cyano group (entry 3) completely shut down reactivity and most of trione 10a was recovered. Similarly, for 2,5-dimethoxy substitution (entry 5), the formation of 12a was not observed. Interestingly, the electron-withdrawing fluorine substituent in the phenyl ring (entry 4) gave an even higher E / Z ratio compared to simple phenyl (entry 1) but a slightly lower yield (66 vs 86%). Next, the steric effects of substituents in the phenyl ring of phenyltetrazole sulfones 11 were studied. As known from our previous studies, ${ }^{20}$ the introduction of ortho-substituents in the phenyl ring of the Julia-Kocienski reagent increases the E / Z selectivity of the olefination. The introduction of two ortho-methyl groups (entry 6) only slightly increased the olefination stereoselectivity; however, sterically demanding
isopropyl (entry 7) or cyclohexyl (entry 8) groups allowed for an increase in the E / Z ratio up to $88: 12$ compared to $72: 28$ measured in the case of the classical Julia-Kocienski reagent 11a (entry 1). Due to the concise synthesis (vide infra), the comparably high E / Z selectivity and higher olefination yield of 2,6-di-isopropylphenyl-substituted phenyltetrazole sulfone $\mathbf{1 1 g}$ (entry 7) was selected for further studies. With the optimal sulfone substitution pattern in hand, olefination solvent screening was performed; however, the initially used THF turned out to be superior to others (see the Supporting Information, Table S2). The next task was to develop a highyielding and scalable preparation procedure for the synthesis of sulfone $\mathbf{1 1 g}$ (Scheme 2).

In analogy with the literature known procedures, ${ }^{22}$ sulfone 11 g was successfully synthesized in decagram quantities starting from readily available thiocyanate $\mathbf{1 3 g}$ (Scheme 2). The developed method allowed obtaining sulfone 11 g in 90% yield over two steps with only one isolated intermediate $\mathbf{1 4 g}$. It is important to note that sulfone $\mathbf{1 1} \mathrm{g}$ was successfully prepared without any chromatographic purification and the final crystallization gave 11 g in 99% purity (according to HPLC).

After finding the optimal Julia-Kocienski reagent structure and optimized reaction conditions, we turned our attention toward the scope of our developed methodology in the PBD series (Scheme 3).

Olefination of triones 10 typically proceeds with good E selectivity in all cases, and the E / Z ratio can be significantly improved by our optimized Julia-Kocienski reagent $\mathbf{1 1 g}$ (Scheme 2). Employing sulfone $\mathbf{1 1 g}$, the reaction yields are moderate, ranging from 48 to 70%, which is caused mostly by partial deprotonation of α protons of the keto group of $\mathbf{1 0}$, resulting in a ketone enolate not being able to participate in the olefination reaction. This hypothesis was confirmed by quenching of the crude reaction mixture with $\mathrm{D}_{2} \mathrm{O}$, which resulted in partial deuteration of unreacted substrate $\mathbf{1 0}$. Additives like $\mathrm{CeCl}_{3}{ }^{23}$ or $\mathrm{LaCl}_{3} * 2 \mathrm{LiCl}^{24}$ known to suppress α deprotonation of carbonyl compounds with organometallic reagents, unfortunately, did not increase the reaction yield. Fortunately, unreacted trione $\mathbf{1 0}$ in all cases could be easily recovered during the chromatographic purification step. Besides the chloro-, trifluoromethyl-, and dimethoxy-substituted PBDs 12b, 12c, and 12e, four natural product precursors 12a, 12d, 12f, and $12 \mathrm{~g}^{20}$ were successfully prepared by employing our developed methodology with E / Z selectivity up to $94: 6$. Intermediates 12a, 12d, and 12 f were further converted into the corresponding natural products by a simple protecting group cleavage (Scheme 4), and $\mathbf{1 2 g}$ is a common intermediate from the total synthesis of limazepine E (3). ${ }^{17}$

The trimethylsilylethoxymethyl (SEM)-protecting group of intermediates 12a and 12d were successfully cleaved using aqueous HCl in the THF mixture at elevated temperatures, furnishing oxo-prothracarcin (4) and boseongazepine B (6) in 55 and 62% yields, respectively. In the case of $\mathbf{1 2 f}$, both SEM-

Table 1. Phenyltetrazole-Based Julia-Kocienski Reagent Screening for the Olefination of Trione $10^{a b c}$

Entry
${ }^{a} 0.150 \mathrm{mmol} 10,0.450 \mathrm{mmol} 11,0.450 \mathrm{mmol}$ KHMDS, tetrahydrofuran (THF) (4.2 mL), $-78{ }^{\circ} \mathrm{C}$ to room temperature (rt). ${ }^{b}$ Determined by QNMR; brsm, based on recovered starting material. ${ }^{c}$ Determined by high-performance liquid chromatography (HPLC).
and Bn-protecting groups were cleaved simultaneously in one step using methanesulfonic acid and anisole. ${ }^{11}$ The spectroscopic data of the synthetic samples of all three natural
products were in good agreement with the literature. The developed methodology also allows for a significant decrease in the number of linear steps (LLS) of the total syntheses of PBD

Scheme 2. Optimized Synthesis of Sulfone 11 g

Scheme 3. Substrate Scope of the Julia-Kocienski Olefination of Triones 10

With 11a
86\% QNMR Yield (96\% brsm), E/Z-72:28 With 11 g

70\% QNMR Yield (86\% brsm), E/Z- 87:13
62\% Isolated Yield

12b
With 11a
71% QNMR Yield (85\% brsm), E/Z-78:22 With 11g
48\% QNMR Yield (64\% brsm), E/Z- 86:14 40\% Isolated Yield

With 11a
83\% QNMR Yield (98\% brsm), E/Z- 82:18 With 11g
62\% QNMR Yield (99\% brsm), E/Z- 92:8
56\% Isolated yield

With 11a
77\% QNMR Yield (96\% brsm), E/Z-77:23 With 11g

50\% QNMR Yield (61\% brsm), E/Z- 86:14 41\% Isolated Yield

With 11a
75\% QNMR Yield (90\% brsm), E/Z- 89:11 With 11g

67\% QNMR Yield (75% brsm), E/Z- 94:6
63% Isolated yield

12f $\mathrm{R}_{1}=\mathrm{Bn}$
With 11a
75\% QNMR Yield (93\% brsm), E/Z- 79:21
With 11 g
60\% QNMR Yield (89\% brsm), E/Z- 88:12
53\% Isolated yield

Scheme 4. Total Synthesis of Oxo-prothracarcin (4), Oxo-tomaymycin (5), and Boseongazepine B (6)

Scheme 5. Potential Energy Surface of the Julia-Kocienski Olefination of PBDs

natural products. For example, oxo-prothracarcin (4) and boseongazepine B (6) were obtained in seven steps compared to ten steps reported earlier. ${ }^{17,21}$

Although a remarkably high E / Z ratio of the olefination in the PBD series was observed, the origin of this selectivity remained unclear since the steric discrimination between both sides of the keto group in $\mathbf{1}$ was not obvious. To understand the observed selectivity, density functional theory (DFT) calculations were performed using the b3lyp/6-311++g-(df,p)//b3lyp/6-31+g(d) method. To simplify the computational model, two approximations were made: (a) N phenyltetrazole sulfone was used instead of N-(2,6-diisopropylphenyl) sulfone and (b) N-Me substituted ketone 10 was used instead of N-SEM ketone 10 (Scheme 5; for computational details, see the Supporting Information). Three distinct transformations of the olefination pathway were elaborated by the calculations: first, nucleophilic addition of the carbanion (TS-1) to the ketone to give an alkoxide; the second is the Smiles rearrangement (TS-2) during which the tetrazole subunit is transferred from the sulfinate to the alkoxide; and third, the formation of the olefine via elimination of sulfur dioxide and the tetrazololate leaving group (TS-3). The proposed pathway is in agreement with a previous study by Legnani and Vidari. ${ }^{25}$ According to the calculations, the rate-limiting and selectivity-determining step is the first stepthe nucleophilic addition of the carbanion to the ketone (TS1). The Gibbs free energy difference between $\mathrm{TS}_{E^{-}} 1$ and $\mathrm{TS}_{Z^{-}} 1$ was determined to be $0.8 \mathrm{kcal} / \mathrm{mol}$ in favor of the E pathway. This is in good agreement with experimental observations that
the formation of (E)-olefin is favored over (Z)-olefin. The energy difference between TS-1 geometries for both E and Z pathways can be explained by a slight change in the orientation of the approaching carbanion species (Figure 2). The distance

Figure 2. Overlay of transition-state geometries (for a detailed view, see the Supporting Information); (A) overlay of $\mathrm{TS}_{E^{-}}$(green) and $\mathrm{TS}_{Z^{-1}}$ (cyan), (B) geometry of $\mathrm{TS}_{E^{-}}$, and (C) geometry of $\mathrm{TS}_{Z^{-}}$.
from the C atom of the ketone carbonyl group to the S atom (SO_{2} subunit) and the C atom (methyl group) of the carbanion in $\mathrm{TS}_{E^{-}} 1$ is equidistant (3.4 and $3.3 \AA$, respectively), whereas in $\mathrm{TS}_{Z}-1$, the carbanion is slightly skewed-the corresponding distances between the C atom of the ketone carbonyl group to the S atom $\left(\mathrm{SO}_{2}\right.$ subunit) and the C atom (methyl group) are 3.5 and $3.1 \AA$, respectively. The change in carbanion orientation increases steric interactions between the

Me group of the carbanion and the CH_{2} group of the ketone in $\mathrm{TS}_{Z}-1$ compared to that in $\mathrm{TS}_{E}-1$. The origin of the orientation change can be attributed to the repulsive interactions of the dipoles of the SO_{2} subunit of the approaching carbanion and the benzylic amide subunit of the ketone. Indeed, the overall dipole moment of the $\mathrm{TS}_{E^{-}}-1$ (13.4 Debye) is 11% lower than that of the less favored $\mathrm{TS}_{Z^{-1}}$ (15.1 Debye).
In summary, we have developed a stereoselective JuliaKocienski olefination approach for the late-stage introduction of an ethylidene substituent in the PBD series. The utility of our developed method is showcased in concise total syntheses of three PBD natural products, namely, oxo-prothracarcin (4), oxo-tomaymycin (5), and boseongazepine B (6). The modified Julia-Kocienski reagent can be conveniently prepared in a two-step sequence starting from commercial isothiocyanate in a column-free fashion.

- EXPERIMENTAL SECTION

General Experimental Details. Commercially available reagents and starting materials were used as received. Sulfones 11a and 11 h and trione 10 g were prepared according to the literature. ${ }^{20}$ All reactions in anhydrous solvents were performed under an atmosphere of argon. THF was dried over Na and benzophenone and distilled prior to use, and other solvents were purchased from commercial sources labeled as anhydrous over molecular sieves. For analytical thin-layer chromatography, Merck TLC Silica gel $60 \mathrm{~F}_{254}$ plates were used. Flash chromatography was carried out using Zeochem silica gel ZEOprep $60(40-63 \mu \mathrm{~m})$ for the direct phase and Biotage KP-C18-HS for the reverse phase. NMR spectra were recorded on Varian Mercury (600 and 400 MHz) and Bruker (300 MHz) spectrometers. Chemical shift values were referenced against residual protons in the deuterated solvents. Cross-peak multiplicity was marked as ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ quintet, $\mathrm{h}=$ sextet, hept $=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad). Infrared spectra were recorded in the range of $4000-500 \mathrm{~cm}^{-1}$ as a film. HRMS spectra were obtained on a Micromass AutoSpec Ultima Magnetic sector mass spectrometer (TOF). Optical rotations were measured on a Rudolph Research Analytical Autopol VI polarimeter. Melting points were determined using a Stanford Research System MPA100 apparatus and are uncorrected. Chromatographic analyses for determination of E / Z isomers were performed on Apollo $\mathrm{C}_{18-12} 5 \mu \mathrm{~m}(4.6 \times 150 \mathrm{~mm}$, isocratic $70 \% \mathrm{ACN} / 10 \%\left(0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right), 1 \mathrm{~mL} / \mathrm{min}$ flow rate at $\left.40{ }^{\circ} \mathrm{C}\right)$ or ZirChrom CARB $5 \mu \mathrm{~m}(4.6 \times 150 \mathrm{~mm}$, isocratic $90 \% \mathrm{ACN} / 10 \%\left(0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right), 1.2 \mathrm{~mL} / \mathrm{min}$ flow rate at 40 ${ }^{\circ} \mathrm{C}$) columns. Crystallographic data have been registered in the Cambridge Crystallographic Data Centre and assigned the following deposition numbers for the sulfone (2152438) and PBD (2155056).

General Procedure for the Preparation of PBD Triones 10-Step 1. To a stirred solution of the corresponding anthranilic acid ($110.1 \mathrm{mmol}, 2.0$ equiv) and PyBOP ($57.3 \mathrm{~g}, 110.0 \mathrm{mmol}, 2.0$ equiv) in anhydrous dimethylformamide (DMF) $(50 \mathrm{~mL})$ was added triethylamine (TEA) ($77.0 \mathrm{~mL}, 550.6 \mathrm{mmol}, 10.0$ equiv) at room temperature, and the resulting mixture was stirred for 15 min . Then, methyl $(2 S, 4 R)$-4-hydroxypyrrolidine-2-carboxylate hydrochloride ($10.0 \mathrm{~g}, 55.0 \mathrm{mmol}, 1.0$ equiv) was added and stirring was continued for 16 h . After that, the suspension was filtered, and the filtrate was concentrated to $\sim 1 / 2$ of its original volume and subjected to reverse-phase flash column
chromatography (full gradient; water/MeCN 100:0 \rightarrow $0: 100$). The product-containing fractions were combined and evaporated in vacuo to give the title compound SI-1.
(2R,11aS)-2-Hydroxy-1,2,3,11a-tetrahydro-5H-benzo[e]-pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-1a). Prepared according to the general procedure for the preparation of PBD triones 10. Step 1 started with anthranilic acid (15.10 $\mathrm{g}, 110.122 \mathrm{mmol}, 2$ equiv). The title compound was obtained in $11.10 \mathrm{~g}(87 \%)$ as a white solid. $\mathbf{R}_{f}=0.34(\mathrm{DCM} 1: \mathrm{MeOH}$ $0.1) .{ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO- d_{6}): $\delta 10.53(1 \mathrm{H}, \mathrm{br} . \mathrm{s})$, $7.79(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.3,1.7$ $\mathrm{Hz}), 7.23(1 \mathrm{H}, \mathrm{ddd}, J=7.9,7.3,1.2 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.1$, $1.2 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{h}, J=4.4 \mathrm{~Hz})$, $4.19(1 \mathrm{H}, \mathrm{dd}, J=8.1,5.8 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{ddd}, J=12.1,3.8,1.2$ $\mathrm{Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{dt}, J=13.1,5.5$ Hz), $1.93(1 \mathrm{H}$, dddd, $J=13.0,8.2,4.6,1.5 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 MHz, DMSO- d_{6}): $\delta 170.4,165.1,136.3,132.2$, 130.4, 126.0, 124.0, 121.3, 67.4, 55.2, 54.02 34.4. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 233.0926$; found 233.0934. IR ($\nu_{\text {max }}$ film): 3383, 3235, 2941, 1691, 1622, 1480, 1445, 1415, 1090, $760 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=469^{\circ}(c=0.1, \mathrm{MeOH})$. MP $=225-226^{\circ} \mathrm{C}$ (water $/ \mathrm{MeCN}$).
(2R,11aS)-7-Chloro-2-hydroxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI$1 b)$. Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 1 started with 2-amino-5chlorobenzoic acid ($3.77 \mathrm{~g}, 22.024 \mathrm{mmol}$, 2 equiv). The title compound was obtained in $1.76 \mathrm{~g}(60 \%)$ as a white solid. $\mathbf{R}_{f}=$ 0.40 (DCM 1: MeOH 0.1). ${ }^{1} \mathrm{H}$ NMR (400 MHz DMSO- d_{6}): $\delta 10.64(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.74(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{dd}, J=$ $8.7,2.6 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz})$, $4.31(1 \mathrm{H}, \mathrm{h}, J=4.3 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=8.1,5.8 \mathrm{~Hz}), 3.61$ $(1 \mathrm{H}$, ddd, $J=12.2,3.8,1.5 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=12.2,4.8$ $\mathrm{Hz}), 2.62(1 \mathrm{H}, \mathrm{dt}, J=13.1,5.5 \mathrm{~Hz}), 1.94(1 \mathrm{H}$, dddd, $J=12.9$, 8.0, 4.5, 1.4 Hz). ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 MHz, DMSO- d_{6}): δ 170.2, 163.9, 135.3, 132.0, 129.6, 128.0, 127.4, 123.4, 67.4, 55.2, 54.1, 34.4. HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}, 267.0536$; found 267.0545. IR ($\nu_{\max }$ film): 3365, 3212, 3138, 2943, 1622, 1449, 1086, $813 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=$ $440^{\circ}(c=0.1, \mathrm{MeOH}) . \mathrm{MP}=192-193{ }^{\circ} \mathrm{C}$ (water $/ \mathrm{MeCN}$).
(2R,11aS)-2-Hydroxy-8-(trifluoromethyl)-1,2,3,11a-tetra-hydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)dione (SI-1c). Prepared according to the general procedure for the preparation of PBD triones 10 . Step 1 started with 2-amino-4-trifluoromethylbenzoic acid ($2.93 \mathrm{~g}, 14.315 \mathrm{mmol}, 2$ equiv). The title compound was obtained in $0.93 \mathrm{~g}(43 \%)$ as a white solid. $\mathrm{R}_{f}=0.42$ (DCM 9: MeOH 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz; DMSO-d d_{6} : $\delta 10.75(1 \mathrm{H}$, br.s), $8.00(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.57(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.48(1 \mathrm{H}$, br.s), $5.20(1 \mathrm{H}, \mathrm{br} . \mathrm{s})$, $4.36-4.26(2 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=12.2,3.8 \mathrm{~Hz}), 3.50(1 \mathrm{H}$, dd, $J=12.2,4.8 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{dt}, J=13.1,5.5 \mathrm{~Hz}), 1.95(1 \mathrm{H}$, m). ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 MHz , DMSO- d_{6}) δ 170.4, 164.1, 137.0, 132.1, $132.0(\mathrm{q}, J=32.1 \mathrm{~Hz}), 129.2,123.5(\mathrm{q}, J=273.0$ $\mathrm{Hz}), 120.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 118.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 67.4,55.2$, 54.2, 34.4. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}, 301.0800$; found 301.0811. IR ($\nu_{\max }$ film): 3458, 3370, 3291, 2963, 2179, 1700, 1635, 1436, 1336, 1141, $667 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=369^{\circ}(c=0.1, \mathrm{MeOH}) . \mathrm{MP}=213-214^{\circ} \mathrm{C}$ (water/MeCN).
(2R,11aS)-2-Hydroxy-9-methoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-1d). Prepared according to the general procedure for the preparation of PBD triones 10. Step 1 started with 2-amino-3-
methoxybenzoic acid ($7.00 \mathrm{~g}, 41.846 \mathrm{mmol}, 2$ equiv). The title compound was obtained in $4.12 \mathrm{~g}(75 \%)$ as a white solid. $\mathbf{R}_{f}=$ 0.42 (DCM 9: MeOH 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ;$ DMSO- d_{6}): δ $9.53(1 \mathrm{H}, \mathrm{s}), 7.38-7.31(1 \mathrm{H}, \mathrm{m}), 7.26-7.20(2 \mathrm{H}, \mathrm{m}), 5.14$ $(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{h}, J=4.6 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{dd}, J=$ $8.1,5.7 \mathrm{~Hz}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{ddd}, J=12.2,3.8,1.5$ $\mathrm{Hz}), 2.62(1 \mathrm{H}, \mathrm{dt}, J=13.0,5.5 \mathrm{~Hz}), 1.92(1 \mathrm{H}, \mathrm{dddd}, J=13.0$, 8.1, 4.6, 1.5 Hz). ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 MHz , DMSO- d_{6}) δ 169.7, 164.8, 149.8, 127.6, 125.4, 124.8, 121.3, 113.7, 67.4, 56.2, 55.3, 53.9, 34.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):$: $\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}$, 263.1032; found 263.1035. IR ($\nu_{\max }$, film): 3406, 2961, 2840, 1684, 1442, 1260, 1071, 747, $600 \mathrm{~cm}^{-1}$. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=500^{\circ}(c=0.1, \mathrm{MeOH}) . \mathrm{MP}=236-238^{\circ} \mathrm{C}$ (water/ MeCN).
(2R,11aS)-2-hydroxy-7,8-dimethoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-1e). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 1 started with 2 -amino-4,5-dimethoxybenzoic acid ($5.21 \mathrm{~g}, 26.429 \mathrm{mmol}, 2$ equiv). The title compound was obtained in $1.73 \mathrm{~g}(45 \%)$ as a white solid. $\mathbf{R}_{f}=0.21$ (DCM 9: MeOH 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; DMSO- d_{6}): $\delta 10.28(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{s}), 5.12$ $(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{h}, J=4.5 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=$ $8.1,6.0 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.62(1 \mathrm{H}$, ddd, $J=$ $12.0,3.7,1.4 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}), 2.60(1 \mathrm{H}$, $\mathrm{dt}, J=13.1,5.5 \mathrm{~Hz}), 1.92(1 \mathrm{H}$, dddd, $J=12.9,8.0,4.5,1.5$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR (100 MHz, DMSO- d_{6}) δ 170.0, 165.0, 151.7, 145.3, 130.7, 117.8, 111.9, 104.4, 67.4, $55.6(2 \times \mathrm{C})$, 55.3, 54.0, 34.4. HRMS-ESI (m / z) : [$\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}$, 293.1137; found 293.1151. IR ($\nu_{\text {max }}$ film): 3429, 3245, 2990, 2836, 1677, 1609, 1519, 1434, 1264, 1011, 868, 624. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=376^{\circ}(c=0.1, \mathrm{MeOH}) . \mathrm{MP}=170^{\circ} \mathrm{C}(\mathrm{dec} ;$ water/ MeCN).
(2R,11aS)-8-(Benzyloxy)-2-hydroxy-7-methoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11-(10H)-dione (SI-1f). Prepared according to the general procedure for the preparation of PBD triones 10. Step 1 started with 2 -amino-4-benzyloxy-5-methoxybenzoic acid ($14.15 \mathrm{~g}, 51.785 \mathrm{mmol}, 2$ equiv). The title compound was obtained in $6.64 \mathrm{~g}(38 \%)$ as a beige solid. $\mathbf{R}_{f}=0.34$ (DCM 10: $\mathrm{MeOH} 1) .{ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO- d_{6}): $\delta 10.31(1 \mathrm{H}, \mathrm{s})$, $7.51-7.32(5 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{s}), 5.15-5.02$ $(3 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{h}, J=4.5 \mathrm{~Hz}), 4.18-4.10(1 \mathrm{H}, \mathrm{m}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.62(1 \mathrm{H}, \mathrm{ddd}, J=12.0,3.8,1.4 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J=$ $12.0,4.8 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{dt}, J=13.0,5.5 \mathrm{~Hz}), 1.92(1 \mathrm{H}$, dddd, $J=13.0,8.1,4.5,1.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta 170.0,164.9,150.7,145.5,136.2,130.6,128.5,128.2$, 128.1, 118.1, 112.1, 105.7, 70.0, 67.4, 55.7, 55.3, 54.0, 34.4. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$, 369.1450; found 369.1455. IR ($\nu_{\max }$, film): 3399, 3239, 2934, 1627, 1609, 1436, 1270, 1019, 730, $633 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=298^{\circ}(c$ $=0.1, \mathrm{MeOH}) . \mathrm{MP}=158-159^{\circ} \mathrm{C}$ (water $/ \mathrm{MeCN}$).

General Procedure for the Preparation of PBD Triones 10—Step 2. To a solution containing SI-1 (0.86 mmol, 1.0 equiv) and imidazole ($175.9 \mathrm{mg}, 2.58 \mathrm{mmol}, 3.0$ equiv) in anhydrous DMF (4 mL) at $0^{\circ} \mathrm{C}$ was added TBSCl ($389 \mathrm{mg}, 2.58 \mathrm{mmol}, 3.0$ equiv). The mixture was warmed to rt and stirred for 16 h . Then, the reaction mixture was diluted with EtOAc $(40 \mathrm{~mL})$ and washed with water $(4 \times 30 \mathrm{~mL})$. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, furnishing the title compound.
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-1,2,3,11a-tetra-hydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-
dione (SI-2a). Prepared according to the general procedure for the preparation of PBD triones 10. Step 2 started with SI-1a ($200 \mathrm{mg}, 0.860 \mathrm{mmol}, 1$ equiv). The title compound was obtained in 267 mg (89%) as a white solid. $\mathbf{R}_{f}=0.32$ (PE 1: EA 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.12(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 8.01$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.3,1.6 \mathrm{~Hz})$, 7.29 (1H, ddd, $J=8.0,7.3,1.1 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.1$ $\mathrm{Hz}), 4.54(1 \mathrm{H}, \mathrm{p}, J=5.4 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.6 \mathrm{~Hz})$, $3.72(2 \mathrm{H}, \mathrm{qd}, J=12.0,5.4 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dtd}, J=13.0,5.4,0.8$ $\mathrm{Hz}), 2.08(1 \mathrm{H}$, dddd, $J=12.9,8.1,5.9,0.8 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s})$, $0.10(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 171.0, 165.9, 135.1, 132.7, 131.6, 126.8, 125.5, 121.0, 69.4, 55.7, 54.4, 35.4, 25.9, 18.2, -4.6, -4.7. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}, 347.1791$; found 347.1800. IR ($\nu_{\max }$ film): 3235, 2954, 2928, 2857, 1695, 1623, 1481, 1251, $1131,837,759 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=328^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathrm{MP}=$ $194-195^{\circ} \mathrm{C}$ (EtOAc).
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-7-chloro-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]-diazepine-5,11(10H)-dione (SI-2b). Prepared according to the general procedure for the preparation of PBD triones 10. Step 2 started with SI-1b ($1.50 \mathrm{~g}, 5.624 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $1.87 \mathrm{~g}(87 \%)$ as a white solid. $\mathbf{R}_{f}=$ 0.42 (PE 1: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.71(1 \mathrm{H}$, br.s), $7.98(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz})$, $6.97(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{p}, J=5.0 \mathrm{~Hz}), 4.21(1 \mathrm{H}$, $\mathrm{dd}, J=8.1,5.0 \mathrm{~Hz}), 3.71(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dt}, J=$ $13.1,5.0 \mathrm{~Hz}), 2.08(1 \mathrm{H}, \mathrm{ddd}, J=13.2,8.1,5.6 \mathrm{~Hz}), 0.87(9 \mathrm{H}$, s), $0.09(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9$, 164.7, 133.7, 132.7, 131.2, 131.1, 128.0, 122.6, 69.3, 55.7, 54.6, 35.4, 25.9, 18.2, -4.6, -4.7. HRMS-ESI $(\mathrm{m} / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{ClSi}$, 381.1401; found 381.1414. IR ($\nu_{\text {max }}$, film): 3227, 2954, 2857, 1700, 1644, 1481, 1438, 1252, $1128,838,776 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=327^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathrm{MP}=$ $177-178{ }^{\circ} \mathrm{C}$ (EtOAc).
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-8-(trifluoro-methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a]-[1,4]diazepine-5,11(10H)-dione (SI-2c). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 2 started with SI-1c ($0.878 \mathrm{~g}, 2.924 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $915 \mathrm{mg}(75 \%)$ as a white solid. $\mathbf{R}_{f}=0.37$ (PE 3: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.58$ (1H, br.s), $8.15(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=8.6,1.4$ $\mathrm{Hz}), 7.29(1 \mathrm{H}$, br.s), $4.54(1 \mathrm{H}, \mathrm{p}, J=5.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J$ $=8.1,5.0 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{dt}, J=13.1$, $5.0 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{ddd}, J=13.5,8.1,5.5 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s})$, $0.10(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$, $164.8,135.7,134.5(\mathrm{q}, J=33.2 \mathrm{~Hz}), 132.6,129.5,123.0(\mathrm{q}, J=$ $271.8 \mathrm{~Hz}), 121.8(\mathrm{q}, J=3.5 \mathrm{~Hz}), 118.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 69.3$, 55.7, 54.6, 35.4, 25.8, 18.1, -4.8. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Si}, 415.1665$; found 415.1661. IR ($\nu_{\max }$ film): 3213, 2954, 2931, 2859, 1707, 1647, 1439, 1341, $1135,838,776 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=280^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathrm{MP}=$ $218-219^{\circ} \mathrm{C}(\mathrm{EtOAc})$.
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-9-methoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]-diazepine-5,11(10H)-dione (SI-2d). Prepared according to the general procedure for the preparation of PBD triones 10. Step 2 started with SI-1d ($3.40 \mathrm{~g}, 12.964 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $4.85 \mathrm{~g}(99 \%)$ as a white solid. $\mathbf{R}_{f}=$ 0.43 (PE 1: EA 2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.91(1 \mathrm{H}$, br.s), $7.57(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $7.02(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{p}, J=5.4 \mathrm{~Hz}), 4.19$
$(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.5 \mathrm{~Hz}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=12.0$, $5.4 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=12.0,5.4 \mathrm{~Hz}), 2.85(1 \mathrm{H}$, dddd, $J=$ $13.0,5.4,4.5,1.0 \mathrm{~Hz}), 2.06(1 \mathrm{H}$, dddd, $J=13.0,8.2,6.0,1.0$ $\mathrm{Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.09(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.4,165.8,148.6,126.8,125.2,125.0,122.7$, 112.9, 69.3, 56.2, 55.9, 54.4, 35.4, 25.9, 18.1, -4.7. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$, 377.1897; found 377.1895. IR ($\nu_{\max }$, film): 3385, 3237, 2953, 2857, 1702, 1636, 1413, 1260, 1130, $754 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=312^{\circ}(c=0.1$, CHCl_{3}).
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-7,8-dimethoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]-diazepine-5,11(10H)-dione (SI-2e). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 2 started with SI-1e ($1.70 \mathrm{~g}, 5.816 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $2.09 \mathrm{~g}(88 \%)$ as a white solid. $\mathbf{R}_{f}=$ 0.25 (PE 1: EA 2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.46(1 \mathrm{H}$, br.s), $7.44(1 \mathrm{H}, \mathrm{s}), 6.47(1 \mathrm{H}, \mathrm{s}), 4.52(1 \mathrm{H}, \mathrm{p}, J=5.6 \mathrm{~Hz}), 4.20$ $(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}), 3.93(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}$, dd, $J=11.9,5.5 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=11.9,5.5 \mathrm{~Hz}), 2.83$ $(1 \mathrm{H}, \mathrm{dt}, J=12.8,5.0 \mathrm{~Hz}), 2.05(1 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.09$ $(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,165.8$, 152.5, 146.7, 129.5, 118.9, 112.5, 103.9, 69.4, 56.4, 56.3, 55.8, 54.3, 35.3, 25.9, 18.2, $-4.7(2 \times \mathrm{C})$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+$ H] calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 407.2002; found 407.2009. IR ($\nu_{\max }$, film): 3273, 2928, 2856, 1699, 1606, 1495, 1258, 1121, 838, 776, $651 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=273^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathrm{MP}$ $=268-269^{\circ} \mathrm{C}$ (EtOAc).
(2R,11aS)-8-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)-7-methoxy-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a]-[1,4]diazepine-5,11(10H)-dione (SI-2f). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 2 started with SI-1f ($6.39 \mathrm{~g}, 17.346 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $6.42 \mathrm{~g}(76 \%)$ as a white solid. $\mathbf{R}_{f}=0.46$ (PE 1: EA 2). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.36$ $(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.47-7.28(6 \mathrm{H}, \mathrm{m}), 6.48(1 \mathrm{H}, \mathrm{s}), 5.16(2 \mathrm{H}, \mathrm{dd}, J=$ $19.2,12.3 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{p}, J=5.4 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $4.5 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.68(2 \mathrm{H}, \mathrm{qd}, J=12.0,5.4 \mathrm{~Hz}), 2.81$ $(1 \mathrm{H}, \mathrm{dt}, J=12.9,5.0 \mathrm{~Hz}), 2.04(1 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.09$ $(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.8, 165.8, 151.5, 147.2, 136.0, 129.3, 128.9, 128.4, 127.4, 119.2, 112.8, 106.0, 71.2, 69.4, 56.4, 55.8, 54.3, 35.3, 25.9, 18.1, -4.7. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 483.2315; found 483.2321. IR ($\nu_{\max }$, film $): 3220,2953,1700$, $1609,1517,1430,1254,1121,1005,836,778 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=$ $189^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

General Procedure for the Preparation of PBD Triones 10-Step 3. To a stirred suspension of NaH (60% in mineral oil, $101.6 \mathrm{mg}, 2.54 \mathrm{mmol}, 1.1$ equiv; washed twice with dry THF before the reaction) in THF (5 mL , freshly distilled over $\mathrm{Na} / \mathrm{Ph}_{2} \mathrm{CO}$) was added a solution of SI-2 (2.308 mmol, 1.0 equiv) in dry THF (15 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred until hydrogen evolution ceased (approx. 15 min). Then, to the reaction mixture was added a solution of SEMCl ($1.1 \mathrm{~mL}, 5.771 \mathrm{mmol}, 2.5$ equiv) in dry THF (5 mL), and stirring was continued for 16 h at rt. Next, the suspension was cooled (ice bath), quenched with water $(50 \mathrm{~mL})$, extracted with DCM $(2 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated, and the residue was purified on silica gel (PE/ EtOAc). The product-containing fractions were combined and evaporated in vacuo, furnishing the title compound.
(2R, 11 aS)-2-((tert-Butyldimethylsilyl)oxy)-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-
benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI3a). Prepared according to the general procedure for the preparation of PBD triones 10. Step 3 started with SI-2a (800 $\mathrm{mg}, 2.308 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $920 \mathrm{mg}(83 \%)$ as colorless oil. $\mathbf{R}_{f}=0.41$ (PE 2: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.91(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz})$, $7.67(1 \mathrm{H}, \mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.3,1.7$ $\mathrm{Hz}), 7.34(1 \mathrm{H}$, ddd, $J=7.8,7.3,1.1 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{p}, J=5.8 \mathrm{~Hz}), 4.22$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}), 3.80-3.70(2 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{ddd}, J$ $=9.6,8.7,7.8 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}), 2.86(1 \mathrm{H}$, ddd, $J=12.2,5.0,3.9 \mathrm{~Hz}$), $2.03(1 \mathrm{H}, \mathrm{dddd}, J=13.0,8.2,6.4$, $0.9 \mathrm{~Hz}), 0.98(2 \mathrm{H}, \mathrm{dd}, J=8.8,7.9 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.09(6 \mathrm{H}$, s), $0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1$, 165.9, 139.8, 132.5, 130.3, 129.3, 126.5, 122.7, 78.1, 69.7, 67.1, 56.5, 53.8, 35.7, 25.9, 18.4, 18.1, -1.3, -4.7. HRMS-ESI ($\mathrm{m} /$ $z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}, 477.2605$; found 477.2614. IR ($\nu_{\max }$ film): 2953, 2857, 1690, 1652, 1461, 1411, 1250, 1129, 1072, 861, 837, 777, 762, $709 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}=237^{\circ}$ ($c=0.1, \mathrm{CHCl}_{3}$).
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-7-chloro-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI3b). Prepared according to the general procedure for the preparation of PBD triones 10. Step 3 started with SI-2b (1.80 $\mathrm{g}, 4.725 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $1.60 \mathrm{~g}(66 \%)$ as a colorless oil. $\mathbf{R}_{f}=0.48$ (PE 3: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.88(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 7.64$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}$, $J=9.9 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{p}, J=5.5 \mathrm{~Hz})$, $4.21(1 \mathrm{H}, \mathrm{dd}, J=8.1,4.1 \mathrm{~Hz}), 3.77-3.61(3 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}$, dd, $J=11.9,5.0 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 0.98(2 \mathrm{H}$, m), $0.87(9 \mathrm{H}, \mathrm{s}), 0.09(6 \mathrm{H}, \mathrm{s}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,164.6,138.31,132.5,132.3$, 130.6, 130.1, 124.2, 78.1, 69.6, 67.2, 56.5, 54.0, 35.7, 25.9, 18.4, 18.1, $-1.3,-4.7$. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClSi}_{2}, 511.2215$; found 511.2227. IR ($\nu_{\text {max }}$ film): 2953, 2858, 1695, 1652, 1441, 1363, 1250, 1071, 836, 776 $\mathrm{cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=230^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(2R, 11 aS)-2-((tert-Butyldimethylsilyl)oxy)-8-(trifluoro-methyl)-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tet-rahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)dione ($\mathrm{SI}-3 \mathrm{c}$). Prepared according to the general procedure for the preparation of PBD triones 10. Step 3 started with SI-2c ($900 \mathrm{mg}, 2.171 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $623 \mathrm{~g}(52 \%)$ as colorless oil. $\mathbf{R}_{f}=0.53$ (PE 3: EA 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.03(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $8.01(1 \mathrm{H}$, br.s), $7.58(1 \mathrm{H}$, ddd, $J=8.2,1.8,0.7 \mathrm{~Hz}), 5.55(1 \mathrm{H}$, d, $J=10.0 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{p}, J=5.4$ $\mathrm{Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}), 3.82-3.64(3 \mathrm{H}, \mathrm{m}), 3.61$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.3,5.0,1.0 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{dt}, J=13.0,4.9$ $\mathrm{Hz}), 2.10-2.01(1 \mathrm{H}, \mathrm{m}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.09$ $(6 \mathrm{H}, \mathrm{s}), 0.03(9, \mathrm{~s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $169.7,164.7,140.2,134.4(\mathrm{q}, J=33.0 \mathrm{~Hz}), 132.1,131.3,123.2$ $(\mathrm{q}, J=274.5 \mathrm{~Hz}), 123.1(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}), 120.0(\mathrm{q}, J=3.6 \mathrm{~Hz})$, 78.0, 69.6, 67.5, 56.5, 54.1, 35.8, 25.8, 18.3, 18.1, -1.3, -4.7 (2 \times C). HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Si}_{2}, 545.2479$; found 545.2476. IR ($\nu_{\text {max }}$ film): 2954, 2930, 2896, 2859, 1699, 1656, 1447, 1319, 1251, 1133, 1070, $838 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=219^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-9-methoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-

3d). Prepared according to the general procedure for the preparation of PBD triones 10. Step 3 started with SI-2d (5.09 $\mathrm{g}, 13.518 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $6.70 \mathrm{~g}(97 \%)$ as colorless oil. $\mathrm{K}_{f}=0.45$ (PE 1: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.48(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$), 7.35 $(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{d}$, $J=10.5 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{p}, J=5.7$ $\mathrm{Hz}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=8.0,3.8 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.78(1 \mathrm{H}, \mathrm{dd}$, $J=12.0,6.0 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}), 3.39-3.27$ $(2 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{ddd}, J=12.3,5.7,3.5 \mathrm{~Hz}), 2.01-1.92(1 \mathrm{H}$, m), $0.86(9 \mathrm{H}, \mathrm{s}), 0.83-0.65(2 \mathrm{H}, \mathrm{m}), 0.08(6 \mathrm{H}, \mathrm{s}),-0.07$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.9,165.4$, 152.8, 133.6, 128.2, 126.7, 121.6, 114.4, 75.2, 69.8, 66.3, 56.9, 56.0, 53.5, 35.4, 25.9, 18.1, 17.9, -1.4, -4.7. HRMS-ESI ($\mathrm{m} /$ $z):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}, 529.2530$; found 529.2541. IR ($\nu_{\max }$ film): 2952, 1652, 1410, 1258, 1075, $837 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=116^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(2R,11aS)-2-((tert-Butyldimethylsilyl)oxy)-7,8-dimethoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-3e). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 3 started with SI-2e (100 $\mathrm{mg}, 0.246 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $126 \mathrm{mg}(95 \%)$ as colorless oil. $\mathbf{R}_{f}=0.52$ (PE 1: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.34(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{s}), 5.52$ $(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{p}, J=$ $5.7 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=7.9,3.9 \mathrm{~Hz}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}$, s), $3.83-3.63(3 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=11.8,5.7 \mathrm{~Hz}), 2.85$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.2,5.2,3.8 \mathrm{~Hz}), 2.06-1.98(1 \mathrm{H}, \mathrm{m}), 0.98(2 \mathrm{H}$, m), $0.87(9 \mathrm{H}, \mathrm{s}), 0.10(6 \mathrm{H}, \mathrm{s}), 0.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1,165.8,152.0,147.3,134.1,121.6$, 111.4, 105.6, 78.2, 69.7, 67.2, 56.7, $56.3(2 \times \mathrm{C}), 53.8,35.6$, 25.9, 18.5, 18.2, -1.2, -4.7. HRMS-ESI $(\mathrm{m} / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}, 537.2816$; found 537.2838. IR ($\nu_{\max }$, film): 2952, 2857, 1684, 1652, 1517, 1456, 1434, 1361, $1249,1130,1069,836,777 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=209^{\circ}(c=0.1$, CHCl_{3}).
(2R,11aS)-8-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)-7-methoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tet-rahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)dione ($\mathrm{SI}-3 \mathrm{~F}$). Prepared according to the general procedure for the preparation of PBD triones 10. Step 3 started with SI-2f $(6.40 \mathrm{~g}, 13.260 \mathrm{mmol}, 1$ equiv). The title compound was obtained in $7.62 \mathrm{~g}(93 \%)$ as colorless oil. $\mathbf{R}_{f}=0.39$ (PE 2: EA 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.46-7.40(2 \mathrm{H}, \mathrm{m})$, $7.40-7.28(4 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}$, br.s), $5.42(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz})$, $5.20(2 \mathrm{H}, \mathrm{m}), 4.56(1 \mathrm{H}, \mathrm{p}, J=5.8 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J=9.8$ $\mathrm{Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=8.2,3.9 \mathrm{~Hz}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.77-3.63$ $(2 \mathrm{H}, \mathrm{m}), 3.64-3.49(2 \mathrm{H}, \mathrm{m}), 2.83(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m})$, $0.95(2 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.09(6 \mathrm{H}, \mathrm{s}), 0.03(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.0,165.7,150.9$, 147.7, 136.1, 133.8, 128.8, 128.3, 127.5, 121.8, 111.7, 107.8, 78.1, 71.0, 69.7, 67.0, 56.6, 56.4, 53.7, 35.6, 25.9, 18.5, 18.1, -1.2, -4.7. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}, 613.3129$; found 613.3140. IR ($\nu_{\max }$, film): 3447, 2953, 2894, 1689, 1641, 1463, 1361, 1249, 1129, 1069, $836,776 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=189^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

General Procedure for the Preparation of PBD Triones 10-Step 4. To a stirred solution of SI-3 (2.936 mmol, 1.0 equiv) in THF (60 mL) was added TBAF trihydrate $\left(1.43 \mathrm{~g}, 4.404 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at room temperature. Then, volatiles were evaporated in vacuo and the residual oil was purified on silica
gel (EtOAc:EtOH). The product-containing fractions were combined and evaporated in vacuo furnishing the title compound.
(2R, $11 a S)$-2-Hydroxy-10-((2-(trimethylsilyl)ethoxy)-methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a]-[1,4]diazepine-5,11(10H)-dione (SI-4a). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 4 started with SI-3a ($1.40 \mathrm{~g}, 2.936 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in 893 mg (84%) as colorless oil. $\mathbf{R}_{f}=0.43$ (EA 1: EtOH 0.05). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.87(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.2 \mathrm{~Hz})$, $7.52(1 \mathrm{H}$, ddd, $J=8.2,7.3,1.7 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{td}, J=7.8,1.2$ $\mathrm{Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.67$ $(1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{dd}, J=8.1,5.6 \mathrm{~Hz}), 3.87(1 \mathrm{H}$, ddd, $\mathrm{J}=$ $12.7,3.5,1.6 \mathrm{~Hz}), 3.79-3.61(3 \mathrm{H}, \mathrm{m}), 2.99(1 \mathrm{H}, \mathrm{dt}, J=13.6$, $5.5 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.13(1 \mathrm{H}$, dddd, $J=13.6$, $8.1,4.2,1.6 \mathrm{~Hz}), 0.99(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.8,166.0,139.8,132.6,130.4,129.1$, 126.6, 122.8, 78.2, 69.5, 67.1, 56.4, 54.1, 35.2, 18.4, -1.3 . HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}$, 385.1560; found 385.1558. IR ($\nu_{\max }$, film): 3393, 2952, 2895, 1694, 1634, 1463, 1249, 1076, $763 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=275^{\circ}(c=$ $0.1, \mathrm{CHCl}_{3}$).
(2R,11aS)-7-Chloro-2-hydroxy-10-((2-(trimethylsilyl)-ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo-[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-4b). Prepared according to the general procedure for the preparation of PBD triones 10. Step 4 starting from SI-3b $(1.60 \mathrm{~g}, 3.130 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in 1.15 g (93\%) as colorless foam. $\mathbf{R}_{f}=0.47$ (EA 100: EtOH 1). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.81(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz})$, $4.68(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=8.1$, $6.0 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{ddd}, J=12.8,3.1,1.7 \mathrm{~Hz}), 3.78-3.61(3 \mathrm{H}$, m), $2.98(1 \mathrm{H}, \mathrm{dt}, J=13.7,5.6 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.16(1 \mathrm{H}$, dddd, $J=13.7,8.1,3.8,1.8 \mathrm{~Hz}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.4, 164.8, 138.3, 132.6, 132.4, 130.4, 130.1, 124.3, 78.2, 69.4, 67.3, 56.4, 54.3, 35.2, 18.4, -1.3. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiClNa}$, 419.1170; found 419.1165. IR ($\nu_{\text {max }}$ film): 3404, 2953, 2894, 1694, 1639, 1444, 1362, 1249, 1075, $836 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=274^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathrm{MP}=60-61^{\circ} \mathrm{C}$ (EtOAc:EtOH).
(2R, 11 aS)-2-Hydroxy-8-(trifluoromethyl)-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI$4 c$. Prepared according to the general procedure for the preparation of PBD triones 10. Step 4 started with SI-3c (620 $\mathrm{mg}, 1.138 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $325 \mathrm{mg}(66 \%)$ as colorless foam. $\mathbf{R}_{f}=0.37$ (EA 100: EtOH 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.01(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.99(1 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}$, dd, $J=8.0,5.9 \mathrm{~Hz}), 3.89(1 \mathrm{H}$, ddd, $J=12.7,3.2,1.6 \mathrm{~Hz})$, $3.84-3.73(1 \mathrm{H}, \mathrm{m}), 3.72-3.62(2 \mathrm{H}, \mathrm{m}), 2.99(1 \mathrm{H}, \mathrm{dt}, J=$ 13.7, 5.5 Hz$), 2.35(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{dddd}, J=$ $13.7,8.1,3.9,1.7 \mathrm{~Hz}), 1.04-0.94(2 \mathrm{H}, \mathrm{m}), 0.03(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,164.9,140.2$, $134.5(\mathrm{q}, J=33.0 \mathrm{~Hz}), 131.9,131.3,123.2(\mathrm{q}, J=275.1 \mathrm{~Hz})$, $123.1(\mathrm{q}, J=3.6 \mathrm{~Hz}), 120.0(\mathrm{q}, J=3.6 \mathrm{~Hz}), 78.1,69.3,67.5$, 56.4, 54.3, 35.2, 18.3, -1.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiF}_{3} \mathrm{Na}$, 453.1433; found 453.1429.

IR ($\nu_{\max }$, film): 3392, 2954, 1702, 1639, 1321, 1174, 1133 , 1083, $860,838 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=256^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(2R,11aS)-2-Hydroxy-9-methoxy-10-((2-(trimethylsilyl)-ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo-[1,2-a][1,4]diazepine-5,11(10H)-dione (SI-4d). Prepared according to the general procedure for the preparation of PBD triones 10. Step 4 started with SI-3d ($6.70 \mathrm{~g}, 13.220 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $3.41 \mathrm{~g}(65 \%)$ as colorless foam. $\mathbf{R}_{f}=0.38$ (EA 20: EtOH 1). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.41(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, J$ $=8.0 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{d}, J=10.4$ $\mathrm{Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{h}, J=4.6 \mathrm{~Hz}), 4.22$ $(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.81(1 \mathrm{H}, \mathrm{ddd}, J=12.6$, $3.5,1.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}), 3.38-3.24(2 \mathrm{H}$, m), $3.08(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dt}, J=13.5,5.4 \mathrm{~Hz})$, $2.04(1 \mathrm{H}$, dddd, $J=13.7,8.2,4.2,1.6 \mathrm{~Hz}), 0.81-0.61(2 \mathrm{H}, \mathrm{m})$, $-0.10(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6$, 165.6, 152.7, 133.3, 128.2, 126.7, 121.6, 114.5, 75.3, 69.4, 66.3, 56.8, 56.0, 53.8, 34.7, 17.9, -1.4. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SiNa}$, 415.1665; found 415.1663. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=133^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \mathbf{M P}=159-160{ }^{\circ} \mathrm{C}$ (EtOAc:EtOH).
(2R,11aS)-2-Hydroxy-7,8-dimethoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI4e). Prepared according to the general procedure for the preparation of PBD triones 10. Step 4 started with SI-3e (573 $\mathrm{mg}, 1.067 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $305 \mathrm{mg}(68 \%)$ as colorless foam. $\mathbf{R}_{f}=0.31$ (EA 20: EtOH 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.32(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{s})$, $5.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}$ overlapping with $1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{dd}, J=8.1,5.6 \mathrm{~Hz}), 3.90(6 \mathrm{H}, \mathrm{br} . \mathrm{s})$, $3.87(1 \mathrm{H}, \mathrm{ddd}, J=12.5,3.6,1.6 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{m}), 3.71-3.60$ $(2 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{dt}, J=13.5,5.5 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 2.12$ $(1 \mathrm{H}, \mathrm{m}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,166.0,152.1,147.2,134.1,121.3$, 111.4, 105.6, 78.3, 69.4, 67.2, 56.6, 56.3, 56.2, 54.0, 35.1, 18.5, -1.2. HRMS-ESI (m / z) : $[M+H]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}, 423.1951$; found 423.1956. IR ($\nu_{\text {max }}$, film): 3379, 2954, 1683, 1634, 1519, 1456, 1436, 1360, 1249, 1062, 861, 837, $756 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=258^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(2R,11aS)-8-(Benzyloxy)-2-hydroxy-7-methoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (SI4f). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 4 started with SI-3e (7.60 $\mathrm{g}, 12.400 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $5.22 \mathrm{~g}(84 \%)$ as a white solid. $\mathbf{R}_{f}=0.41$ (EA 20: EtOH 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.43(2 \mathrm{H}, \mathrm{m}), 7.38-7.28$ $(4 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{s}), 5.42(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 1.98(2 \mathrm{H}, \mathrm{s})$, $4.62(1 \mathrm{H}, \mathrm{m}), 4.49(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=8.1$, $5.6 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.86(1 \mathrm{H}, \mathrm{ddd}, J=12.5,3.6,1.5 \mathrm{~Hz})$, $3.75-3.54(3 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{dt}, J=13.6,5.4 \mathrm{~Hz}), 2.47(1 \mathrm{H}$, d, $J=3.6 \mathrm{~Hz}), 2.10(1 \mathrm{H}$, dddd, $J=13.8,8.1,4.4,1.6 \mathrm{~Hz}), 0.96$ $(2 \mathrm{H}, \mathrm{m}), 0.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 169.7, 165.9, 151.0, 147.7, 136.1, 133.9, 128.8, 128.3, 127.5, 121.5, 111.7, 107.8, 78.2, 71.0, 69.4, 67.1, 56.5, 56.3, 54.0, 35.1, 18.5, -1.2. IR ($\nu_{\max }$ film): 3378, 2952, 1683, 1626, 1466, 1361, 1248, 1060, $836,755 \mathrm{~cm}^{-1}$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$, 499.2264; found 499.2286. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=245^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right) . \quad \mathbf{M P}=69-70{ }^{\circ} \mathrm{C}$ (EtOAc:EtOH).

General Procedure for the Preparation of PBD Triones 10—Step 5. To a solution of SI-4 (16.827 mmol , 1.0 equiv) in anhydrous DCM (200 mL) was added DMP (11.0, $25.241 \mathrm{mmol}, 1.5$ equiv) at room temperature, and the reaction was stirred for 16 h . Then, sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL) was added, the organic layer was separated and the aqueous phase was extracted with DCM $(2 \times 100$ $\mathrm{mL})$. Combined organic extracts were washed with sat. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated, and the residue was purified on silica gel (PE/EtOAc). The product-containing fractions were combined and evaporated in vacuo, furnishing the title compound.
(S)-10-((2-(Trimethylsilyl)ethoxy)methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-2,5,11(3H,10H)-trione (10a). Prepared according to the general procedure for the preparation of PBD triones 10. Step 5 started with SI-4a (6.10 $\mathrm{g}, 16.827 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $5.30 \mathrm{~g}(87 \%)$ as colorless foam. $\mathbf{R}_{f}=0.45\left(\mathrm{PE} \mathrm{1:} \mathrm{EA} \mathrm{2)}.{ }^{1} \mathbf{H}\right.$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.91(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz})$, $7.72(1 \mathrm{H}, \mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.3,1.7$ $\mathrm{Hz}), 7.40(1 \mathrm{H}$, ddd, $J=8.7,7.8,1.2 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{dd}, J=9.9,3.0 \mathrm{~Hz})$, $4.22(1 \mathrm{H}$, br.d, $J=19.9 \mathrm{~Hz}), 3.92(1 \mathrm{H}$, br.d, $J=19.9 \mathrm{~Hz})$, $3.78-3.61(2 \mathrm{H}, \mathrm{m}), 3.61-3.54(1 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{ddd}, J=$ $9.9,1.5,0.5 \mathrm{~Hz}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.7,168.9,166.2,139.8,133.1,130.3$, 128.4, 127.1, 123.0, 78.3, 67.3, 54.8, 52.3, 37.5, 18.4, -1.3 . HRMS-ESI $(m / z):[M-H]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$, 359.1427; found 359.1436. IR ($\nu_{\max }$, film): 3463, 2950, 1765, $1688,1648,1462,1410,1248,1075,837 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=361^{\circ}$ ($c=0.1, \mathrm{CHCl}_{3}$).
(S)-7-Chloro-10-((2-(trimethylsilyl)ethoxy)methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-2,5,11$(3 \mathrm{H}, 10 \mathrm{H})$-trione (10b). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 5 started with SI-4b ($1.10 \mathrm{~g}, 2.771 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $933 \mathrm{mg}(85 \%)$ as colorless foam. $\mathbf{R}_{f}=0.58$ (PE 1: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.89$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}, J=$ $8.8,2.4 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J=10.0$ $\mathrm{Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=20.0$ $\mathrm{Hz}), 3.92(1 \mathrm{H}$, br.d, $J=20.0 \mathrm{~Hz}), 3.78-3.62(2 \mathrm{H}, \mathrm{m}), 3.58$ $(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}$, ddd, $J=10.8,10.0,1.2 \mathrm{~Hz}), 0.98(2 \mathrm{H}, \mathrm{m})$, $0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.2$, 168.6, 164.9, 138.3, 133.1, 132.9, 130.1, 129.7, 124.5, 78.2, 67.5, 54.8, 52.4, 37.4, 18.4, -1.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClSiNa}$, 417.1013; found 417.1024. IR ($\nu_{\max }$ film): 2953, 2897, 1768, 1694, 1653, 1448, 1367, 1248,1071, 835, $754 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=377^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$. MP $=58-59^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc})$.
(S)-8-(Trifluoromethyl)-10-((2-(trimethylsilyl)ethoxy)-methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a][1,4]-diazepine-2,5,11(3H,10H)-trione (10c). Prepared according to the general procedure for the preparation of PBD triones 10. Step 5 started with SI-4c ($308 \mathrm{mg}, 0.715 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in 165 mg (53%) as colorless foam. $\mathbf{R}_{f}=0.24$ (PE 2: EA 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 8.04(2 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}), 5.60$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{dd}, J$ $=9.9,3.1 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{m}), 3.94(1 \mathrm{H}, \mathrm{m}), 3.84-3.55(3 \mathrm{H}$, m), $2.82(1 \mathrm{H}, \mathrm{ddd}, J=11.0,9.5,1.2 \mathrm{~Hz}), 0.99(2 \mathrm{H}, \mathrm{m}), 0.03$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.0,168.5$,
165.0, 140.3, $135.0(\mathfrak{q}, J=34.0 \mathrm{~Hz}), 131.4,131.2,123.6(\mathfrak{q}, J=$ $3.5 \mathrm{~Hz}), 123.0(\mathrm{q}, J=273.0 \mathrm{~Hz}), 120.2(\mathrm{q}, J=3.5 \mathrm{~Hz}), 78.2$, 67.7, 54.8, 52.4, 37.4, 18.3, -1.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiF}_{3} \mathrm{Na}$, 451.1277; found 451.1288. IR ($\nu_{\max }$, film): 2954, 2898, 1768, 1697, 1651, 1446, 1321, 1132, $839 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=280^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S)-9-Methoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-2,5,11(3H,10H)-trione (10d). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 5 started with SI-4d ($3.41 \mathrm{~g}, 8.687 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $3.21 \mathrm{~g}(94 \%)$ as colorless foam. $\mathbf{R}_{f}=0.31$ (ether). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.47$ $(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=8.2,7.9 \mathrm{~Hz}), 7.13$ $(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 5.02(1 \mathrm{H}$, $\mathrm{d}, J=10.5 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=9.7,2.8 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, J=$ 19.6 Hz), $3.91(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}$, overlapping with 3 H of MeO$), 3.55-3.46(1 \mathrm{H}, \mathrm{m}), 3.40-3.28(2 \mathrm{H}, \mathrm{m})$, $2.71(1 \mathrm{H}$, ddd, $J=10.9,9.7,1.2 \mathrm{~Hz}), 0.84-0.64(2 \mathrm{H}, \mathrm{m})$, $-0.09(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.9$, 169.6, 165.8, 152.9, 132.6, 128.8, 126.6, 121.5, 114.9, 75.4, 66.6, 56.1, 55.2, 52.1, 37.3, 18.0, -1.3. HRMS-ESI (m / z) : [M $+\mathrm{Na}]$ calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SiNa}, 413.1509$; found 413.1522. IR ($\nu_{\max }$ film): 3395, 2952, 1627, 1444, 1248, $1074,836,754 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=182^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S)-7,8-Dimethoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-2,5,11(3H,10H)-trione (10e). Prepared according to the general procedure for the preparation of PBD triones $\mathbf{1 0}$. Step 5 started with SI-4e ($205 \mathrm{mg}, 0.674 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in 208 mg (73%) as colorless foam. $\mathbf{R}_{f}=0.25$ (PE 1: EA 2). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 7.33$ (1 H, br.s), $7.26(1 \mathrm{H}$, br.s), $5.55(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 4.70(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{dd}, J=9.9,3.1 \mathrm{~Hz})$, $4.24(1 \mathrm{H}, \mathrm{d}, J=20.1 \mathrm{~Hz}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}$, $\mathrm{d}, J=20.1 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{td}, J=9.7,6.8 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{td}, J=$ $9.7,6.8 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{ddd}, J=11.3,9.9,1.2$ $\mathrm{Hz}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 206.9,168.9,166.1,152.5,147.7,134.1,120.6$, 111.2, 105.7, 78.4, 67.4, 56.4, 56.4, 54.9, 52.4, 37.5, 18.5, -1.2. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa}$, 443.1614; found 443.1606. IR ($\nu_{\max }$, film): 2953, 1766, 1687, 1645, 1608, 1519, 1436, 1360, 1251, 1069, 1014, 838, 761 $\mathrm{cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=344^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S)-8-(Benzyloxy)-7-methoxy-10-((2-(trimethylsilyl)-ethoxy)methyl)-1,11a-dihydro-5H-benzo[e]pyrrolo[1,2-a]-[1,4]diazepine-2,5,11(3H,10H)-trione (10f). Prepared according to the general procedure for the preparation of PBD triones 10. Step 5 started with SI-4f ($5.20 \mathrm{~g}, 10.428 \mathrm{mmol}, 1.0$ equiv). The title compound was obtained in $3.08 \mathrm{~g}(59 \%)$ as colorless foam. $\mathbf{R}_{f}=0.39$ (PE 1: EA 2). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.46-7.42(2 \mathrm{H}, \mathrm{m}), 7.41-7.32(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{s}), 5.46$ $(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.22(2 \mathrm{H}, \mathrm{dd}, J=14.3,12.6 \mathrm{~Hz}), 4.61(1 \mathrm{H}$, dd, $J=9.9,3.2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{m})$, $3.95(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{m}), 3.74-3.51(3 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}$, ddd, $J=11.0,9.9,1.2 \mathrm{~Hz}), 0.87-0.81(2 \mathrm{H}, \mathrm{m}), 0.04(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 206.9, 168.8, 166.0, 151.4, 148.2, 135.9, 133.9, 128.9, 128.5, 127.6, 120.7, 111.6, 107.9, 78.3, 71.1, 67.3, 56.4, 54.9, 52.4, 37.4, 18.5, -1.2 . HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$, 497.2108; found 497.2090. IR ($\nu_{\max }$, film): 2952, 1766, 1688, 1646, 1435, 1249, 1068, 837, $754 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=290^{\circ}(c=0.1$, CHCl_{3}).

General Procedure for the Preparation of JuliaKocienski Reagents 11-Step 1. To a solution of isothiocyanate ($39.845 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PrOH}(40 \mathrm{~mL}$), sodium azide ($5.2 \mathrm{~g}, 79.691 \mathrm{mmol}, 2.0$ equiv) and water (65 mL) were added subsequentially, and the resulting mixture was heated in a sealed tube at $100{ }^{\circ} \mathrm{C}$ for 5 h . Then, the reaction was cooled to ambient temperature, quenched with 3 N HCl (60 mL), partially evaporated $(\sim 1 / 2$ of the initial volume), and extracted with DCM $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated in vacuo, furnishing the title compound. The obtained material was used in the next step without further purification.

1-(4-Methoxyphenyl)-1H-tetrazole-5-thiol (SI-5b). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 1 started with 1-isothiocyanato-4-methoxybenzene ($9.56 \mathrm{~g}, 57.913 \mathrm{mmol}, 1.0$ equiv). The product was used in the next step without further purification.

1-(4-Cyanophenyl)-1H-tetrazole-5-thiol (SI-5c). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 1 started with 4isothiocyanatobenzonitrile $(1.00 \mathrm{~g}, 6.242 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica pad filtration (EtOAc). The title compound was obtained in $345 \mathrm{mg}(27 \%)$ as a beige solid. $\mathbf{R}_{f}=0.23$ (EtOAc 10: EtOH 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; DMSO$\left.d_{6}\right): \delta 8.24(2 \mathrm{H}, \mathrm{m}), 8.11(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathbf{C}\{\mathbf{1} \mathbf{H}\} \mathbf{N M R}(100 \mathrm{MHz}$, DMSO- d_{6}): $\delta 163.9,137.7,133.5,124.4,118.0,111.9$. HRMSESI (m / z) : $[\mathrm{M}-\mathrm{H}]$ calculated for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{~S}, 202.0187$; found 202.0190. IR ($\nu_{\text {max }}$ film): 3076, 2937, 2239, 1607, 1476, 1352, 1272, 1045, 842, $578 \mathrm{~cm}^{-1}$. MP $=168-169{ }^{\circ} \mathrm{C}(\mathrm{EtOAc})$.

1-(4-Fluorophenyl)-1H-tetrazole-5-thiol (SI-5d). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 1 started with 1-fluoro-4isothiocyanatobenzene ($2.00 \mathrm{~g}, 13.056 \mathrm{mmol}, 1.0$ equiv). The product was purified by silica pad filtration (EtOAc). The title compound was obtained in $728 \mathrm{mg}(28 \%)$ as a beige solid. $\mathbf{R}_{f}=$ 0.48 (EtOAc 10: EtOH 1). ${ }^{1}$ H NMR (400 MHz ; DMSO- d_{6}): $\delta 7.91(2 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(100 \mathrm{MHz}$, DMSO- d_{6}): $\delta 164.1,162.1(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 127.2(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=23.3 \mathrm{~Hz})$. HRMS-ESI $(m / z):[\mathrm{M}-\mathrm{H}]$ calculated for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{FS}, 195.0141$; found 195.0149. IR ($\nu_{\text {max }}$ film): 3062, 2913, 2764, 1505, 1358, 1234, 1049, 834, 787, $570 \mathrm{~cm}^{-1}$. MP $=150-151{ }^{\circ} \mathrm{C}$ (EtOAc).

1-(2,6-Dimethoxyphenyl)-1H-tetrazole-5-thiol (SI-5e). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 1 started with 2 -isothiocyanato-1,3-dimethoxybenzene $(1.81 \mathrm{~g}, 9.270$ $\mathrm{mmol}, 1.0$ equiv). The product was purified by silica pad filtration (EtOAc). The title compound was obtained in 1.84 g (84%) as a beige solid. $\mathbf{R}_{f}=0.32$ (ethylacetate). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.90(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.48(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz})$, $6.71(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 3.83(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.9,156.8,133.0,110.6,104.6,56.4$. HRMS-ESI $(m / z):[M+N a]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SNa}$, 261.0422; found 261.0415. IR ($\nu_{\text {max }}$, film): 3436, 2942, 2738, 2534, 1602, 1262, 1113, $776 \mathrm{~cm}^{-1}$. MP $=153-154{ }^{\circ} \mathrm{C}$ (EtOAc).

1-(2,6-Diisopropylphenyl)-1H-tetrazole-5-thiol (SI-5g). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 1 started with 1,3-diisopropyl-2-isothiocyanatobenzene (9.50 g , 39.845 mmol, 1.0 equiv). The title compound was obtained in 9.50 g (90%) as a beige solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 15.09$
$(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $2.40(2 \mathrm{H}$, hept, $J=6.9 \mathrm{~Hz}), 1.29(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.16$ $(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 166.0, 147.1, 132.1, 128.7, 124.6, 29.1, 24.4, 23.4. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}, 263.1330$; found 263.1336. IR ($\nu_{\text {max }}$ film): 3040, 2967, 2928, 2761, 2576, 1500, 1353, 1052, 802, $757 \mathrm{~cm}^{-1} . \mathrm{MP}=135-136^{\circ} \mathrm{C}(\mathrm{DCM})$.

General Procedure for the Preparation of JuliaKocienski Reagents 11-Step 2. A suspension containing SI-5 ($28.056 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{KOH}(1.70 \mathrm{~g}, 30.862$ mmol, 1.1 equiv) in ab. ethanol (50 mL) was stirred at room temperature for 15 min (until all solids dissolved). Then, ethyl iodide ($2.5 \mathrm{~mL}, 30.862 \mathrm{mmol}, 1.1$ equiv) was added and stirring was continued for 4 h , during which a precipitate formed. Next, the suspension was evaporated, water (50 mL) was added, and the mixture was extracted with DCM $(2 \times 40$ $\mathrm{mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated, and the residue was purified on silica gel (PE/DCM). The productcontaining fractions were combined and evaporated in vacuo, furnishing the title compound.

5-(Ethylthio)-1-(4-methoxyphenyl)-1H-tetrazole (SI-6b). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 2 started with SI-5b ($9.56 \mathrm{~g}, 57.913 \mathrm{mmol}, 1.0$ equiv). The title compound was purified by crystallization from EtOAc. The title compound was obtained in 6.39 g (46% in two steps) as a beige solid. $\mathbf{R}_{f}=0.41\left(\mathrm{PE} \mathrm{3:} \mathrm{EtOAc} \mathrm{1)}.{ }^{1} \mathbf{H}\right.$ NMR $(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right): \delta 7.45(2 \mathrm{H}, \mathrm{m}), 7.03(2 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.38$ $(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.48(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.9,154.5,126.5,125.7,115.0,55.8$, 27.8, 14.7. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{OS}, 237.0810$; found 237.0820. IR ($\nu_{\text {max }}$, film): 3467, 2971, 2845, 1607, 1515, 1453, 1251, 1170, 1089, 1021, $830,625,555 \mathrm{~cm}^{-1} . \mathrm{MP}=92-93{ }^{\circ} \mathrm{C}(\mathrm{EtOAc})$.

5-(Ethylthio)-1-(4-cyanophenyl)-1H-tetrazole (SI-6c). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 2 started with SI-5c (345 $\mathrm{mg}, 1.697 \mathrm{mmol}, 1.0$ equiv). The title compound was precipitated from the reaction mixture and collected by filtration and washing of the filter cake with $\mathrm{EtOH}(2 \mathrm{~mL})$. The title compound was obtained in 343 mg (87%) as a beige solid. $\mathbf{R}_{f}=0.45$ (PE 1: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; DMSO- d_{6}): $\delta 8.17(2 \mathrm{H}, \mathrm{m}), 7.92(2 \mathrm{H}, \mathrm{m}), 3.36(2 \mathrm{H}, \mathrm{q}, J=7.3$ $\mathrm{Hz}), 1.39(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(100 \mathrm{MHz}$, DMSO- d_{6}): $\delta 154.6,136.6,134.2,125.3,117.8,113.1,27.6$, 14.6. HRMS-ESI $(m / z):[M-H]$ calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{~S}$, 232.0657; found 232.0666. IR ($\nu_{\max }$, film): 3100, 2969, 2232, 1922, 1602, 1506, 1384, 1244, 1082, 839, $565 \mathrm{~cm}^{-1}$. MP >250 ${ }^{\circ} \mathrm{C}$ (dec; EtOH).

5-(Ethylthio)-1-(4-fluorophenyl)-1H-tetrazole (SI-6d). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 2 started with SI-5d (2.00 g , $13.056 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with PE/EtOAc 6:1 as an eluent. The title compound was obtained in $723 \mathrm{mg}(87 \%)$ as a beige solid. $\mathbf{R}_{f}=0.45$ (PE 1: EtOAc 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.56(2 \mathrm{H}, \mathrm{m})$, $7.26(2 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.50(3 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.3(\mathrm{~d}, J=251.8$ $\mathrm{Hz}), 154.6,129.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 117.1$ $(\mathrm{d}, J=23.7 \mathrm{~Hz})$, 27.9, 14.7. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{SF}, 225.0610$; found 225.0618. IR ($\nu_{\max }$, film $): 3080,2975,2933,1514,1387,1236,1083,840$, $623,552 \mathrm{~cm}^{-1} . \mathrm{MP}=58-59{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc}$.

1-(2,6-Dimethoxyphenyl)-5-(ethylthio)-1H-tetrazole (SI6e). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 2 started from SI-5e ($1.86 \mathrm{~g}, 7.806 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with $\mathrm{PE} / \mathrm{EtOAc} 1: 1$ as an eluent. The title compound was obtained in $1.49 \mathrm{~g}(71 \%)$ as a white solid. $\mathbf{R}_{f}=0.50$ (PE 1: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 7.45(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}), 6.67(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $3.77(6 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8,156.3,132.8$, 110.6, 104.4, 56.4, 27.5, 14.8. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}, 267.0916$; found 267.0916. IR ($\nu_{\text {max }}$ film): 2977, 2845, 1601, 1486, 1399, 1297, 1262, 1110, $775,731,650 \mathrm{~cm}^{-1} . \mathrm{MP}=132-133{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc})$.

1-(2,6-Dimethylphenyl)-5-(ethylthio)-1H-tetrazole (SI-6f). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. The procedure started with step 1 (2,6-dimethylphenyl isothiocyanate (6.24 g , $35.168 \mathrm{mmol}, 1.0$ equiv)) and step 2 (SI-5f). The title compound was collected by filtration and used in the next step as it was. The title compound was obtained in $8.10 \mathrm{~g}(90 \%$ in two steps) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.35(1 \mathrm{H}, \mathrm{m}), 7.19(2 \mathrm{H}, \mathrm{m}), 3.36(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 1.96$ $(6 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 155.8,136.1,131.4,131.2,128.9,27.2,17.5,14.8$. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{~S}$, 235.1017; found 235.1017. IR ($\nu_{\max }$, film): 2975, 2931, 2871, 1476, 1387, 1265, 1234, 1092, 976, $790 \mathrm{~cm}^{-1}$. MP > $180^{\circ} \mathrm{C}$ (dec; EtOH).

1-(2,6-Diisopropylphenyl)-5-(ethylthio)-1H-tetrazole (SI6 g). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 2 started with SI-5g ($5.00 \mathrm{~g}, 19.056 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with PE/DCM 3:1 as an eluent. The title compound was obtained in $3.24 \mathrm{~g}(58 \%)$ as a white solid. $\mathbf{R}_{f}=0.21$ (PE 3: DCM 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.53(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.37(2 \mathrm{H}, \mathrm{q}$, $J=7.3 \mathrm{~Hz}), 2.13(2 \mathrm{H}$, hept, $J=6.9 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 1.18(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.10(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.9,146.7,131.9$, 128.5, 124.5, 28.7, 27.4, 24.5, 23.2, 14.8. HRMS-ESI (m / z) : [$\mathrm{M}+\mathrm{H}$] calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~S}$, 291.1643; found 291.1651. IR ($\nu_{\max }$ film): 3459, 2967, 2931, 2872, 1465, 1390, 1266, 1086, $759 \mathrm{~cm}^{-1}$. MP $=71-72{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{DCM})$.

General Procedure for the Preparation of JuliaKocienski Reagents 11-Step 3. To a solution of SI-6 $\left(11.018 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{DCM}(120 \mathrm{~mL}), \mathrm{NaHCO}_{3}(4.62$ $\mathrm{g}, 55.091 \mathrm{mmol}, 5.0$ equiv) and $70 \% m$ CPBA $(6.17 \mathrm{~g}, 27.545$ mmol, 2.5 equiv) were added subsequently and stirring was continued at rt for 16 h . After reaction completion, it was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$, then sat. $\mathrm{NaHCO}_{3}(30$ mL) was added, and the mixture was extracted with DCM ($2 \times$ 100 mL). Combined organic extracts were washed with sat. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Volatiles were evaporated, and the residue was purified on silica gel or by crystallization.

5-(Ethylsulfonyl)-1-(4-methoxyphenyl)-1H-tetrazole (11b). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 3 started with SI-6b ($4.10 \mathrm{~g}, 17.315 \mathrm{mmol}, 1.0$ equiv). The title compound was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$. The title compound was obtained in $3.66 \mathrm{~g}(78 \%)$ as a white solid. $\mathbf{R}_{f}=0.48$ (PE 1: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.59(2 \mathrm{H}, \mathrm{m}), 7.06$
$(2 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.75(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.8,153.2$, 126.7, 125.8, 114.9, 55.8, 50.9, 7.1. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: [M+ Na] calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SNa}, 291.0528$; found 291.0540. IR ($\nu_{\max }$ film): 3458, 3083, 2942, 1607, 1515, 1339, 1260, 1151, 1023, 836, 731, 612, $544 \mathrm{~cm}^{-1} . \mathrm{MP}=58-$ $59^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.

5-(Ethylsulfonyl)-1-(4-cyanophenyl)-1H-tetrazole (11c). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 3 started SI-6c ($340 \mathrm{mg}, 1.470 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with $\mathrm{PE} / \mathrm{EtOAc} 1: 1$ as an eluent. The title compound was obtained in 140 mg (36%) as a white solid. $\mathbf{R}_{f}=0.35$ (PE 3: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.92(4 \mathrm{H}, \mathrm{br} . \mathrm{s}), 3.82(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{t}, J=7.4$ Hz). ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.3,136.3$, 133.8, 125.9, 117.2, 115.7, 51.1, 7.1. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: [M H] calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, 262.0399; found 262.0407. IR ($\nu_{\text {max }}$, film): 3649, 3107, 3022, 2946, 2235, 1766, 1609, 1505, 1335, 1152, 1052, 845, 731, $545 \mathrm{~cm}^{-1}$.

5-(Ethylsulfonyl)-1-(4-fluorophenyl)-1H-tetrazole (11d). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 3 started with SI-6d ($714 \mathrm{mg}, 3.183 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with $\mathrm{PE} / \mathrm{EtOAc} 3: 1$ as an eluent. The title compound was obtained in 625 mg (76%) as a white solid. $\mathbf{R}_{f}=0.30$ (PE 3: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(2 \mathrm{H}, \mathrm{m}), 7.29(2 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{q}, J=7.4$ $\mathrm{Hz}), 1.55(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 164.2(\mathrm{~d}, J=253.3 \mathrm{~Hz}), 153.3,129.1(\mathrm{~d}, J=3.4$ $\mathrm{Hz}), 127.4(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 51.0,7.1$. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{FS}$, 257.0508; found 257.0502. IR ($\nu_{\max }$, film): 3086, 2988, 2946, 1514, 1341, 1234, 1151, 842, 730, 620, 543, $509 \mathrm{~cm}^{-1} . \mathrm{MP}=$ $44-45{ }^{\circ} \mathrm{C}$ (PE/EtOAc).

1-(2,6-Dimethoxyphenyl)-5-(ethylsulfonyl)-1H-tetrazole (11e). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 3 started with SI-6e ($1.49 \mathrm{~g}, 5.594 \mathrm{mmol}, 1.0$ equiv). The title compound was purified by crystallization from $\mathrm{PE} / \mathrm{EtOAc}$. The title compound was obtained in $920 \mathrm{mg}(55 \%)$ as a white solid. $\mathbf{R}_{f}=0.38$ (PE 1: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.50(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.79(6 \mathrm{H}, \mathrm{s})$, $3.52(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.41(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.9,154.1,133.4,111.0,104.4$, 56.4, 50.9, 6.7. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$, 299.0814; found 299.0811. IR ($\nu_{\max }$, film): 2950, 2846, 1605, 1487, 1345, 1266, 1113, 1014, 782, 732, $618,500 \mathrm{~cm}^{-1}$. MP $=124-125{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{EtOAc})$.

1-(2,6-Diisopropylphenyl)-5-(ethylsulfonyl)-1H-tetrazole (11g). Prepared according to the general procedure for the preparation of Julia-Kocienski reagents 11. Step 3 started with SI-6g ($4.37 \mathrm{~g}, 15.046 \mathrm{mmol}, 1.0$ equiv). The title compound was purified on silica gel with PE/DCM 1:2 as an eluent. The title compound was obtained in $3.38 \mathrm{~g}(80 \%)$ as a white solid. $\mathbf{R}_{f}=0.35$ (PE 10: EtOAc 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $7.57(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.71(2 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 2.02(2 \mathrm{H}$, hept, $J=6.8 \mathrm{~Hz}), 1.52(3 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 1.24(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.08(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$. ${ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.3,146.2,132.4$, 128.6, 124.3, 50.6, 29.2, 25.3, 22.2, 6.9. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: [M $+\mathrm{H}]$ calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, 323.1542; found 323.1542.

IR ($\nu_{\text {max }}$ film): 2974, 2929, 2871, 1457, 1339, 1150, 1059, 808, $760,737,548,501 \mathrm{~cm}^{-1} . \mathrm{MP}=93-94{ }^{\circ} \mathrm{C}(\mathrm{PE} / \mathrm{DCM})$.

Optimized Synthesis of $\mathbf{1 1 \mathrm { g }}$. A suspension of $2,6-$ diisopropylphenyl isothiocyanate ($10.00 \mathrm{~g}, 41.942 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaN}_{3}(5.45 \mathrm{~g}, 83.885 \mathrm{mmol}, 2.0$ equiv) in abs. EtOH (100 mL) was heated under reflux for 3 h . Then, the reaction mixture was cooled to room temperature, iodoethane ($5.0 \mathrm{~mL}, 62.913 \mathrm{mmol}, 1.5$ equiv) was added, and the resulting mixture was stirred at room temperature for 3 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted once with DCM $(100 \mathrm{~mL})$. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvents were removed in vacuo. The crude product (13.14 g) was dissolved in $\mathrm{EtOH}(150 \mathrm{~mL})$ and cooled (ice bath), and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \times 4 \mathrm{H}_{2} \mathrm{O}(5.23 \mathrm{~g}$, $4.194 \mathrm{mmol}, 0.1$ equiv) was added followed by 35% aq $\mathrm{H}_{2} \mathrm{O}_{2}$ ($36 \mathrm{~mL}, 419.432 \mathrm{mmol}, 10.0$ equiv). The resulting mixture was stirred at room temperature in a sealed tube for 24 h . Then, the suspension was poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the precipitate was collected by filtration. The filter cake was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and dried under vacuum (at $50^{\circ} \mathrm{C}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 2 days) to obtain 12.28 g (90% in three steps) of $\mathbf{1 1 f}$ as a white solid.

1-(2,6-Dimethylphenyl)-5-(ethylsulfonyl)-1H-tetrazole (11f). Prepared according to the optimized procedure for the preparation of Julia-Kocienski reagents 11. The procedure started with 2,6-dimethylphenyl isothiocyanate $(6.24 \mathrm{~g}, 35.168$ mmol, 1.0 equiv). The title compound was obtained in 7.05 g (75%) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.41$ $(1 \mathrm{H}, \mathrm{m}), 7.23(2 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.00(6 \mathrm{H}, \mathrm{s})$, $1.54(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 154.0, 135.9, 131.8, 131.6, 128.9, 50.6, 17.4, 7.1. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}, 267.0916$; found 267.0925. IR ($\nu_{\max }$ film): 2984, 2928, 1477, 1456, 1400, 1342, 1336, 1151, 777, 622, 542, $506 \mathrm{~cm}^{-1} . \mathrm{MP}>180{ }^{\circ} \mathrm{C}$ (dec; EtOH, $\mathrm{H}_{2} \mathrm{O}$).

General Procedure for Olefination of 10. To a solution of sulfone ($0.374 \mathrm{mmol}, 3.0$ equiv) in THF (2 mL ; freshly distilled over $\mathrm{Na} / \mathrm{Ph}_{2} \mathrm{CO}$) at $-78{ }^{\circ} \mathrm{C}$ was added 1 M KHMDS (made prior to use: $78.5 \mathrm{mg}, 0.374 \mathrm{mmol}, 3.0$ equiv dissolved in 0.37 mL of THF), and the mixture was stirred at the same temperature for 15 min . Next, a solution of $\mathbf{1 0}(0.124 \mathrm{mmol}$, 1.0 equiv) in THF (1.5 mL) was added, and the resulting mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$ before being quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. Then, brine $(4 \mathrm{~mL})$ was added, the organic layer was separated, and the aqueous phase was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and volatiles were evaporated in vacuo. At this point, the qNMR spectrum was measured. The analytically pure sample was obtained by purification of the crude product by flash column chromatography.
(S,E)-2-Ethylidene-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]-diazepine-5,11(10H)-dione (12a). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione 10a. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with PE/EtOAc 2:1 as an eluent. The title compound was obtained as colorless oil. $\mathbf{R}_{f}=0.45$ (PE 1: EA 1). For the E-isomer, ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.89(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}), 7,68(1 \mathrm{H}, \mathrm{m})$, $7.52(1 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 4.71(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.37-4.13(3 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}$, $\mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{m})$,
$0.98(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s})$. For the Z-isomer, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.90(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}), 7,68(1 \mathrm{H}, \mathrm{m})$, $7.52(1 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.37-4.13(3 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}$, $\mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{m}), 1.81(1 \mathrm{H}, \mathrm{m})$, $0.98(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR (100 MHz , CDCl_{3}): $\delta 170.10$ and 170.04 (isomers), 165.58 and 165.37 (isomers), 139.97, 133.15 and 133.11 (isomers), 132.47, 130.03, 129.63 and 129.58 (isomers), 126.47, 122.70, 118.87 and 118.55 (isomers), 78.18 and 78.12 (isomers), 67.18 and 67.10 (isomers), 57.63 and 57.14 (isomers), 51.14 and 48.14 (isomers), 32.18 and 28.23 (isomers), 18.43, 15.02 and 14.64 (isomers), -1.25 . HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}$ 395.1767; found 395.1765. IR ($\nu_{\text {max }}$ film): 3272, 2952, 1644, 1461, 1420, 1377, 1248, 1071, 836, 762 $\mathrm{cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=252^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S,E)-7-Chloro-2-ethylidene-10-((2-(trimethylsilyl)ethoxy)-methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a]-[1,4]diazepine-5,11(10H)-dione (12b). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione 10b. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with DCM/MeOH 50:1 as an eluent. The title compound was obtained as colorless oil. $\mathbf{R}_{f}=0.45$ (DCM 50: MeOH 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.88(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 7.66$ $(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}), 5.54(1 \mathrm{H}$, m), $5.51(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 4.36-$ $4.23(2 \mathrm{H}, \mathrm{m}), 4.21-4.11(1 \mathrm{H}, \mathrm{m}), 3.81-3.61(2 \mathrm{H}, \mathrm{m}), 3.52-$ $3.33(1 \mathrm{H}, \mathrm{m}), 2.85-2.57(1 \mathrm{H}, \mathrm{m}), 1.78-1.63(3 \mathrm{H}, \mathrm{m}), 0.98$ $(2 \mathrm{H}, \mathrm{m}), 0.02(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1} \mathbf{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 169.7, 164.1, 138.5, 132.8, 132.5, 132.3, 130.9, 129.8, 124.2, 118.8, 78.1, 67.3, 57.6, 51.3, 28.2, 18.4, 14.7, -1.2. HRMS-ESI $(m / z):[\mathrm{M}-\mathrm{H}]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{SiNa}$, 405.1401; found 405.1385. IR ($\nu_{\max }$ film): 2924, 2857, 1694, 1649, 1443, 1365, 1248, 1073, $837 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=214^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S,E)-2-Ethylidene-8-(trifluoromethyl)-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (12c). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione $\mathbf{1 0 c}$. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with $\mathrm{DCM} / \mathrm{MeOH} 50: 1$ as an eluent. The title compound was obtained as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ 8.05-8.00 ($2 \mathrm{H}, \mathrm{m}$), $7.59(1 \mathrm{H}, \mathrm{m}), 5.56(2 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}$, $J=10.0 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}), 4.18$ $(1 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.53-3.35(1 \mathrm{H}, \mathrm{m})$, $2.84-2.60(1 \mathrm{H}, \mathrm{m}), 1.78-1.64(3 \mathrm{H}, \mathrm{m}), 0.99(2 \mathrm{H}, \mathrm{m}), 0.03$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,164.2$, $140.4,134.4(\mathrm{q}, J=32.5 \mathrm{~Hz}), 132.6,132.4,131.1,123.2(\mathrm{q}, J=$ $273.8 \mathrm{~Hz}), 123.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 119.0$, 78.1, 67.5, 57.6, 51.3, 28.3, 18.3, 14.7, -1.3. HRMS-ESI ($\mathrm{m} /$ $z):[\mathrm{M}-\mathrm{H}]$ calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}, 439.1665$; found 439.1669. IR ($\nu_{\max }$ film): 2924, 2855, 1698, 1655, 1449, 1180, 1134, 1085, 835, $627 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=60^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S,E)-2-Ethylidene-9-methoxy-10-((2-(trimethylsilyl)-ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo-[1,2-a][1,4]diazepine-5,11(10H)-dione (12d). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione 10d. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with PE/EtOAc 1:1 as an eluent. The title compound was obtained as colorless oil. $\mathbf{R}_{f}=0.26$ (PE 1: EA 1). For the \underline{E} isomer, ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.47(1 \mathrm{H}, \mathrm{m}), 7.34$
$(1 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{m}), 5.72(1 \mathrm{H}, \mathrm{m}), 5.56-5.47(1 \mathrm{H}, \mathrm{m})$, $5.01(1 \mathrm{H}, \mathrm{m}), 4.33-4.10(3 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{m}), 3.44-3.27$ $(3 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{m}), 0.81-0.65(2 \mathrm{H}, \mathrm{m})$, $0.08(9 \mathrm{H}, \mathrm{s})$. For the Z-isomer, ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 7.47(1 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{m}), 5.72(1 \mathrm{H}, \mathrm{m})$, $5.56-5.47(1 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{m}), 4.33-4.10(3 \mathrm{H}, \mathrm{m}), 3.89$ $(3 \mathrm{H}, \mathrm{m}), 3.44-3.27(3 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{m})$, $0.81-0.65(2 \mathrm{H}, \mathrm{m}), 0.08(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR $(150 \mathrm{MHz}$, CDCl_{3}): $\delta 170.85$ and 170.78 (isomers), 165.26 and 165.02 (isomers), 152.80, 134.00 and 133.96 (isomers), 133.42 and 133.34 (isomers), 128.13, 126.73, 121.36, 118.68 and 118.31 (isomers), 114.34, 75.10 and 74.97 (isomers), 66.26, 58.02 and 57.54 (isomers), 55.99, 50.83 and 47.95 (isomers), 31.79 and 27.94 (isomers), 17.96 and 17.92 (isomers), 15.00 and 14.65 (isomers), -1.35 . HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}$, 425.1873; found 425.1876. IR ($\nu_{\text {max }}$ film): 2951, 1689, 1651, 1410, 1247, 1066, 836, $755 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=$ $167^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S,E)-2-Ethylidene-7,8-dimethoxy-10-((2-(trimethylsilyl)-ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo-[1,2-a][1,4]diazepine-5,11(10H)-dione (12e). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione $\mathbf{1 0 e}$. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with PE/EtOAc 2:1 as an eluent. The title compound was obtained as colorless oil. For the E-isomer, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}), 5.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{d}, J=$ $9.9 \mathrm{~Hz}), 4.37-4.08(3 \mathrm{H}, \mathrm{m}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.79$ $(1 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}$, $\mathrm{m}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.03(9 \mathrm{H}, \mathrm{s})$. For the \underline{Z}-isomer, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J$ $=2.0 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{d}$, $J=9.9 \mathrm{~Hz}), 4.37-4.08(3 \mathrm{H}, \mathrm{m}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s})$, $3.79(1 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.36(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}, \mathrm{m}), 1.65$ $(3 \mathrm{H}, \mathrm{m}), 0.98(2 \mathrm{H}, \mathrm{m}), 0.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.1,165.3,152.0,147.2,134.3,133.3$, 121.9, 118.5, 111.1, 105.6, 78.3, 67.2, 57.8, 56.3, 56.3, 51.2, 28.2, 18.5, 14.6, -1.2. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]$ calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SiNa}$, 455.1978; found 455.1977. IR ($\nu_{\max }$, film): 3431, 2955, 2925, 2854, 1700, 1652, 1520, 1456, 1248, $1075,837 \mathrm{~cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=287^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.
(S,E)-8-(Benzyloxy)-2-ethylidene-7-methoxy-10-((2-(trimethylsilyl)ethoxy)methyl)-1,2,3,11a-tetrahydro-5H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H)-dione (12f). Prepared according to the general procedure for the olefination of $\mathbf{1 0}$ starting from trione 10f. An analytically pure sample was obtained by purification of the crude reaction mixture on silica gel with PE/EtOAc 1:1 as an eluent. The title compound was obtained as colorless oil. $\mathbf{R}_{f}=0.30$ (PE 1: EA 1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.46-7.41(2 \mathrm{H}, \mathrm{m}), 7.39-7.28(4 \mathrm{H}$, $\mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{m}), 5.43(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 5.20$ $(2 \mathrm{H}, \mathrm{s}), 4.47(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{m}), 4.27(1 \mathrm{H}, \mathrm{dd}$, $J=9.2,2.4 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{m}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{td}, J=$ $9.5,7.2 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{td}, J=9.5,7.2 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=$ $16.2 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{m}), 0.97(2 \mathrm{H}, \mathrm{m}), 0.04$ $(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,165.2$, 150.9, 147.7, 136.1, 134.0, 133.3, 128.8, 128.3, 127.6, 122.0, 118.4, 111.4, 107.8, 78.2, 71.0, 67.1, 57.7, 56.4, 51.2, 28.2, 18.5, 14.6, -1.2. HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$, 509.2472; found 509.2448. IR ($\nu_{\max }$, film): 2951, 1689, 1639, 1516, 1436, 1362, 1248, 1069, 836, 751, 696 $\mathrm{cm}^{-1} \cdot[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=272^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

Oxo-prothracarcin (4). To a stirred solution of 12a (22 mg , $0.059 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) was added concn HCl ($246 \mu \mathrm{~L}, 2.95 \mathrm{mmol}, 50.0$ equiv), and the resulting mixture was heated for 1 h at $60^{\circ} \mathrm{C}$. The volatiles were evaporated in vacuo, and the oily residue was purified on silica gel (DCM/ $\mathrm{MeOH} 20: 1$) to furnish 8 mg (55%) of oxo-prothracarcin (4) as colorless wax. $\mathbf{R}_{f}=0.35$ (DCM 20: MeOH 1). For the $\underline{E-}$ isomer, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.87(1 \mathrm{H}$, ddd, $J=$ $7.9,1.6,0.3 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.4,1.7 \mathrm{~Hz}), 7.29(1 \mathrm{H}$, m), $7.14(1 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.4$ $\mathrm{Hz}), 4.31(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{dq}, J=16.0,1.8 \mathrm{~Hz}), 3.45(1 \mathrm{H}$, br.d, $J=16.2 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{m})$. For the \underline{Z} isomer, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.88(1 \mathrm{H}$, ddd, $J=$ $7.9,1.6,0.3 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.4,1.7 \mathrm{~Hz}), 7.29(1 \mathrm{H}$, m), $7.14(1 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{m}), 4.37-4.19(3 \mathrm{H}, \mathrm{m}), 3.35-$ $3.28\left(1 \mathrm{H}, \mathrm{m}\right.$ (partially overlapping with $\left.\left.\mathrm{CD}_{3} \mathrm{OD}\right)\right), 2.83(1 \mathrm{H}$, m), $1.68(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}\{\mathbf{1 H}\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 172.2, 167.8, 137.8, 134.5 and 134.4 (isomers), 133.9, 131.4 and 127.4 (isomers), 125.8, 122.6, 119.4 and 119.1 (isomers), 58.4 and 57.8 (isomers), 52.5, 32.4 and 28.2 (isomers), 14.8 and 14.5 (isomers). HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$, 243.1134; found 243.1140. IR ($\nu_{\text {max }}$, film): 3218, 2920, 2854, 1694, 1622, 1446, 1257, $760 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=$ $481.0^{\circ}(c=0.1, \mathrm{MeOH})$.

Oxo-tomaymycin (5). To a solution of $12 \mathrm{f}(211 \mathrm{mg}, 0.414$ mmol, 1.0 equiv) in DCM (4 mL), anisole ($0.77 \mathrm{~mL}, 7.051$ mmol, 17 equiv) and methanesulfonic acid ($0.46 \mathrm{~mL}, 7.051$ mmol, 17 equiv) were added sequentially at room temperature, and the mixture was stirred for 16 h . The volatiles were evaporated in vacuo, and the oily residue was purified on a reverse-phase column (eluent: $\mathrm{MeCN} /$ water 5:95\% \rightarrow 95:5\%) to furnish 54 mg (45%) of oxo-tomaymycin (5) as a white powder. $\mathbf{R}_{f}=0.41$ (DCM 10: MeOH 1). For the E-isomer, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 10.28-10.21(1 \mathrm{H}, \mathrm{m}), 9.94(1 \mathrm{H}$, br.s), $7.26-7.18(1 \mathrm{H}, \mathrm{m}), 6.60-6.54(1 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{m})$, $4.36-4.08(2 \mathrm{H}, \mathrm{m}), 4.08-3.91(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.25$ $(1 \mathrm{H}$, br.d, $J=16.2 \mathrm{~Hz}), 2.77-2.53(1 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{m})$. For the \underline{Z}-isomer, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 10.28-10.21$ $(1 \mathrm{H}, \mathrm{m}), 9.94(1 \mathrm{H}$, br.s), $7.26-7.18(1 \mathrm{H}, \mathrm{m}), 6.60-6.54(1 \mathrm{H}$, m), $5.52(1 \mathrm{H}, \mathrm{m}), 4.36-4.08(2 \mathrm{H}, \mathrm{m}), 4.08-3.91(1 \mathrm{H}, \mathrm{m})$, $3.78(3 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}$, br.d, $J=16.2 \mathrm{~Hz}), 2.77-2.53(1 \mathrm{H}, \mathrm{m})$, $1.60(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 172.0$, 167.8, 152.4, 146.6, 134.7, 132.6, 118.9, 118.7, 112.9, 108.9, $58.5,56.6,52.5,28.2$ and 22.8 (isomers), 14.5 and 12.1 (isomers). HRMS-ESI $(m / z):[M+H]$ calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}, 289.1188$; found 289.1202. IR ($\nu_{\max }$ film): 3529, 3403, 2919, 2610, 2417, 1677, 1611, 1482, 1268, 878, $759 \mathrm{~cm}^{-1} .[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=391^{\circ}(c=0.1, \mathrm{MeOH})$.

Boseongazepine B (6). To a stirred solution of 12d (100 $\mathrm{mg}, 0.248 \mathrm{mmol}, 1.0$ equiv) in THF (3 mL) was added concn $\mathrm{HCl}(300 \mu \mathrm{~L}, 3.600 \mathrm{mmol}, 15.0$ equiv), and the resulting mixture was heated for 16 h at $60^{\circ} \mathrm{C}$. The volatiles were evaporated in vacuo, and the oily residue was purified on silica gel ($\mathrm{DCM} / \mathrm{MeOH} 40: 1$) to furnish 42 mg (62%) of boseongazepine B (5) as colorless wax. $\mathrm{R}_{f}=0.45$ (DCM 40 : $\mathrm{MeOH} 1)$. For the E-isomer, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.47-7.39(1 \mathrm{H}, \mathrm{m}), 7.31-7.19(2 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{m})$, $4.39-4.22(2 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{m}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.44(1 \mathrm{H}$, br.d, $J=16.2 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{m})$. For the \underline{Z} isomer, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.47-7.39(1 \mathrm{H}, \mathrm{m})$, 7.31-7.19 ($2 \mathrm{H}, \mathrm{m}$), $5.57(1 \mathrm{H}, \mathrm{m}), 4.39-4.22(2 \mathrm{H}, \mathrm{m}), 4.12$ $(1 \mathrm{H}, \mathrm{m}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.44(1 \mathrm{H}$, br.d, $J=16.2 \mathrm{~Hz}), 2.82(1 \mathrm{H}$, m), $1.67(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathbf{C}\{\mathbf{1 H}\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$
171.9, 167.5, 151.3, 134.5 and 134.4 (isomers), 128.6, 127.1, 126.3, 122.4, 119.4 and 119.1 (isomers), 114.8, 58.5 and 58.0 (isomers), 56.8, 52.5, 32.3 and 28.2 (isomers), 14.8 and 14.5 (isomers). HRMS-ESI (m / z) : [M + H] calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}, 273.1239$; found 273.1252. IR ($\nu_{\max }$, film): 3257, 2982, 2920, 2860, 1693, 1413, 1261, 1068, $750 \mathrm{~cm}^{-1}$. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=571^{\circ}(c=0.1, \mathrm{MeOH})$.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c03732.

Reaction optimization tables, synthetic schemes for the synthesis of olefination reagents and substrates, copies of NMR spectra, and NMR spectra comparison for natural and synthetic PBD natural products (PDF)

- AUTHOR INFORMATION

Corresponding Author

Gints Smits - Latvian Institute of Organic Synthesis, Riga LV1006, Latvia; © orcid.org/0000-0001-5044-4169; Email: gintssmits@osi.lv

Authors

Zigmārs Leitis - Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
Guna Sakaine - Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
Artis Kinēns - Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; Department of Chemistry, University of Latvia, Riga LV-1004, Latvia; © orcid.org/0000-0003-1992-525X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c03732

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge ERDF (PostDoc Latvia) project No.1.1.1.2/VIAA/4/20/751 for Z. Leitis for the financial support. The authors also thank Dr. S. Belyakov (LIOS) for Xray crystallographic analyses.

- REFERENCES

(1) Sakaine, G.; Ture, A.; Pedroni, J.; Smits, G. Isolation, chemistry, and biology of pyrrolo[1,4$]$ benzodiazepine natural products. Med. Res. Rev. 2022, 42, 5-55.
(2) Antonow, D.; Thurston, D. E. Synthesis of DNA-Interactive Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem. Rev. 2011, 111, 2815-2864.
(3) Gill, K. R.; Kaushik, O. S.; Chugh, J.; Bansal, S.; Shah, A.; Bariwal, J. Recent Development in [1,4]Benzodiazepines as Potent Anticancer Agents: A Review. Mini-Rev. Med. Chem. 2014, 14, 229256.
(4) Gerratana, B. Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med. Res. Rev. 2012, 32, 254-293.
(5) Hartley, J. A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Invest. Drugs 2011, 20, 733-744.
(6) Antonow, D.; Jenkins, T. C.; Howard, P. W.; Thurston, D. E. Synthesis of a novel C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine-5,11dione library: Effect of C2-aryl substitution on cytotoxicity and noncovalent DNA binding. Bioorg. Med. Chem. 2007, 15, 3041-3053.
(7) Mantaj, J.; Jackson, P. J. M.; Rahman, K. M.; Thurston, D. E. From Anthramycin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angew. Chem., Int. Ed. 2017, 56, 462-488.
(8) Zou, N.; Han, A. Application of Pyrrolobenzodiazepines in Antibody Drug Conjugates. In Contemporary Accounts in Drug Discovery and Development; Wiley, 2022; pp 293-339.
(9) Gregson, S. J.; Tiberghien, A. C.; Masterson, L. A.; Howard, P. W. Pyrrolobenzodiazepine Dimers as Antibody-Drug Conjugate (ADC) Payloads. In Cytotoxic Payloads for Antibody-Drug Conjugates; The Royal Society of Chemistry, 2019; Chapter 14, pp 296-331.
(10) Gregson, S. J.; Howard, P. W.; Corcoran, K. E.; Barcella, S.; Yasin, M. M.; Hurst, A. A.; Jenkins, T. C.; Kelland, L. R.; Thurston, D. E. Effect of C2-exo unsaturation on the cytotoxicity and DNA-binding reactivity of pyrrolo [2,1-c] [1,4]benzodiazepines. Bioorg. Med. Chem. Lett. 2000, 10, 1845-1847.
(11) Benedetti, F.; Perrin, M.-A.; Bosc, S.; Chouteau, F.; Champion, N.; Bigot, A. Total Synthesis of (+)-Oxo-tomaymycin. Org. Process Res. Dev. 2020, 24, 762-768.
(12) Lorente, A.; Pla, D.; Cañedo, L. M.; Albericio, F.; Álvarez, M. Isolation, Structural Assignment, and Total Synthesis of Barmumycin. J. Org. Chem. 2010, 75, 8508-8515.
(13) Mori, M.; Uozumi, Y.; Kimura, M.; Ban, Y. Total Syntheses of Prothracarcin and Tomaymycin by Use of Palladium Catalyzed Carbonylation. Tetrahedron 1986, 42, 3793-3806.
(14) Sakaine, G.; Smits, G.; Zemribo, R. Late stage $\mathrm{Fe}(\mathrm{CO}) 5$ promoted double bond migration: total synthesis of limazepines C and D. Tetrahedron Lett. 2015, 56, 4767-4769.
(15) Howard, P. W.; G, S.; Taylor, P. W.; Thurston, D. E.; Hadjivassileva, T. S. Pyrrolobenzodiazepines. WO Patent WO2005085260A12005.
(16) Smits, G.; Kinens, A.; Zemribo, R. Ireland-Claisen Rearrangement of 6 -Methylene-1,4-oxazepan-2-ones. Eur. J. Org. Chem. 2015, 2015, 6701-6709.
(17) Smits, G.; Zemribo, R. The Exocyclic Olefin Geometry Control via Ireland-Claisen Rearrangement: Stereoselective Total Syntheses of Barmumycin and Limazepine E. Org. Lett. 2013, 15, 4406-4409.
(18) Sakaine, G.; Zemribo, R.; Smits, G. The first total synthesis of usabamycins a and C. Tetrahedron Lett. 2017, 58, 2426-2428.
(19) Bhosale, V. A.; Waghmode, S. B. Enantioselective total synthesis of pyrrolo-[2,1-c][1,4]-benzodiazepine monomers (S)-$(-)$-barmumycin and (S)-(+)-boseongazepine B. Org. Chem. Front. 2018, 5, 2442-2446.
(20) Sakaine, G.; Smits, G. Modified Julia-Kocienski Reagents for a Stereoselective Introduction of Trisubstituted Double Bonds: A Formal Total Synthesis of Limazepine E and Barmumycin. J. Org. Chem. 2018, 83, 5323-5330.
(21) Smits, G.; Zemribo, R. One-Step Preparation of Pyrrolo[1,4]benzodiazepine Dilactams: Total Synthesis of Oxoprothracarcin, Boseongazepines B and C. Synlett 2015, 26, 2272-2276.
(22) McCone, J. A. J.; Somarathne, K. K.; Orme, C. L.; Hewitt, R. J.; Grant, E.-R.; Hall, K. R.; Ackerley, D. F.; La Flamme, A. C.; Harvey, J. E. Total Synthesis and Bioactivity Studies of Fungal Metabolite (-)-TAN-2483B. Org. Lett. 2020, 22, 9427-9432.
(23) Johnson, C. R.; Tait, B. D. A cerium(III) modification of the Peterson reaction: methylenation of readily enolizable carbonyl compounds. J. Org. Chem. 1987, 52, 281-283.
(24) Krasovskiy, A.; Kopp, F.; Knochel, P. Soluble Lanthanide Salts ($\mathrm{LnCl}_{3} \cdot 2 \mathrm{LiCl}$) for the Improved Addition of Organomagnesium Reagents to Carbonyl Compounds. Angew. Chem., Int. Ed. 2006, 45, 497-500.
(25) Legnani, L.; Porta, A.; Caramella, P.; Toma, L.; Zanoni, G.; Vidari, G. Computational Mechanistic Study of the Julia-Kocieński Reaction. J. Org. Chem. 2015, 80, 3092-3100.

[^0]: Received: June 27, 2022
 Accepted: August 10, 2022
 Published: August 17, 2022

