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Abstract: Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The
scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs),
their hydroxylated derivatives, and trace elements with heart failure via their direct determination
in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples
including cases (heart failure patients) and controls (healthy donors), and the respective demographic
data were collected. Significantly higher concentrations (p < 0.05) were observed in cases’ serum
regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and
fluoranthene being the most abundant (median of >50 µg L−1). Among the examined trace elements,
As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases’
samples, with only Cr being significantly higher in controls. The potential impact of environmental
factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements
could be possibly related with heart failure development. Atmospheric degradation and smoking
habit appeared to have a significant impact on the analytes’ serum concentrations. PCA–logistic
regression analysis could possibly reveal common mechanisms among the analytes enhancing the
hypothesis that they may pose a significant risk for CVD development.

Keywords: cardiovascular diseases (CVDs); heart failure; polycyclic aromatic hydrocarbons (PAHs);
trace elements; serum

1. Introduction

Air pollution is a major public health problem with a plethora of consequences on
humans and other living beings [1]. An estimated measure of more than 4.2 million
annual global premature deaths related to air pollution has been reported [2]. Outdoor
air pollution is considered the fifth greatest risk factor for all-cause mortality, which is
higher than the acknowledged risk factors, including poor diet and low exercise, and the
first among environmental risk factors [3]. Air pollution consists of plenty of diverse
pollutants partitioned in the gas phase, such as volatile organic compounds (VOCs),
nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), etc. [4–6] and in
the particle phase including polycyclic aromatic hydrocarbons (PAHs), trace elements,
polychlorinated biphenyls (PCBs), etc. [7,8]. As a result of the presence of different harmful
substances, the International Agency for Research on Cancer (IARC) has classified air
pollution as a human carcinogen [9]. Globally, over 90% of individuals live in areas where
air pollution levels exceed the World Health Organization (WHO) guidelines [2]. The well-
known “Harvard Six Cities Study” was the origin of the link of air pollution to mortality
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from lung cancer and cardiopulmonary disease [10]. In this light, many studies addressed
geographic differences of exposures, for example PAHs and particulates exposures in
urban and rural areas of Czech Republic [11], or temporal sources of pollution, such as
the New York World Trade Center disaster, which was a transient event of PAHs, dioxins,
and inorganic dusts exposure of a well-defined population [12], with air pollution being
associated with mortality [13–16]

Although the lung is the main receptor of air contaminants, air pollution is signif-
icantly associated with cardiovascular diseases (CVDs) [17,18]. In particular, exposure
to atmospheric particulate matter (PM) has been correlated with increased arrhythmia
incidents, carotid intima-media thickness, which is a marker of subclinical atherosclerosis,
with the progression of inflammation and hypertension [19–21], as well as with reduced
heart rate variability (HRV) [22] with particles with diameter <0.3 µm being the most
crucial PM fraction to the reduction of the cardiac autonomic function [23]. Moreover, a
10–30% increase of the death risk from ischemic heart disease per 10 µg m−3 increase of
PM2.5 (particles with aerodynamic diameter <2.5 µm) has been estimated [24]. Generally,
air pollution’s implications on CVDs may lead to higher mortality rates than those caused
by the air pollution impact on respiratory diseases [3]. In Europe, about 3.9 million deaths
annually have been attributed to CVDs making them the leading cause of mortality, with
more than 85 million European citizens living with CVDs during 2015 [25].

PM-bound PAHs are associated with CVDs, with studies involving humans and other
mammals underlining the link of tricyclic PAHs, and especially phenanthrene with arrhyth-
mias, the aggravation of heart failure, heart attacks, and other complications involving
atherosclerosis and ischemia [17,26]. Occupational exposure to PAHs has been also linked
with alterations in cardiac autonomic function, as implied by the decreased HRV [27]. The
cardiovascular toxicity of PAHs involves aryl hydrocarbon receptor (AhR), reactive oxygen
species (ROS), and/or reactive electrophilic metabolites, with the cardiotoxic effects not
being limited to benzo[a]pyrene (BaP) but also to other PAHs including pyrene (PYR),
phenanthrene (PHE), and benzo[e]pyrene (BeP) [28]. PAHs mixtures and especially PHE
cause cardiotoxicity independent of the (AhR) pathway with various toxicant and cellular
pathways involving atherosclerosis, cardiac arrhythmias, and cardiac hypertrophy [26].
For instance, the DNA methylation, caused by exposure to PHE, may induce cardiac hy-
pertrophy with a mechanism that involves the reduction of the miR-133a expression [29].
PAHs constitute a group of compounds formed by the incomplete combustion of car-
bonaceous material, which can be emitted into the atmosphere from both natural and
anthropogenic sources, including vehicular emissions, domestic heating, power plants,
tobacco smoke, and solid waste incineration [30,31]. In developing countries, organic
wastes burning for domestic needs such as cooking [32] is another source of PAHs. After
exposure, PAHs bound to the smallest sized particles in PM2.5 can enter the systemic
circulation un-metabolized and reach various organs [26].

Apart from PAHs, environmental trace elements are a noteworthy but overlooked
source of CVDs risk [33]. Various studies implied that trace elements including As, Cd, Hg,
and Pb may constitute an important factor to CVDs development [34–37]. Although other
trace elements such as Co, Cu, Fe, Se and Zn are essential for the human organism [38–41],
high exposure to them is also associated with the risk of CVD development [24]. Airborne
particle-bound trace elements have both natural and anthropogenic origin, including
natural dust emissions [42], coal [43] and oil combustion [44], the production of iron, steel,
cast iron, etc. [45]. However, metal exposure is usually neglected by the agencies that
produce guidelines about cardiovascular prevention [33].

There is adequate data based on measurements of urinary metabolites of PAHs trying
to link PAHs levels with CVDs [46–48] and other diseases, including rheumatoid arthri-
tis [49] and diabetes [50]. However, data of PAHs levels in plasma and serum related to
CVDs are limited [26]. The determination of PAHs in different human matrices provides
different information based on the selected matrix. For example, urine samples are more
closely related with metabolites derived from biotransformation procedures; hair samples
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are considered ideal for long-term exposure studies; whereas blood, serum, saliva, or ex-
haled breath samples are more associated with unmetabolized PAHs recent exposure [51].
Moreover, blood-borne PAHs compared to their respective metabolites or adducts are less
susceptible to variability from inter-subject differences in metabolism and excretion [52]. In
addition, serum is a more familiar and efficient way for the monitoring of PAHs compared
to other tissues [53]. PAHs have been measured in serum samples not only in an effort to
investigate any potential association with different types of cancer such as leukemia [54]
and bladder cancer [55] but also for the estimation of background burden values [56,57].
Moreover, PAHs have been measured at the maternal serum in order to investigate the pos-
sible transplacental transfer from the mother to the fetus [58], while others have proposed
an inversed trend of maternal serum PAHs and a decreased birth weight [59].

Trace elements are measured in various biological samples, including blood, serum,
erythrocytes, and urine, with the whole blood being the preferred matrix used for the
biomonitoring of the toxic Pb, Cd, and Hg as they are concentrated in the erythrocytes. The
determination of serum trace elements is also prone to errors due to hemolysis, which may
lead to possible errors in the results [60]. However, the elemental composition of serum is
widely studied, as it provides important insights for the state of a human organism [61] and
because it is the most exchangeable blood compartment [60]. Serum trace elements’ levels
have been associated with various CVDs, including coronary artery disease (CAD) [62],
carotid artery atherosclerosis in maintenance hemodialysis patients [63], and other diseases,
such as asthma, various allergic diseases [64], and different types of leukemia [65,66].

Heart failure is a clinical syndrome provoked by multiple causes [67], with the CAD
and arterial hypertension being the leading causes and with heart dysfunction, valvular
disease, tachyarrhythmias, diabetes mellitus, myocarditis, and infiltrative disorders being
some of the other causes [68].

In this perspective, the aim of this work is the determination and comparison of PAHs’
and OHPAHs’ trace elements’ concentrations in human serum of heart failure patients
and healthy donors, all residing in different areas of Greece, and the investigation of
the potential impact of different environmental factors including smoking habit and area
of residence.

2. Results and Discussion
2.1. Cases and Controls

The total concentrations of PAHs, OHPAHs, and trace elements for cases and controls
are presented in Figures 1–3. More detailed information about the mean, median, and
concentration ranges of the analytes is shown in Tables S1–S3.

2.1.1. PAHs

Almost the 70% of the studied PAHs presented detection frequencies over 65% (Ta-
ble S1). In particular, naphthalene (NAP), acenaphthene (ACE), fluorene (FL), PHE,
fluoranthene (FLT) and PYR were detected in 100% of both cases’ and controls’ sam-
ples. Anthracene (ANT), benzo[a]anthracene (BaA), benzo[b,k]fluoranthenes (BFA), and
dibenzo[a,h]anthracene (DBA) were found at detection rates varying from 65.7% (DBA-
control samples) to 93.7% (BFA-cases samples). Lower detection rates were found for
chrysene (CHR) (35.4% in cases and 28.6 in controls), while the rest of the studied PAHs, in-
cluding BaP, acenaphthylene (ACY), indeno[1,2,3 cd]pyrene (IPY), and benzo[ghi]perylene
(BPE) were detected at ≤25% of the samples. As shown in Figure 1, PHE was the dominant
PAH in both cases’ and controls’ serum followed by FL, with the concentrations in cases’
serum being approximately four and three times higher, respectively (p < 0.05) (Table S1).
Significantly higher concentrations in cases’ samples were also observed for the following
PAHs with a concentration descending sequence of ACE, FLT, DBA, PYR, NAP, ANT,
BaA, and BFA with FLT, PYR, and DBA median values being almost 4-fold higher than
those observed in controls’ serum. CHR, BaP, ACY, and IPY did not differ significantly
(p > 0.05), since in many cases and controls samples, their concentration was below the
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limits of detection (LoD). The relative profile of PAHs, regarding the number of rings in
each molecule, in cases’ serum is displayed in Figure 4. The dominance of 3-ring-PAHs
is highlighted as they accounted for the 73% of the total measured PAHs. As a result, the
contribution of low molecular weight PAHs (LMW PAHs) was almost three times higher
than that of high molecular weight PAHs (HMW PAHs). Consequently, the significantly
higher concentrations of the majority of PAHs and especially LMW PAHS, detected in this
work, may play a pivotal role in the development of heart failure.
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High PAHs detection frequencies combined with higher percentages of LMW com-
pared to HMW PAHs in serum have been reported in many other studies [54,69,70].
However, relatively low rates (<20%) have been also reported in a pilot study in a rural area
of Egypt [71]. PAHs have been found in significantly higher concentrations in the serum
of patients than those of corresponding controls’ serum in the cases of bladder cancer,
leukemia, and polycystic ovary syndrome [54,55,72].
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2.1.2. OHPAHs

Urinary OHPAHs are considered as PAH metabolites, and as a result, most stud-
ies that related PAHs exposure and CVDs have studied OHPAHs in urine [46,47,73–75].
However, concentrations of OHPAHs and/or the parent ones in urine do not only de-
pend on the external exposure but also on difference in the metabolism and bioconver-
sion procedures in each individual organism [76]. Therefore, noteworthy results can
also be extracted from serum determination, too [54,72]. The detection frequencies of
OHPAHs are shown in Table S2. In cases’ serum, OHPAHs were detected at higher
rates than those measured in controls’, with 1-hydroxypyrene (1OHPYR) being found at
all samples followed by 1-hydroxyphenanthrene (1OHPHE) and 1-napthol (1OHNAP)
with respectively equal rates of 96.9 and 65.6%. The rest of the studied OHPAHs such
as 9-hydroxyphenanthrene (9OHPHE), 2-hydroxyphenanthrene (2OHPHE), 2-naphthol
(2OHNAP), and 3-hydroxyphenanthrene (3OHPHE) were detected at <37% of the samples.
However, in controls’ serum, the detection frequencies ranged from 8.57% (3OHPHE)
to 77.1% (1OHPYR). Higher detection frequencies of serum OHPAHs have been found
in other studies, from 70% (9OHPHE) to 100% (2OHNAP) in cases’ samples and from
50% (9OHPHE) to 100% (2OHNAP) in that of controls [72]. Nevertheless, lower rates
were found in our previous study (40–70% in cases and <25% in controls) [54]. In general,
OHPAHs presented lower concentrations than the parent ones. Significantly (p < 0.05)
higher concentrations in cases’ serum were observed, in descending order, for 1OHPYR,
1OHPHE, 1OHNAP, 9OHPHE, as well as ΣOHPAHs (Table S2, Figure 2). 1OHPYR was
the most abundant with a median of 1.87 µg L−1 followed by 1OHPHE and 1OHNAP with
median values 1.48 and 0.71 µg L−1, respectively. 2OHNAP, 2OHPHE, and 3OHPHE did
not differ significantly, as in many samples, their values were found below the LoD.

Although data concerning OHPAHs serum levels are sparse, some of them appear to
be significantly higher in the serum of acute leukemia patients and women with polycystic
ovary syndrome than that of the respective control subjects [54,72].

2.1.3. Trace Elements

Trace elements were widely detected in the serum samples, with detection frequencies
over 73.9% in cases’ serum and from 57.1% in control’s serum (Table S3). Significantly
higher (p < 0.05) concentrations in cases’ serum were observed for copper (Cu), lead (Pb),
mercury (Hg), arsenic (As), nickel (Ni), and cadmium (Cd), while higher, but not signifi-
cantly (p > 0.05), concentrations were found for cobalt (Co). On the contrary, chromium (Cr),
rubidium (Rb), and barium (Ba) were found at higher levels in controls’ serum; the differ-
ence was statistically significant (p > 0.05) only in the case of Cr though (Figure 3, Table S3).
Recent reviews have highlighted the association of both known toxic and essential metals
with CVDs development [77,78]; thus, the elements that were observed with significantly
different concentrations in cases’ or control’s serum will be separately discussed.

Arsenic (As) is a toxic metalloid that enters the organisms through food, drinking
water, cigarette smoke, and through inhalation of particle bound As [7,36,79,80]. According
to the U.S Agency for Toxic Substances and Disease Registry, the safe level for As in human
blood is suggested to be less than 70 µg L−1 [81]. The As levels presented in this work are
greatly lower than the suggested value; however, As concentrations in cases’ serum were
approximately 3.5 times higher than those measured in controls (median of 3.39 versus
0.98 µg L−1). In other studies, As was measured in the serum of 17–20-year-old students
and was found at lower levels with median concentrations from 2.43 to 2.81 µg L−1, with
the highest As values being attributed to seafood intake [79]. Relatively higher concentra-
tions of As were measured in whole blood samples of kids with learning disorders (mean
of 12.1 ± 5.19 µg L−1) which were significantly higher than the corresponding control
values (9.73 ± 4.39 µg L−1) [82]. Moreover, significantly higher concentrations of As were
found in the serum of chronic kidney disease patients receiving continuous ambulatory
peritoneal dialysis (mean of 3.79 µg L–1) than those found in the respective control sam-
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ples (0.52 µg L–1), which was related with the increased CVD risk of the specific target
group [83].

Regarding the toxic Cd, WHO has evaluated the values of 0.1 µg to 4 µg L–1 of the
Cd blood concentrations characterizing a healthy and unexposed adult [84]. Although our
findings are under the limits, the observed statistical difference between cases (median of
0.64 µg L–1) and controls (median of 0.17 µg L–1) can not be ruled out. In other studies, the
Cd serum levels of CAD patients were found to be higher than those of the negative sub-
jects with a mean of 2.44 µg L–1 versus 1.15, although the difference was not significant [62].
However, the Cd serum levels of patients on maintenance hemodialysis (HD) were signifi-
cantly higher than those of the control group, which was independently associated with
carotid atherosclerosis: a disease common in the specific patient group [69]. Additionally,
Cd exposure was associated with atherosclerosis cardiovascular disease (ASCVD) through
the strong relationship of Cd blood levels from approximately 2500 individuals with the
10-year ASCVD risk scores, using risk prediction models [85].

Hg is an easily accessible toxic metal with various intake pathways, such as air,
water, food, vaccines, pharmaceuticals, and cosmetics, with its cardiotoxic effects being
strongly associated with hypertension, coronary heart disease, myocardial infarction,
cardiac arrhythmias, carotid artery obstruction, cerebrovascular accident, and generalized
atherosclerosis [86]. The recommended, by the U.S. National Academy of Sciences (NAS),
average level of Hg in human blood is below 5 µg L–1 [87]. In the current work, 29 out
of 96 cases’ samples, i.e., 30.2%, presented concentrations above the proposed level, with
the median concentration, however, being below the limit (3.33 µg L–1). Significantly
lower concentrations (p < 0.05) were measured in control samples varying from below the
detection limits to 3.57 µg L–1, with a median value of 0.46 µg L–1. Elevated concentrations
were also found in the serum of CAD patients (8.19 µg L–1), which were significantly
higher than the respective concentrations of controls’ serum (4.11 µg L–1) [62]. Similar to
Cd, Hg blood levels were also linked with the ASCVD risk in the Korean population [85].
Relatively high concentrations of blood Hg (mean of 102 ± 55.8 µg L–1) have been reported
for workers in Artisanal and Small-Scale Gold Mining (ASGM) operations in Ghana, where
Hg exposure was notably elevated [88]. Although the cardiovascular implications of
Hg have been evaluated [89] its biokinetics and actions in the CV system are still quite
elusive [90].

Regarding Pb, there is sufficient evidence for adverse health effects in children and
adults at blood levels <50 µg L–1 [91]. Pb in the serum samples varied from 5.18 to
77.0 µg L–1, with a median of 19.8 µg L–1 which is significantly higher (p < 0.05) than those
found for healthy donors’ samples (median of 6.44 µg L–1). In other studies, Pb has been
also found in the serum of CAD patients with a mean of 8.19 µg L–1, which is over two
times higher than the respective control samples (mean of 3.69 µg L–1) [62]. Pb competes
with the essential metals, such as calcium (Ca), iron (Fe), and zinc (Zn), as it is able to
bind and/or interact, with parallel ways as the latter, with the same enzymes resulting
in the inhibiting of the enzyme’s ability to catalyze its normal reactions [92]. The general
mechanisms to CVD development, among others, include the induction of oxidative stress,
impairment of the nitric oxide system, the increased generation of ROS, changes in the
Ca+2 transport and intracellular distribution, etc. [93,94]. Pb blood levels with a geometric
mean of 20.7 µg L–1 have been associated with the prevalence of peripheral arterial disease
in the US population [95] and with the ASCVD risk in the Korean population [85]. Pb along
with Cd have been also found in significantly higher concentration in the serum of acute
hemorrhagic stroke patients than the corresponding controls’ serum, indicating a possible
association with this stroke subtype [96].

Apart from the known toxic metals, imbalanced levels of essential metals such as
Cr, Co, Cu, magnesium (Mg), Ni, selenium (Se), tungsten (W), and Zn are significantly
associated with CVDs [78]. As a result, the significantly higher concentrations (p < 0.05)
observed, in this study, for Cu and Ni might have a role in heart failure development.
Significantly higher concentrations of Co and Cu were also noticed in the serum of HD
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patients than those of controls’ samples having a plausible association of increased CVD
risk [69]. Elevated Cu levels in serum (median of 1175 µg L–1) were found to be associated
with CVDs among US adults [97]. In another study of 4035 middle-aged men, increased
serum Cu levels were linked with a 30% increase in CV mortality [98], while other papers
underline the relation of circulating blood levels of the essential Ni and Cr with atheroscle-
rotic plagues in elderly [99]. However, as far as Cr is concerned, lower concentrations
have been measured in the serum of CVD patients than those of the healthy controls [100],
which is in agreement with the findings of this study. Particularly, Cr median values were
0.40 µg L–1 in cases’ serum versus 0.57 µg mL–1 in controls (p < 0.05). In other works, blood
and scalp hair Cr was found at lower levels of myocardial infraction patients than the
controls, which was attributed to the increased urinary loss of this element [101]. The
possible protective role of Cr against CVD was indicated as in a case-control study con-
ducted involving CVD patients, where the toenail Cr levels were higher for the control
participants [102].

2.2. Cases with Different Smoking Habits and Residence Areas

Data obtained from cases’ serum was further classified depending on sex, smoking
habit (current smokers, ex-smokers, and non-smokers) and the area of residence (urban,
industrial, and rural).

2.2.1. Sex

Gender-based variation is a common classification of the data in case-control and co-
hort studies [103]. Most of the analytes presented higher concentrations in men (Figure 5),
although only a few differences were significant (p < 0.05). In particular, regarding PAHs,
PHE, BaA, and CHR presented significantly (p < 0.05) higher concentrations. OHPAHs, on
the contrary, did not present any significant gender-based variation, although 1OHPHE
was clearly higher in men’s serum (p = 0.054). Among trace elements, only Pb presented
statistically higher concentrations in men (p < 0.05), which is in agreement with a previous
study involving Greek citizens from Athens Metropolitan Area [104]. Various population
studies have presented higher (p < 0.05) concentrations in males’ blood or serum. Particu-
larly, in Korean men, blood Hg and Pb were found at significantly higher levels [105]. In
Brazil, Cu and Pb were significantly correlated with gender and age [106]. In France, mean
levels of blood Pb and Zn were found significantly higher in men, whereas Co and Cr were
found significantly higher in women [107]. In the serum of Chinese students (17–20 years
old), Pb was significantly higher in men [79]. A possible reason for the higher observed
Pb in men’s samples could be the higher male hematocrit levels, as lead tends to bind to
erythrocytes [108].

2.2.2. Smoking Habit

Cigarette smoking is the major preventable cause of human death in the Western world
being responsible for approximately 5 million annual premature deaths globally [109]. It is
also a critical factor for CVD development and the second main cause of CVD mortality after
high blood pressure [110]. Current and recent smokers are more vulnerable to smoking-
related CVD risks than those who have quit smoking for a long time and non-smokers [111],
with current or past smoking increasing the heart failure risk [112]. In Figures 6–8, cases’
samples are classified in terms of the smoking habit. Among PAHs, PHE, FL, ACE, FLT,
PYR, IPY (in a decreasing concentration sequence), and ΣPAHs (not shown in the figure)
presented statistically higher concentrations in smokers’ serum followed by ex-smokers,
while BFA and BaP were measured at higher levels in ex-smokers’ samples followed by
smokers (Figure 6). HMW PAHs such as CHR, BaA, BaP and BPE were significantly
higher in the serum of smoker leukemia patients [54]. In other studies, ACE and BaP were
significantly higher in smokers’ samples, although the number of smokers in that study
was limited [70]. Additionally, PAHs derivatives such as 1OHPYR, 1OHPHE, 1OHNAP,
and ΣOHPAHs (not shown in the figure) were significantly higher in smokers (Figure 7).
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Although data about serum OHPAHs are limited, in smokers’ urine, higher levels of NAP,
FL, PHE, and PYR metabolites have been frequently found compared to non-smokers’
urine [113,114].
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3rd quartile, and * p-value <0.05) in logarithmic scale (PHE:phenanthrene, FL:fluorene, ACE:acenaphthene,
FLT:fluoranthene, PYR:pyrene, BFA:benzo[b,k]fluoranthenes, BaP:benzo[a]pyrene, IPY:indeno[1,2,3 cd]pyrene,
DBA:dibenzo[a,h]anthracene, NAP:naphthalene, ANT:anthracene, BaA:benzo[a]anthracene, CHR:chrysene,
ACY:acenaphthylene, BPE:benzo[ghi]perylene).

Of trace elements, Hg, Ni, Cd, Co, and Cr were significantly higher in smokers’ serum
(Figure 8) followed by ex-smokers, while Cu, As, and Pb were found statistically higher
in ex-smokers’ serum followed by smokers. Ba and Rb did not present any noticeable
trends. It is well known that tobacco and cigarette smoke contain plenty of trace elements
including aluminum (Al), As, Ba, Beryllium (Be), Cd, Cr, Co, Cu, Fe, Hg, manganese
(Mn), Ni, Pb, etc. [115]. Blood Pb and Hg levels were elevated compared to those of
non-smokers [105]. A noteworthy increase of blood Cd levels have been related with
smoking [114,116]. Particularly, in Greece, the blood Cd concentration of smokers has
been found to be almost three times higher compared to non-smokers [104]. Nevertheless,
significantly higher levels of blood Cd and Pb but lower blood Co and Hg have been also
reported for smokers compared to non-smokers [107].
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2.2.3. Area of Residence

In a recent study in Greece, air pollution was associated with mortality in both urban
and rural areas [117]. After the economic crisis, the air quality of Athens and Thessaloniki,
the two major Greek cities where almost the 50% of the population lives, was significantly
degraded, especially during the winter months, due to biomass burning for domestic
heating [118–121]. During crisis, there is evidence of increased number of CVD prevalence,
although the atmospheric impact on CV system was not taken into consideration [122].
Significant amounts of PM, particle bound trace elements, and gas/particle phase PAHs
have been measured in the Greater Athens Area [7,123], with a recent study highlighting
combustion processes emissions as the crucial contributor to the PM2.5 and PM1 mass [124].
In Figures 9–11, cases’ data are classified among the area of residence. As shown in Figures
9 and 10, significantly higher (p < 0.05) concentrations of PHE, FL, ACE, FLT, PYR, NAP,
and ANT as well as 3OHPHE from the OHPAHs group have been measured in the serum
of urban site residents, followed by those of industrial sites, while in the serum of rural
sites residents, the lowest PAHs concentrations were observed, except for ACY, revealing
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an important contribution of atmospheric PAHs yields to the serum concentrations. PAHs
do not enter the human body only via inhalation, with food intake being also among the
major sources [125]. As a result, the relative contribution of airborne PAHs, compared
to other sources, regarding the CVD development, relies on location, dietary habits etc.,
although most of the PAHs that are taken up by the gastro-intestinal tract are subjected
to first-path metabolism and eliminated in the liver [28]. On the other hand, inhaled
BaP is absorbed in the alveolar region, enters the circulation, and reaches the heart and
vasculature unmetabolized [28,126]. In our previous study, area of residence appeared to
be an important contributor to the enhanced levels of ACY, BaP, IPY, and BPE in leukemia
patients’ serum [54].
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By contrast, the toxic Pb and Hg were found at statistically higher levels in the serum
of industrial site residents (Figure 11), with the lowest concentrations of most metals
observed in the samples of rural site residents, further implying the possible contribution
of the local air quality on serum’s concentrations. In other studies, Pb blood levels were
elevated in urban areas citizens compared to those of industrial and rural, while Hg was
higher in the industrial citizens’ samples [127]. Significant associations between airborne
trace elements and the corresponding serum levels were also found in a study conducted in
China, with those who lived in urban sites, under elevated Pb and Cd emissions, presenting
increased levels in their serum [79].



Molecules 2021, 26, 3207 17 of 29Molecules 2021, 26, x FOR PEER REVIEW 17 of 30 
 

 

 

Figure 10. OHPAHs variation according to the area of residence of cases in μg L−1 (+outliers and o values above 3rd quartile 

and * p-value <0.05) in logarithmic scale (9OHPHE:9-hydroxyphenanthrene, 3OHPHE:3-hydroxyphenanthrene, 

1OHPYR:1-hydroxypyrene, 1OHPHE:1-hydroxyphenanthrene, 2OHNAP:2-naphthol, 1OHNAP:1-naphthol, 2OHPHE:2-

hydroxyphenanthrene). 

By contrast, the toxic Pb and Hg were found at statistically higher levels in the serum 

of industrial site residents (Figure 11), with the lowest concentrations of most metals ob-

served in the samples of rural site residents, further implying the possible contribution of 

the local air quality on serum’s concentrations. In other studies, Pb blood levels were ele-

vated in urban areas citizens compared to those of industrial and rural, while Hg was 

higher in the industrial citizens’ samples [127]. Significant associations between airborne 

trace elements and the corresponding serum levels were also found in a study conducted 

in China, with those who lived in urban sites, under elevated Pb and Cd emissions, pre-

senting increased levels in their serum [79]. 

Figure 10. OHPAHs variation according to the area of residence of cases in µg L−1 (+ outliers and o val-
ues above 3rd quartile and * p-value <0.05) in logarithmic scale (9OHPHE:9-hydroxyphenanthrene, 3OHPHE:3-
hydroxyphenanthrene, 1OHPYR:1-hydroxypyrene, 1OHPHE:1-hydroxyphenanthrene, 2OHNAP:2-naphthol, 1OHNAP:1-
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2.3. Principal Component Analysis (PCA)

PCA was carried out in order to assess any potential data patterns and to evaluate
the possible relationships among the analytes that may occur. PCA is widely used in
environmental studies [7,128,129]; nevertheless, applying PCA in biological samples may
provide useful information for discussion and further research [54,130]. In this work, PCA
was applied in cases and controls datasets separately (Table 1). Three components were
chosen for PCA due to the fact that components after the fourth component explained
variance less than 6.5%, and they could not have an adequate meaning of the results.
Particularly, three components explained 37.0 and 35.8% of the variance in the cases and
controls datasets, respectively. Of cases’ data, Factor 1 (18.2%) was tightly loaded with
most of the LMW PAHs (except for ACY) FLT, PYR, 2OHPHE, 3OHPHRE, and OH1PYR,
while the HMW PAHs were mostly clustered in Factor 3 (8.3%). The distribution of PAHs
in the two factors could be explained by the different mechanisms of the compounds.
For example, a recent study suggested that HMW PAHs including BFA, IPY, BaP, DBA,
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and others are crucial activators of AhR-mediated enzyme expressions [131]. On the
contrary, LMW PAHs such as PHE are weak AhR agonists [132], having different unique
cardiotoxicity mechanisms [26]. Factor 2 (10.3%) is loaded mostly by trace elements, with
Cd, Co, Hg, and Pb presenting strong correlation. Regarding the metal toxicity, there
are general mechanisms applied to all toxic metals, although some individual metals
present additional unique mechanisms [133]. For instance, As, Cd, Hg, and Pb generate
multiple reactive oxygen species, promoting oxidative stress [92,133]. In addition, Cd and
Pb compete with the essential Zn, as they have similar physicochemical properties, for the
binding sites of enzyme proteins [134]. As a result, the strong relation among some specific
metals can be indicative of a similar mechanism, although the metal-induced cardiotoxicity
mechanisms vary widely, and there is still a great matter of research [77]. Interestingly, the
PCA that refers to the controls’ samples is completely different, with mixed factors and less
significant correlations, supporting the hypothesis that PAHs and trace elements constitute
a notable factor of heart failure development.
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Table 1. Varimax rotated PCA for PAHs, OHPAHs, and trace elements for cases’ and controls’
samples. (Loadings > 0.600 appeared in bold).

Cases Controls

Variance % 18.2 10.5 8.3 15.0 12.0 8.8

1 2 3 1 2 3
PHE 0.873 −0.100 0.137 0.074 0.631 −0.481
FLT 0.866 0.016 0.159 0.215 0.187 −0.238
ACE 0.804 0.211 0.059 0.089 0.295 −0.394
NAP 0.764 −0.063 0.171 0.505 −0.302 −0.112

1OHPYR 0.741 0.362 −0.334 −0.126 0.704 0.247
FL 0.735 0.090 0.237 0.022 0.118 −0.020

PYR 0.694 0.177 0.289 −0.240 0.639 0.164
2OHPHE 0.692 −0.111 −0.129 0.553 0.365 −0.213

ANT 0.676 0.101 0.209 0.490 0.219 0.022
3OHPHE 0.634 −0.067 −0.252 0.016 0.268 0.589

Cd 0.139 0.704 0.122 −0.113 0.196 −0.365
Pb 0.138 0.631 0.118 0.613 0.089 0.203
Co 0.011 0.624 0.091 −0.325 −0.440 −0.016
Hg 0.015 0.601 0.118 0.110 −0.041 −0.002

CHR 0.061 −0.051 0.728 0.604 0.012 −0.042
BaA 0.313 −0.009 0.614 0.452 0.007 0.173
DBA −0.118 −0.172 0.610 −0.012 0.746 0.146
BFA 0.189 0.073 0.606 0.482 0.514 0.083
ACY 0.290 0.027 0.033 0.536 −0.192 0.214
BaP −0.034 0.360 −0.006 0.901 −0.024 0.057
IPY −0.038 0.155 0.324 0.803 0.231 −0.176

1OHNAP 0.023 0.507 −0.038 0.005 0.261 0.644
2OHNAP 0.200 0.420 −0.142 −0.006 −0.094 0.477
1OHPHE −0.098 0.473 −0.255 0.314 0.291 0.225
9OHPHE 0.368 0.264 −0.221 −0.003 −0.258 0.057

As 0.014 0.364 0.303 0.229 0.239 0.099
Ba 0.419 0.215 −0.174 0.386 0.028 −0.244
Cr 0.063 0.432 −0.188 0.166 0.252 0.776
Cu 0.031 0.303 −0.150 0.464 −0.487 0.256
Ni −0.026 0.522 0.244 0.338 −0.040 −0.233
Rb −0.197 0.048 −0.217 −0.005 0.457 −0.030

The latter hypothesis was further evaluated by applying logistic regression model,
which is a tool generally used for the analysis of the relationship between individual
risk/protective factors and outcomes [135]. Briefly, a new PCA was performed in the whole
dataset including both cases’ and controls’ samples (Table S4). The regression-based factor
scores of each sample for each of the three principal components (not shown), derived
from the PCA, were saved as variables. Then, they were used as the input independent
values and the clinical outcome (control or case occurrence) as the dependent variable for
the regression analysis [136]. The Hosmer and Lemeshow Test (goodness-of-fit) indicated
that the model is a satisfactory fit to the data (Table S5). Our results (Table 2) showed
that every factor was statistically significant (p < 0.05), implying the plausible role of the
studied compounds to heart failure development. It is noteworthy to mention that the
strongest correlation was observed for Factor 2 (highest exp(B) value), which was mostly
related with trace elements, supporting the outcome of the meta-analysis of Chowdhury
et al. 2018, who highlighted the positive and approximately linear association of As, Pb,
and Cd exposure with the risk of CVDs [137].
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Table 2. The result of the logistic regression analysis.

B S.E. Wald Sig. Exp(B)
95% C.I. for EXP(B)

Lower Upper

Regression Scores Factor 1 3.375 1.518 4.945 0.026 29.214 1.492 571.879
Regression Scores Factor 2 10.534 3.868 7.418 0.006 37,561.068 19.167 73,6079,32.642
Regression Scores Factor 3 4.592 1650 7.747 0.005 98.668 3.890 2502.895

PCA was also performed according to the classification regarding the residence area
as discussed in 2.2.3. As shown in Table S6, when the analysis refers to industrial sites,
Factor 1 was dominated by the majority of PAHs. In addition, regarding the urban sites, the
first two factors were loaded with LMW PAHs and their hydroxylated derivatives. Such
trends were not observed in the analysis referring to rural areas, suggesting that air quality
degradation could possibly be an important contributor to serum PAHs levels [54].

2.4. Strengths and Weaknesses

The present paper reports preliminary results on the relation of specific organic
compounds, their metabolites, and trace elements with heart failure, using the approach of
their direct measurement in human serum of cases and controls. To our knowledge, these
kinds of results are reported for the first time. The findings of this study could provide
useful insights about the abundance of PAHs and trace elements levels in patients serum,
which are quite limited. In addition, through statistical analysis, atmospheric degradation
and smoking appear to be significant contributors to the elevated serum levels of some
pollutants and thus possibly enhance the development of heart failure.

However, this study does not provide evidence that PAHs, OHPAHs, and trace
elements in serum are biomarkers for heart failure and it is clearly not an epidemiological
study. The findings from this study should be interpreted with caution, as the population
size, unknown factors related with CVDs (blood pressure, total cholesterol, or high-density
lipoprotein cholesterol) and the lack of information for the dietary habits of the participants
could set limits to the outcome. The findings of this study are based on a small dataset;
thus, the statistics could be limited by confounding factors. Further studies are warranted
regarding patients with specific disease such as CAD, or specific target groups, to estimate
the possible CV risk from the elevated levels of PAHs and/or trace elements. The use of
other biological matrices including whole blood, urine, and/or hair together with serum
should be included in a future study.

3. Materials and Methods
3.1. Study Population

Ninety-six heart failure patients (cases) were recruited in General Hospital of Athens
“Laiko” and participated on a voluntary basis. We defined incident heart failure diagnosis
as the first record of heart failure in hospital admission records from any diagnostic position.
Thirty-five healthy subjects (controls) were recruited as a reference. Inclusion criteria were
the following: (1) the number of male and female participants should not differ significantly
for both cases and controls (p > 0.05); (2) all participants should live in different residence
areas, all over Greece, with different air quality levels; (3) the number of participants
who were current smokers, ex-smokers, and non-smokers, should not differ significantly
for both cases and controls (p > 0.05); (4) age of the participants more than 18 years;
(5) long-term residence in the same area criterion was established (>5 consecutive years in
the same area). The exclusion criteria were as follows: (1) all participants should not take
any mineral supplement; (2) healthy subjects should not suffer for any other known disease
(e.g., infectious disease). Each participant was informed in detail about the aims of the
study and signed a written protocol. The study was approved by the Scientific Committee
of “Laiko” Hospital, 1499/16/11/2017, according to the Helsinki Declaration. A detailed
questionnaire was filled out by all participants and personal information was collected,
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such as gender, age, area of residence (urban, industrial, rural), and current smoking status
(current smoker, ex-smoker, nonsmoker). Main socio-demographic characteristics of both
controls and cases are shown in Table 3. Binomial test, for two variables, and Chi square test,
for >2 variables, were carried out, respectively, with the hypothesis of equal probabilities.
A value of p < 0.05 (95% confidence level) was considered to indicate a significant difference
and thus retain the null hypothesis. The study focused on the different environmental
factors, such as smoking and air quality of the residence area, which could possibly affect
the analytes’ serum concentration.

Table 3. Demographic characteristics and smoking status for controls and cases.

Cases (n = 96) Controls (n = 35)

N (%) p Value N (%) p Value

Sex
Men 52 54.2

0.475
18 51.4

0.999Women 44 45.8 17 48.6
Residence Area

Industrial 31 32.3
0.380

15 42.9
0.499Urban 38 39.6 20 57.1

Rural 27 28.1 - -
Age (Years)

40–49 12 12.5

0.004

15 42.8

0.449
50–59 26 27.1 11 31.4
60–69 27 28.1 9 25.7
70–79 23 24.0 - -
80–89 8 8.3 - -

Smoking Habit
Ever 36 37.5

0.519
11 31.4

0.892Ex 27 28.1 11 31.4
Never 33 34.3 13 37.1

3.2. Blood Sampling and Pretreatment

Blood samples were collected by qualified personnel at the General Hospital of Athens
“Laiko”, during 2018. A total of 131 samples were obtained, from which 96 refer to cases
(heart failure patients) and 35 refer to controls (healthy donors). From each participant,
approximately 5 mL of blood were collected. The samples were centrifuged within 30 min
for 10 min at 4500 rpm in order to separate serum from the cellular components. They were
stored at −67 ◦C, until their transfer to our laboratory for further analysis (Laboratory of
Analytical Chemistry, NKUA). Storage tubes were tested for any contamination by recovery
tests using same solvents as in the procedure.

3.3. PAHs and OHPAHs Analysis and Quality Control

The extraction, clean up, and derivatization procedure has been described in detail
in previous work [60]. Briefly, after the addition of internal standards, extraction was per-
formed in an ultrasonic bath, followed by a pre-concentration step with a rotary evaporator.
The concentrated sample was cleaned up using glass column chromatography. The eluted
fraction containing PAHs was adjusted at 0.5 mL using a gentle steam of nitrogen, while the
fraction containing OHPAHs was gently evaporated until dryness followed by the addition
of the derivatization reagents, i.e., 250 µL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA) with 1% trimethylchlorosilane (TMCS) and 50 µL of anhydrous pyridine. The
reaction took place in an oven at 70 ◦C for 3 h. A gas chromatography/mass spectrome-
try system (GC/MS) (6890N/5975B, Agilent Technologies, USA) was employed for the
determination of both fractions. The GC instrument was equipped with a split/splitless
injector and an HP-5ms (5%-(phenyl)-methylpolysiloxane) (Agilent J&W GC Columns,
Agilent Technologies, Santa Clara, CA, USA) capillary column. High-purity helium was
used as carrier gas with a velocity of 1.5 mL min−1. Pulsed split-less mode was used for the
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injection and the injector’s temperature was set at 280 ◦C. For PAHs and OHPAHs analysis,
the GC oven temperature program was 65 ◦C (hold for 1 min) to 320 ◦C at 15 ◦C/min
with final isothermal hold for 3 min. In both cases, inlet and MS source temperatures were
280 and 230 ◦C, respectively. The selected ion monitoring (SIM) mode was used for the
quantification of the analytes.

The PAH-determination procedure was validated using the Polynuclear Aromatic Hy-
drocarbons Mix (Supelco, Darmstadt, GER), which is a standard solution of the compounds
studied including NAP, ACY, ACE, FL, PHE, ANTH, FTL, PYR, CHR, BaA, BFA, BaP, IPY,
DBA, and BPE. In the same way, a OHPAHs mix was prepared including the following
compounds: 1OHNAP, 2OHNAP, 1OHPHE, 2OHPHE, 3OHPHE, 9OHPHE, and 1OHPYR.
Recovery rates and selectivity were evaluated using spiked blood serum. Blank samples,
i.e., mixtures of controls’ serum obtained by non-smoking residents of low polluted areas
(mainly from Greek islands), were pretreated in the same way and analyzed in order to
examine the potential background effect. Recovery rates, LoD, and limits of quantification
(LoQ) are shown in Table S7. In general, recoveries ranged from 72.5% (1OHNAP) to 136%
(ACY) and LoD varied from 0.001 (BaP) to 0.11 (NAP) µg L–1.

3.4. Trace Elements’ Analysis and Quality Control

All plastic materials that came into contact with the serum samples were previously
washed thoroughly, soaked in dilute nitric acid (HNO3) (Merck, Darmstadt, Germany),
and rinsed with ultrapure water of 18.2 MΩ cm (Millipore, Bedford, MA, USA). The
followed pretreatment procedures have been described elsewhere [138,139]. Briefly, 0.5 mL
of serum were wet digested using a mixture of HNO3 (suprapur 65%) and hydrogen
peroxide (H2O2) (suprapur 30%) (Merck). The samples were analyzed with inductively
coupled plasma mass spectrometry (ICP-MS) by a Thermo Scientific ICAP Qc (Waltham,
MA, USA). Measurements were carried out in a single collision cell mode, with kinetic
energy discrimination (KED) using pure He. Matrix induced signal suppressions and
instrumental drift were corrected by internal standardization (45Sc, 103Rh).

In each batch of 10 samples, at least one laboratory blank was analyzed. In case
trace element concentrations in the reagent blank were detectable, the procedure for the
whole batch was repeated. In order to verify the accuracy and precision of the method, the
certified reference materials (CRM) “Plasma Control lyophilized, Levels I and II” (RECIPE
Chemicals + Instruments GmbH, Munich, Germany) were used. The recoveries for As,
Cd, Co, Cr, Cu, Ni, and Pb ranged from 95.1 to 105% (certified values for Ba, Hg and Rb
are not included in the specific certified reference materials). The USEPA method [140]
was applied for the calculation of the LoD and LoQ. LOD ranged from 0.10 µg L–1 (Cr) to
0.7 µg L–1 (Ba).

3.5. Statistical Analysis

The SPSS software package (IBM SPSS statistics version 24) was employed for sta-
tistical analysis purposes. SPSS software is a common tool for statistical analysis of data
from environmental including air [7,141,142], water [143], and soil [144] samples or biolog-
ical [60,145] samples.

Hypothesis tests for population proportion were carried out using binomial test
(2 variables) and chi-square test (3 or more variables). p values > 0.05 indicate non–
significant difference. The normal distribution of the data was assessed using the Shapiro–
Wilk and Kolmogorov–Smirnov tests, with a value of p > 0.05 indicating normal distribution.
As no variable of the dataset was normally distributed, the possible statistical differences
between two or more independent variables were investigated using the Mann–Whitney
and Kruskal–Wallis tests, respectively, with the value of p < 0.05 indicating statistically
significant difference. Principal Component Analysis (PCA) was used for the investigation
of any possible associations of the examined parameters. PCA is a widespread multivariate
statistical technique used in environmental sciences [54,141,142,145]. The application of
PCA transforms the original set of variables into a smaller one of linear combinations
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accounting for the most of the variance of the former set. It makes the complex system
more accessible, while at the same time it withholds the primary information. Varimax
rotation is generally used for factor grouping in most PCA applications. The exported
principal components include variables with common characteristics, which are attributed
as a common source or chemical interaction. [146,147]. It should be noted that the variables
used in this study were standardized before applying PCA.

Further statistical analysis includes the application of logistic regression after PCA.
In logistic regression, the relationship between a binary dependent variable, for example,
the occurrence of a phenomenon or not, with independent variables, which affect that phe-
nomenon, is assessed, as generally used in medical and epidemiological studies. Although
logistic regression has many similarities with linear regression, the estimation of variables’
coefficients is performed by the maximum likelihood technique [148]. Under this prism,
combination of logistic regression with PCA could reveal the probability of each factor to
be associated with the occurrence of heart failure.

4. Conclusions

Major environmental pollutants have been measured in the serum of heart failure pa-
tients and have been compared with control samples. The statistical higher concentrations
of the majority of PAHs, especially the low molecular weight, and trace elements indicate
a potential link with heart failure. Smoking habit and atmospheric degradation of urban
and industrial sites appeared to further elevate the analytes’ serum concentrations. Possi-
ble common mechanisms related to heart failure are revealed from principal component
analysis followed by logistic regression model, suggested some of the analytes as possibly
significant contributors to heart failure incidence. As a future aspect, a fully designed
study with a more specific patient group and a wider dataset of biochemical parameters
will provide additional information for the further evaluation of the role environmental
compounds to CVDs.

Supplementary Materials: The following are available online, Table S1: Detection frequencies,
median, mean and ranges of PAHs concentrations (µg L−1) in cases’ and controls’ samples, Table
S2: Detection frequencies, median, mean and ranges of OHPAHs concentrations (µg L−1) in cases’
and controls’ samples, Table S3: Detection frequencies, median, mean and ranges of trace elements’
concentrations (µg L−1) in cases’ and controls’ samples, Table S4: Varimax rotated PCA for PAHs,
OHPAHs and trace elements for overall dataset used for logistic regression model, Table S5: Hosmer
and Lemeshow Test, Table S6: Varimax rotated PCA for PAHs, OHPAHs and trace elements for
cases’ samples classified in terms of the residence area. (Loadings > 0.600 appeared in bold), Table S7:
Analytical method recovery rates, LoD and LoQ for the determination of PAHs and OH-PAHs in
human serum.
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Kozubík, A.; et al. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference
urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons. Mutat. Res. 2011, 714, 53–62. [CrossRef]

132. Barron, M.G.; Heintz, R.; Rice, S.D. Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar.
Environ. Res. 2004, 58, 95–100. [CrossRef]

133. Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal pollutants and cardiovascular
disease: Mechanisms and consequences of exposure. Am. Heart J. 2014, 168, 812–822. [CrossRef] [PubMed]

134. Duruibe, J.O.; Ogwuegbu, M.O.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2,
112–118. [CrossRef]

135. Huang, T.; Li, J.; Zhang, W. Application of principal component analysis and logistic regression model in lupus nephritis patients
with clinical hypothyroidism. BMC Med. Res. Methodol. 2020, 20, 99. [CrossRef] [PubMed]

136. DiStefano, C.; Zhu, M.; Mîndrilã, D. Understanding and Using Factor Scores: Considerations for the Applied Researcher. Pract.
Assess. Res. Eval. 2009, 14. [CrossRef]

137. Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan,
H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ
2018, 362, k3310. [CrossRef] [PubMed]
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