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)e Internet of Medical )ings (IoMT) has dramatically benefited medical professionals that patients and physicians can access
from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being
investigated and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. )us, with a new
approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced.
)erefore, this paper introduces an IoMT proposal for medical images’ classification that may be used anywhere, i.e., it is an
ubiquitous approach. It was designed in two stages: first, we employ a transfer learning (TL)-based method for feature extraction,
which is carried out using MobileNetV3; second, we use the chaos game optimization (CGO) for feature selection, with the aim of
excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using
ISIC-2016, PH2, and Blood-Cell datasets. )e experimental results indicated that the proposed approach obtained an accuracy of
88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell datsets. Moreover, our approach had successful performances for
the metrics employed compared to other existing methods.

1. Introduction

)e Internet of )ings (IoT) has been formulated to define
the use of devices that can be controlled remotely [1]. )e
development of these devices allowed a wide range of uses.
Hence, IoT is used in many areas, such as industrial [2],
smart cites [3], agriculture [4], and Internet of Medical
)ings (IoMT) [5]. However, the IoMT technology has been
commonly applied due to its high performance, saving time,
and efforts of specialists/patients [6]. Besides, it provides
patient care, such as monitoring their medications
and tracking their hospital admission location. IoMT

technologies are widely available, especially for diseases with
the highest mortality rate globally, such as melanoma [7],
leukemia [8], and others. Technology such as mobile devices
and wearables can collect information about human health
to provide effective hospital care. )ese technologies could
be used in many applications or services, like obtaining data
and analyzing them and monitoring the diagnosis of neu-
rological illnesses. As a result of its efficiency and usability,
the IoMT technology has been broadly accepted and widely
used.

Deep learning (DL) models can help diagnose breast
cancer [9] and Alzheimer’s disease [10] using advanced
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biomedical imaging methods such as thermal imaging and
magnetic resonance imaging (MRI); however, these methods
are expensive, require specialized medical imaging equip-
ment, and are not available inmany rural areas of developing
countries. )us, DL has recently been used by IoMT to
automate and accurately diagnose a variety of diseases that
help to facilitate efficient and appropriate healthcare [11].
For instance, an IoMT system for stroke detection using
convolution neural networks (CNN) and transfer learning
was demonstrated to distinguish between a healthy brain
and hemorrhagic and ischemic strokes in CTscan images, as
introduced in [12]. Although DL models outperformed
traditional machine learning [13], there is less work known
for DL-based IoMTon healthcare than services available on
IoMT devices.

)e IoMT system for stroke patients’ prevention can
capture and maintain the patient’s heartbeats, core tem-
perature, and external factors quickly and with the required
precision. )ese factors are essential for diagnosing stroke
examination. DL techniques can help prevent frequent
difficulties that take much time to solve. For example, web
scraping [14], data mining [15], and sentiment analysis [16]
are all areas where TL technology has a broad array of
applications.

Moreover, these approaches need a huge size of well-
labeled training data samples. Many transfer learning (TL)-
based approaches have been developed in medical image
analyses to solve this issue. Due to its capacity to effectively
solve the shortcomings of reinforcement learning and su-
pervised learning, TL is becoming more widespread in
medical image processing [17].

TL aims to train the forecast function in the target
domain by utilizing information obtained in the source
domain from a vast number of labeled datasets (e.g.,
ImageNet). TL is widely recognized in different computer
vision domains for helping to enhance the learning of
sparsely labeled or limited datasets in the particular domain
[18]. Unfortunately, the input image properties of the
training examples (i.e., a massive dataset of natural images)
and the test data are highly different for TL in medical
imaging (i.e., a small dataset of clinical images). Because of
the significantly different domains with various and un-
connected classes, as in [19], the transferred functions
learned from the source database (training set) may be
biased when directly implemented into the target database
(test set). Consequently, the biased function’s features are
unlikely to be desired in the target domain, the medical
image field. Moreover TL is vital to have both indicate
environmental and discriminative capability in the feature
extraction process in order to improve classification accu-
racy [20]. According to the traditional view, the TL is
pretrained in the experiment and then finetuned for
implementation using detailed information. Unsupervised,
inductive, transductive, and negative learning are all types of
TL. Also, it can solve these challenges [21].

Hence, we use a TL model to obtain features from
medical images.

Many features, such as color, texture, and size, are used in
standard medical image categorization methods. When

controlling high-dimensional feature vectors through an op-
timizer algorithm, the selectionof optimal features is offered in
a way to improve classification efficiency [22]. )e optimal
representation of the specified subset of features creates ad-
ditional issues for the researchers. In order to automate this
method, feature selection (FS) approaches have also been
crucial for accurately defining these essential features.

)erefore, we developed amethod to solve the diagnostic
imaging identification challenge and optimize the process,
which is wrapped as an IoMT system to reduce morbidity
and mortality worldwide. To the best of our knowledge, our
approach is the first that tries to improve the efficiency of
medical image classification on IoMT based on merging the
deep learning (as MobileNetV3) and chaos game optimi-
zation metaheurstic optimization.

In order to improve the performance for classifying
medical images, the system incorporates both TL and FS
optimization techniques. It is initially recommended that a TL
architecture analyzes the supplied medical images and de-
velops contextualized representations without personal com-
munication. A finetuned MobileNetV3 is utilized to retrieve
the embedded images. Next, a novel FSmethod is also planned
to analyze each pixel embedding and choose only the most
important properties to improve medical image classification
performance.)e FSmethod depends on a newmetaheuristic
strategy known as chaos game optimization (CGO).

)e reasons for employing CGO approaches to optimize
the FS challenge in this paper are as follows. We would want
to examine the most recent CGO optimizer. Furthermore, a
CGO method is compared to the approach to complex,
modern, and high-efficiency algorithms which reveal that
the CGO optimizer has the optimal solution for the prob-
lems examined, with typically more incredible classification
performance (i.e., fewer iterations and execution time). )e
contributions of this paper can be summarized as follows:

(i) )e proposed IoMT system helps minimize human
intervention in medical centers and provides fast
diagnosis reports embedded in low-resourced
systems.

(ii) )e transfer learning (i.e., MobileNetV3) model is
finetuned on the assessed medical image datasets to
extract relevant features.

(iii) A novel feature selection approach to select ap-
propriate features is used to build an IoMT system.

(iv) An extensive evaluation of the proposed system is
reported and compared to several state-of-the-art
techniques using two real-world datasets.

According to the paper’s structure, Section 2 describes a
review of recent work on medical imaging. Section 3 offers a
detailed description of our approach. Section 4 analyzes the
implementation results of image classification techniques.
Finally, the concluding remarks give future scope in Section 6.

2. Related Works

)e essential strength of the classification task to help di-
agnose the medical image makes it an important area of
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research. )erefore, this section is presented with the recent
works about medical image classification.

Recently, researchers have improved the Internet of
Medical )ings (IoMT) using DL and the classification task
performance by applying transfer learning. Due to advances
in connectivity among systems, the Internet of )ings (IoT)
is currently being used in various fields. When used in the
medical area, the IoT can construct care and monitoring
systems that could be monitored remotely. It is now possible
for medical professionals and sometimes even patients to
remotely access sensor data generated by devices attached to
persons who are being monitored or have specific re-
quirements [23]. Computed-aided diagnosis (CAD) tech-
nologies can benefit from the IoT by providing an
interaction that directly correlates the terminal to the devices
for medical images’ classification. To put it another way, any
person may now control a technology that formerly required
training [24].

DL has been increasingly popular on the Internet of
Medical )ings (IoMT) in recent years [25]. As a result, the
IoMT concept is suitable for building embedded technolo-
gies that can accurately diagnose diseases in the same
manner that professionals perform. IoMT innovation,
according to [26], has contributed to the establishment of
vital healthcare systems. Physicians may now receive it in
various settings, allowing them to better diagnose patients
without affecting subjective features. Another obstacle that is
yet to be addressed is the disparity between rare and
common diseases regarding the amount of data collected.
)ey introduced a method for the recognition of CT scan
images of pulmonary and ischemic stroke on the IoMT [27].
)ese researchers employed an IoTdevice to directly contact
users to choose the optimum extraction methods and
classifications for a given situation. However, it was a result
of this problem that the system was underperforming. A
considerable percentage of accuracy is required in the
medical sector when diagnosing the form of the disease. It
has been shown in previous research studies that early
identification of cancer is vital for sick people to receive the
best treatment possible. )us, our goal is to improve the
medical image diagnosis by increasing the accuracy of the
applied algorithms.

In recent decades, metaheuristic optimization algo-
rithms are combined with convolution neural networks
(CNN) for medical image classification. )e transfer
learning process has been viral, primarily since it enables the
system to be more powerful, reduces financial costs, and
requires fewer inputs, supported by the entry weights
supplied by the training process transferred. )e study [28]
examined training from many cases through a transfor-
mation in medical image processing. )e researchers dis-
cussed various types of learning and future studies
possibilities. For finetuning of transfer learning, Ayan and
Ünver [29] employed the Xception and VGG16 structures.
When they added two fully connected layers and the
multiple output tier with a SoftMax activation function, they
also completely modified the architecture of Xception. In the
VGG16 structure, the past eight tiers were halted and the
completely connected levels were modified. Accordingly, the

testing time for each image for the VGG16 and Xception
networks was 16 and 20ms, respectively. InceptionV3,
ResNet18, and GoogLeNet were among the models
employed in Reference [30]. Based on convolutional net-
works, a determination has been made. )ey used each one
of the models to test the premise that voting may be used to
arrive at a diagnostic. In their study, the findings of the
classifiers were combined using the clear majority. Ac-
cordingly, the diagnostic correlates to the class with the
largest rate of start voting in the polls. )e model’s mean
testing time per image was 161ms using this method. On top
of that, they attained high classification rates for X-ray
pictures. According to this study, pneumonia can be diag-
nosed using deep convolutional networks. As part of our
method, we rely on classical classifiers to minimize the
computing cost of classifying information.

As a result of their extensive feature representation skills,
CNNs have been commonly applied in medical image
processing in the latest years and have shown substantial
gains. Zhang et al. )e authors of [31] have developed a
system for target class lesion identification based on multi-
CNN collaboration. In addition, their approach was more
reliable in identifying lesions and its utility had been eval-
uated using necessary details. A strong ensemble structure
for cancer detection was created [32] using dynamic clas-
sification techniques. )erefore, a more distinctive and
robust model can be created. To identify skin lesions on their
own, in Reference [33], they proposed that a crossnet-based
mixture of multiple convolutional networks may be used.
For the categorization of melanomas, MobileNet and
DenseNet were coupled [34]. Because the light medical
image classification model was designed to boost feature
selectivity, computation complexity, and parameter settings,
it differed from older systems. It used a categorization
strategy that worked well.

Currently, metaheuristic optimization algorithms are
being used to solve a wide range of complex optimization
problems. Rather than a single answer, a list of possible
solutions allows them to navigate the solution space effi-
ciently. )ey beat other optimization approaches as a result.
Samala et al. )e authors of [35] suggested a method of
multilayered pathway development to identify breast cancer.
)ey used a two-stage method: transfer learning and
identifying features, respectively. Region of interest (ROI)
from large lesions were being used to train pretrained CNNs.
On top of it, a random forest classificationmodel was created
using the learned CNN. We evolved pathways using a ge-
netic algorithm (GA) with random selection and total
number crossover operators. )eir research found a 34%
change in features and a 95% reduction in parameter actions
using their proposed strategy. )rough particle swarm
optimization (PSO), da Silva et al. [36] optimized the
hyperparameter of CNN for a false-positive reduction in CT
lung images due to their comparable structures and low
density, which causes false-positive results. Scientists have
found that optimizing an automatic detection system can
improve outcomes and minimize human intervention. In
order to acquire the binary threshold value, Vijh et al. )e
authors of [37] adopted OTSU-based adaptable PSO for
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automatic classification of brain cancers. To reduce noise
and improve the image quality, noise processing was re-
moved and skull stripping was applied. For feature ex-
traction, GLCM was utilized and 98% of the features were
extracted.

Utilizing the grey wolf optimization (GWO) method,
Shankar et al. [38] developed a novel concept for Alzheimer’s
disease using brain imaging analysis. An initial consider-
ation for picture editing is to remove undesirable regions.
)e retrieved images are then sent to CNN for feature ex-
traction, resulting in improved performance. According to
Goel et al. [39], OptCoNet is an optimized CNN architecture
for recognizing COVID-19 patients as normal/pneumonia
sufferers. For hyperparameter adjustment of the convolution
layer, they employed the GWO. )eir study found that the
proposed approach assisted in the automated examination of
patients and reduced medical systems’ burdens on the
system. In order to enhance architectures for denoising
images, Elhoseny et al. [40] employed the dragonfly and
improved firefly algorithms (FFA) to categorize the images
as normal and abnormal. )is adjustment improved sig-
nificantly due to this adjustment, as the peak signal to noise
ratio (PSNR) reduced significantly. Melanoma diagnosis was
enhanced utilizing the whale optimization algorithm
(WOA) and levy battles, as introduced in Reference [41].
Two datasets were analyzed using the developed structure,
and the accuracy was 87% on both datasets. Some of them
suffer from premature convergence and local minima, es-
pecially when faced with a large solution space [42]. Often,
this limit results in inefficient task scheduling solutions,
which hurts system performance. )erefore, a globally op-
timal solution to the IoMT task scheduling problem is ur-
gently needed.

However, these existing approaches were still unable to
achieve a high degree of efficiency. To overcome this problem,
this paper aims to find the best solutions that lead for im-
proving performance. Hence, we combine transfer learning
with metaheuristic FS optimization to create an available
IoMT system. )e characteristics of this system allow for
outstanding performance, reasonable computing expenses,
and address the financial concerns discussed earlier. As a
result of the IoMT, it is necessary to treat and detect infection
inside and outside the clinic. )erefore, Internet-connected
devices and a digital copy of scan were used in IoMT system.
However, these existing approaches were still unable to
achieve a high degree of efficiency. To overcome this problem,
this paper aims to find the best solutions that lead for im-
proving performance. )e main difference between the
proposed model and previous approaches is that we combine
transfer learning with metaheuristic FS optimization to create
an available IoMT system. )e characteristics of this system
allow for outstanding performance and reasonable computing
expenses. Hence, this system is necessary to treat and detect
infections and diseases from anywhere.

3. Methodology

Inside this field of medical image classification, detecting a
user’s illness using a medical database is an interesting topic.

)e present study used three datasets for image recognition
analysis, with the major goal of achieving maximal per-
formance in disease diagnosis. )e three datasets investi-
gated were ISIC-2016 [43], PH2 [44] (both for melanoma
detection), and Blood-Cell classification [45]. Figure 1 de-
picts the established IoMT’s architecture. Initially, the IoMT
devices capture medical images, and if the goal is to train the
IoMTsystem, the image data could be sent to a cloud center.
)ere still are three main processes at this level. )roughout
the first stage, the features are extracted while using the TL
architecture, as detailed in Subsection 3.2.2. )e next stage is
to find the relevant features using CGO. Lastly, the classi-
fication is performed, and the results can be dispersed across
fog operating systems to save on communication costs if
desired. If the goal is to identify the condition of the collected
data, the training data in fog operating systems are utilized.

3.1. Proposed IoMT System. Our IoMT system is based on a
computational cloud that communicates with a fog. Users
may easily manipulate the data and parameters required to
get the online service’s classification results. )is system
component also handles communication between IoT de-
vices (mobile phones and laptops) and the cloud center.
Because the patient’s images are all the same, the system can
be used for various exams, proving its reliability. Image sizes,
formats, and color conversions are adjusted as standards.

)e IoMTsystem represented in Figure 1 is what we offer
to implement our methodology in the system in order to give
a quick reaction and support the physician in making ap-
propriate choices. )ere are two components in our system,
cloud computing and fog computing.

)ese are done first by sending a medical image database
to a training level in the cloud using IoT technologies. Using
the training model, the created system from Subsections
3.2.2 and 3.3.2 may be well.)e pretrained feature extraction
technique is deployed on cloud service and benefits from the
light and quick approach. )ere is wellknown interopera-
bility and limited resource use on embedded systems with
the MobileNetV3 structure to extract the features. )e in-
troduced CGO algorithm, a lightweight and robust feature
selection method, has been used upon feature extraction to
minimize the features embedding set and only maintain the
more essential features in each filtered image. We can speed
up the training process by decreasing the number of features,
which will allow us to arrive at a classification choice in an
acceptable amount of time.

Oneof the twocomponents included in this IoMTsystemis
fog computing. It allows the approved trainingmodel tomake
predictions without re-training the system, saving time and
reducingnetwork traffic.Asa result, fogcomputingdevicescan
assist the expert in making a judgment on medical image di-
agnosis better thanwaiting for a choice from the cloud centers.
In addition, the training process on the cloud centers is fine-
tuned regularly, employing photos gathered from connected
devices and saved in a database. )us, the training system’s
quality will improve, making better, more accurate decisions.

)ere will also be a web-based application that the
transmitter can use to create a rapid forecast that uses the
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pretrained or finetuning program to refine the system on a
batch of new photographs. )e sender will receive the final
choice among other measurement metrics like accuracy to
back up system forecasts.

3.2. Feature Extraction Using TL. )is section gives a de-
tailed description of the used transfer learning technique for
features learning and extraction. As mentioned in Section 2,
the pretrained model for image classification tasks in
computer vision is beneficial in training and inference speed.
In addition, few parameters can be finetuned during the
training process rather than training models from scratch. In
our system, MobileNetV3 is used as the backbone of the
feature extraction process where the top layers of the model
are replaced with new layers, and only specific layers are
finetuned. )e MobileNetV3 is an optimized version gen-
erated by a network architecture search (NAS) algorithm
called NetAdapt. )e NetAdapt algorithms use Mobile-
NetV1 and MobileNetV2 components to search for an
optimal network architecture and kernel size to minimize
the model size and latency alongside maximizing its
performance.

3.2.1. Efficient Deep Learning. DL techniques and models
have demonstrated success in various tasks, including image
classification, image segmentation, and object detection
[46–49]. However, the challenges of these tasks, especially
the quality and the impact of the learned representations,
remain largely unexplored. Over the past decade, several DL
architectures and training techniques have been proposed.
For instance, researchers focus on exploiting the power of
DL models to improve the model’s performance and effi-
ciency in terms of training time, computational resources,
and accuracy. One of the most investigated DL models is
convolutional neural networks with different architectures,
designs, parameters, and training processes. Depthwise
convolutions are DL components designed to exploit the

spatial information in the input image and replace the
traditional convolution layers, thus facilitating their de-
ployment on embedded devices or edge applications. Var-
ious DL models have embraced the concept of depthwise
convolutions to overcome the limitations of traditional
convolution layers including MobileNets [50, 51], Shuf-
fleNets [52], NASNet [53], MnasNet [54], and EfficientNet
[55]. Unlike the traditional convolution layers, the depth-
wise convolution layers are used separately on each input
channel. )us, the models can be computationally inex-
pensive and trained with fewer parameters and less training
time. In this section, we will focus on introducing the
MobileNetV3 [51] and its core components. More detailed
information will be discussed in the following sections,
where we describe the MobileNetV3 as our feature extractor
used in the proposed system.

Howard et al. [51] introduced the MobileNetV3 in two
versions: MobileNetV3-large and MobileNetV3-small. )e
MobileNetV3 is designed to optimize the latency and ac-
curacy of the previous version, which is the MobileNetV2
architecture. For instance, MobileNetV3-large improved the
accuracy by 3.2% compared to the MobileNetV2 while re-
ducing the latency by 20%. )e MobileNetV3 was designed
using a network architecture search (NAS) technique termed
the NetAdapt algorithm to search for the optimal network
structure and kernel size of the depthwise convolution. As
illustrated in Figure 2 (Section 3.2.2), the MobileNetV3
architecture is composed of the following core building
blocks:

(i) )e depthwise separable convolutional layer has a
depthwise convolutional kernel of size 3 × 3, fol-
lowed by batch normalization and activation
function.

(ii) )e 1 × 1 convolution (pointwise convolution) for
linear combination computations of the depthwise
separable convolutional layer and feature maps’
extraction.

IOT Devices

Training

Testing

Diagnostic
Fog Computing Cloud Center

API Prediction

Medical
Image DB

Optimal Feature
Selection using CGO

Classification
Algorithm

Feature Extraction
using MobileNet

Figure 1: Diagram of the proposed IoMT system.
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(iii) )e global average pooling layer reduces the di-
mensionality of the feature maps.

(iv) )e inverted residual block is inspired from the
bottleneck blocks networks [56] that use the re-
sidual skip connections mechanism. )e inverted
residual block consists of the following sub-blocks:

(a) )e 1 × 1 expansion and projection convolu-
tional layers with a depthwise convolutional
kernel of size 1 × 1 to learn more complex
representations and reduce the model’s
calculations.

(b) A depthwise separable convolutional layer.
(c) A residual skip connection mechanism.

(v) )e squeeze-and-excite block (SE block) [54] to
select the relevant features on a channelwise basis.

(vi) )e h-swish activation function [57, 58] which is
used interchangeably with the ReLU (Rectified
linear unit) activation function.

3.2.2. Feature Extraction Module. Using different image
datasets, theMobileNetV3 was finetuned to learn and extract
feature vectors from inputted images of size 224 × 224. )e
MobileNetV3 was trained on the ImageNet dataset [56]. In
our experiments, the MobileNetV3-large pretrained model
was employed and finetuned on the datasets having skin
cancer and blood cells images. A 1 × 1 point-wise convo-
lution (Conv) was used to replace the top layers used for
classification in the MobileNetV3 model as shown in
Figure 2.

)e 1 × 1 pointwise convolution can be seen as a mul-
tilayer perceptron (MLP) used for classification and feature
extraction tasks. )us, in our implementation, we used two
1 × 1 pointwise convolutions at the top of the model to
extract features from the input images and finetune the
model on the image classification task. Meanwhile, the
MobileNetV3 building block consists of an inverted residual
block inspired by the bottleneck blocks. )e inverted re-
sidual block contains two important blocks: the depthwise
separable convolution block and a squeeze-and-excite block
used to link the input and output features on the same
channels, thus improving the features representations with
low memory usage. )e depthwise separable convolution
block consists of 3 × 3 depthwise convolution, batch

normalization (BN), activation function, and 1 × 1 pointwise
convolution where the order of execution of the layers is as
follows: (3 × 3Conv)⟶ (BN)⟶ (ReLU/h − swish)

⟶ (1 × 1Conv)⟶ (BN)⟶ (ReLU/h − swish). In
contrast, the squeeze-and-excite block consists of fully
connected layers (FC) with nonlinear transformation for
global feature extraction using global pooling operation with
the following execution order: (Pool)⟶ (BN)⟶ (FC1)

⟶ (ReLU) ⟶ (FC2)⟶ (Sigmoid). Each building
block can integrate a depthwise separable convolutional
layer with different nonlinearity functions such as ReLU or
hard swish (h-swish) which are defined in Equations 1 and 2,
respectively.

ReLU(x) � max(0, x), (1)

h_swich(x) � x · σ(x),

σ(x) �
ReLU6(x + 3)

6
,

(2)

where h_swich is a modified version of the sigmoid acti-
vation function and σ(x) defines the piecewise linear
complex analog function.

To extract the feature vector from each input image, we
used the generated finetuned model on each dataset. We
flattened the 1 × 1 pointwise convolutional layer (placed
before the classification layer) output and used the output as
the feature vector. )e extracted feature vector for each
image of size 128 will be fed into the feature selection process
in the proposed system. )e model was finetuned for 100
epochs with a batch of size 32 on each dataset to produce the
best classification performance. Meanwhile, to update the
model’s weight and bias parameters, we used the RMSprop
optimizer with a learning rate of 1e − 4. To overcome the
model’s overfitting, we used the dropout layer with a prob-
ability of 0.38.

3.3. Feature Selection Optimization. During using methods
for extraction of features, including MobileNetV3, the
extracted features were not transmitted straight to the
classification algorithm since it neededmore processing time
to reach. Feature selection (FS) techniques reduce redundant
or unusable features from retrieved patient data like a
content decomposition method. It means that the FS process
minimizes the quantity of data transferred. As a result, an
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Figure 2: )e building blocks of the proposed network architecture for feature extraction.
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optimized feature choice process was implemented wherein
most of the critical features were defined using the opti-
mizer, i.e., chaos game optimization (CGO).

3.3.1. Chaos Game Optimization (CGO). As a result of
certain principles of the chaos theory, the CGO relies on
fractal self-similarity issues [59]. According to the chaos
theory, small changes in the early conditions of a chaotic
system can significantly impact its future because of the
system’s dependence on its beginning conditions. Following
this theory, the present state of a system can predict its future
state, while the estimated existing state of the system does
not identify its future state. In mathematics, the chaos game
is constructing fractals by utilizing the main polygon pattern
and a chosen randomly crucial point to create fractal pat-
terns. )e main goal is to construct a combination of points
with a recurrent attitude to achieve a shape with a similar
style in different ranges.

Using a Sierpinski triangle fractal as an example, we may
better appreciate the chaos game’s theory. As shown in
Figure 3, if three points are chosen for the main fractal
structure, in this case, the output is the triangle. Selected
vertices have been highlighted in red, green, or blue. )e die
utilized should have two red sides, two blue sides, and two
green sides in this situation. First, a random point is chosen
as the fractal’s seed. A seed is moved from its starting lo-
cation to the vertex corresponding to that color on each die
roll by rolling it again and using its new location as a starting
point for further reiterations. Finally, a die is rolled multiple
times before the Sierpinski triangle appears.

As a result of using the chaos game mechanics and
fractals, the CGO method has been developed. Many can-
didate solutions (S) represent a few of Sierpinski’s valid
points. )ere are some choice factors (s

j

k) associated with
each solution candidate (Sk). )ese selection factors reflect
the placement of such eligible seeds within the Sierpinski
triangle. )e triangle can also be used to seek solutions.

)e primary strategy is to generate new seeds in the search
area that could be the newly eligible seeds by generating
temporary triangles. Toward achieving this goal, four different
approaches are described. )ere is an iteration of this tech-
nique across all eligible seeds and the kth temporary triangles
inside the search domain. )e triangle has three nodes inside
the search area, including three kth initial points, the blue
(Sk), green (G), and red points (Mk). In this temporary
triangle, a die is used to create new seeds using the chaotic
method. Chaos game principles are used in this temporary
triangle, creating new points with a die and three seeds. )e
three seeds (Sk, the G, and Mk) are placed in order of im-
portance, from first to third, respectively. When it comes to
Sk’s first seed, a die with six faces (i.e., three red and three
green) is used. Depending on the color of the die, the point is
transformed in Sk toward Mk (red side) or G (green side).
When rolling dice comes up green/red, the point is moved
over to either G/Mk. It is possible to replicate this feature by
using a random number generation function that creates only
two values (0 and 1) for the possibility of selecting red or
green sides.)e green side indicates that the seed placed in Sk

has moved to the G, while the red side indicates that the seed
placed in Sk has moved to Mk. Unaffected by the fact that
both sides of the game are equally likely to emerge, creating
two random numbers for both Mk and G assumes that
perhaps the seed contained inMk is relocated anywhere along
connected connections between the Mk and G. As a result of
the chaos game technique that manages this feature, some
randomly generated factorials are also used based on the
actuality of the seeds’ movement inside the search region.)e
first point has the following mathematical expression:

P
1
i � Sk + αk × βk × G − ck × Mk( 􏼁,

k � 1, 2, . . . , D,
(3)

where Sk is the solution candidate (kth) and G refers to the
global solution implemented so far. As the name suggests,
Mk is the average number of beginning points considered
three points in the kth temporary triangle. Seed motion
limitations are modeled using the randomly generated
factorial, where αk is the seed’s motion limitations. If there is
a desire to represent the likelihood of rolling a dice, βk and ck

correspond to random integers of 0 or 1. D is the number of
eligible points (solution candidates).

Regarding the second point, which is placed in the G, a
die with six faces (i.e., three red and three blue) is utilized.
)e point in the G is moved to the Sk (blue face) or the Mk

(red face). When a random number production function
generates only two numbers, 0 and 1, for the possibility of
picking red/blue faces, this property can be represented.
When the blue face shows, the position of the seed in the G is
changed to the Sk. When the red face shows, the position of
the point in the G is changed to the Mk. Although each blue
or red side has an equal chance to happen, the potential of
generating two random numbers of 1 for Sk and Mk is also
assumed that the point placed in G is relocated along the
course of the connected connections between Mk and Sk.
According to the chaotic game technique, transportation
inside the search region should be limited based on the
actuality of the seed; certain randomly generated factorials
are used to manage this feature. )e mathematical repre-
sentation for the second seed is as follows:

P
2
k � G + αk × βk × Sk − ck × Mk( 􏼁,

k � 1, 2, . . . , D.
(4)

In addition, for the third seed, which is placed in Mk, a
die with three blue sides and three green sides is used. )e
seed in Mk is transferred to the Sk (blue side) or the G (green
side) by rolling the dice and relying on the color that shows
green/blue. )is functionality can be represented by a
random integer creation function that generates only two
values, 0 and 1, for the option of selecting green/blue faces.
When the blue face shows, the position of the point in the
Mk is changed to the Sk. When the green face occurs, the
place of the point in the Mk is transferred to the G. Each one
of the green and blue sides has an equal chance of occurring
in this game. )en, creating two random numbers of Sk and
G. Next, the Mk is transferred the path of the associated lines
between the G and the Sk. Based on the actuality of the point,
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movements inside this search region should be controlled
using the chaotic game technique to regulate this feature;
specific randomly generated factorials are used. )e third
seed has the following formula:

P
3
k � Mk + αk × βk × Sk − ck × G( 􏼁,

k � 1, 2, . . . , D.
(5)

)e additional point is also used as a fourth point placed
in the Sk to conduct out all the stages of modification inside
the search range. )e technique for upgrading the fourth
seed’s placement is dictated by specific random fluctuations
in the randomly chosen decision factors. )e fourth seed has
the following mathematical representation:

P
4
k � Sk S

i
k � S

i
k + rand􏼐 􏼑,

i � [1, 2, . . . , N],
(6)

where the point dimension is denoted by N. i denotes an
integer in the range [1, N]. rand stands for an uniform
random value (0, 1).

For managing and changing the rates of exploration and
exploitation within the proposed CGO algorithm, four
formulas are conducted to identify the αk as shown in
Equation (7), which is used to simulate the seeds mobility
limitations. )ese four formulas are randomly employed to
locate the position of the first through third seeds.

αk �

R,

2 × R,

(ϵ × R) + 1,

(ϵ × R) +(ϵ),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where R denotes an uniform random value in the range (0,1).
Besides, ϵ and α are integers having random values ranged
(0,1).

According to the self-similarity of the fractals, the early
eligible seeds and the freshly formed seeds applying the
chaos game principle must be considered to determine if the
newly created seeds should be included or not with the total
eligible seeds inside the search domain. As a result, the initial
seeds are transformed into new individual points if they
achieve the highest levels of self-similarity or they are re-
served if the new seeds achieve the lowest levels of self-
similarity. Consider that the substitution operation is carried
out in the mathematical technique to obtain a model with a

reduced difficulty level. Since the Sierpinski triangle is a total
form, the total points that have been found so far are used to
complete its shape. If the solution variables (S

j

k) are out of
bounds, it is crucial to deal with them as soon as they are
discovered. S

j

k is outside the range of variables in this ex-
ample, and the flag advises adjusting the boundaries of those
variables. After a predefined set of optimization rounds, the
optimization method concludes.

Algorithm 1 outlines the steps of the CGO algorithm.
Besides, Figure 4 depicts the flowchart of this algorithm. Ini-
tially, the beginning locations of the solution candidates (X)
inside the search region are determined by random selection.
Second, we determine the initial solution options’ objective
valuebasedonthe initial seeds’ self-similarity.)en, itproduces
the global best (G) pertinent to the seed with a high eligibility
level. Furthermore,wegenerate ameangroup(Mk) that used a
randomchoice technique for each eligible point (Sk) inside the
search area. Also, we create a temporary triangle with the re-
quired three vertices ofSk,Mk, andG for each eligible seed(Sk)

inside the search region. Subsequently, we find four seeds for
each temporary triangle using Equations (3)–(6). Afterward,
the s

j

k external variables scope should be checked for boundary
conditions. Moreover, self-similarity is taken into account
while calculating the objective function of these new seeds.
Finally, it is time to replace the initial eligible points with new
seeds if theirobjective functions showhighself-similarity levels.

3.3.2. Optimal Feature Selection. In general, the feature
extraction methods are separated into training and test
datasets, with the training dataset used to learn the model to
identify the essential features. Figure 4 depicts the stages of
the binary CGO optimization technique. First, the CGO is to
produce a series of N agents X that depict the FS best so-
lution.)en, the following formula is used to carry out a task:

Xi � rand∗ (U − L) + L,

i � 1, 2, . . . , N,

j � 1, 2, . . . ,Dim.

(8)

)e dimension of the specific issue is denoted by Dim in
Equation (8) (i.e., the number of features). In comparison,
the search space is defined by U and L. A further step is to
acquire the Boolean edition from each Xi, which is ac-
complished to use the following equations:
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Figure 3: Using chaotic game to create the Sierpinski triangle [59].
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BXij �
1, if Xij > 0.5,

0, otherwise.
􏼨 (9)

)e objective value from each Xi is computed by ap-
plying the optimization technique, which depends on the
binary BXi and classifying mistakes.

Fiti � λ × ci +(1 − λ) ×
BXi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Dim
􏼠 􏼡, (10)

in which (|BXi|/Dim) represents the ratio of defined feature
sets. )e classifying fault utilizing SVM is denoted by ci.
SVM is commonly used because it is much more steady than
other classification techniques and has fewer parameters. In
contrast, λ is a measurement that always had to adjust the
proportion of selected features and categorization fault.

)e following step is to examine the halt criteria, and if
they have been encountered, the best solution is brought
back. Alternatively, the automatic update steps are repeated.

)e classification is conducted after getting the optimal
features from the CGO algorithm. We use a machine
learning technique, such as stochastic gradient descent
(SGD). To train deep neural networks with better pre-
diction capabilities by investigating the top nonconvex
cost space is among the main objectives in DL. As a typical
reason to describe this phenomenon, one can demonstrate
that perhaps the cost landscape on its own is simple, with
no misleading local optimal. However, it turns out that the
cost landscape of superior DL models has fictitious local
(or global) optimum, and stochastic gradient descent
(SGD) is capable of detecting them [60]. Nevertheless, the

SGD approach, launched at random, has high general-
ization qualities in the real world. In explaining this
achievement, a hypothesis would have to provide for the
entire method course, which became apparent. )e
problem remains challenging, even for the most advanced
DL trained on datasets, which are still in the experimental
stage.

4. Experiments

4.1. Experimental Data. )ree datasets of medical photos
were used to conduct image classification task for our ex-
perimental tests: PH2 [44], ISIC-2016 [43], and Blood-Cell
datasets as in [45].

(1) PH2: A total of 200 dermoscopic images were in-
cluded in this dataset, including 80 Atypical Nevus,
80 Common Nevus, and 40 Melanoma. )is dataset
can be freely downloaded at http://www.fc.up.pt/
addi/ph2.database.html. Table 1 describes in more
detail about each dataset and its respective classes. As
an example, Figure 5 shows some of the image
samples from the selected databases.

(2) ISIC-2016: In total, 1179 photos are included in this
dataset, which is separated into two categories: Most
of the data are benign, whereas the remainder is
malignant. )ere is a link on the website to get this
database https://challenge.isic-archive.com/data.

(3) Blood-Cell: )e dataset is collected from publicly
available dataset from BCCD Dataset (https://www.
kaggle.com/paultimothymooney/blood-cells/data).

Training

Start

Medical Image
Features

Create a random place for initial eligible points (Sk)

Determine the fitness values of Sk using the self-similarity

Conclude the Global Best (G) i.e., the highest eligibility of Sk

Calculate a Mean Groip (M) using random selection technique

Create a Triangle (T) based on three nodes of Sk, Mk, and G

Create four seeds for T using Eqs. 1 to 4

Manage seed boundaries

Determine the fitness values of the seeds

Update the G

Reduce the test set

Evaluate the performance

Termination
criteria

End

Yes

No

Testing

Figure 4: Flowchart showing the proposed methodology on the FS method.
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It comprises 12,442 blood cell images, 2487 test sets,
and 9957 training sets.)ese images are classified into
four types of blood cells: eosinophils, lymphocytes,
monocytes, and neutrophils. )ere are 2496 eosin-
ophils, 2484 lymphocytes, 2477 monocytes, and 2498
neutrophils in the training set, while 623 eosinophils,
623 lymphocytes, 620 monocytes, and 624 neutro-
phils are in the testing set.

4.2. Evaluation Metrics. )is research was evaluated using
the metrics in Table 2: balanced accuracy, accuracy, recall,
precision, and F1 score. Balanced accuracy is specified as the
average accuracy acquired across all classes. )e quantity
created across all predicted values is referred to as accuracy.
)e recall is calculated as the proportion of actual numbers
to values that should have been predicted. Precision is
calculated as the proportion of actual numbers to defined
properties. Finally, the F1 score indicates a class imbalance
between recall and precision, where false positives (FP)
refers to the precise number of positives discovered from
actual samples, when referring to true negatives (TN), it
refers to the correct number of nonmodular data found.
Besides, the number of nodular data discovered in a non-
nodular sample is known as false positives (FP). Finally, it
represents the number of faults identified in actual nodular
data, referred to as false negatives (FN).

4.3. Experimental Results and Analysis. )e results analysis
and discussion of experiments for the suggested approach
task scheduling technique are presented in this section. First,
we compare our approach with various metaheuristic op-
timization strategies. Afterward, the three classifiers are
compared, namely, k-nearest neighbor (kNN), support
vector machines (SVM), and stochastic gradient descent
(SGD). )en, we compare our results to those of other
current medical image classification algorithms. Finally, a
comparison with published techniques has been conducted.

To objectively examine the effectiveness of our proposed
approach, we compared it to nine wellknown algorithms.
)e metaheuristic optimizers, in particular,

(i) Particle swarm optimization (PSO) [61],
(ii) Multiverse optimizer (MVO) [62],
(iii) Grey wolf optimization (GWO) [63],
(iv) Moth-flame optimization (MFO) [64],
(v) Whale optimization algorithm (WOA) [65],
(vi) Firefly algorithm (FFA) [66],
(vii) Bat algorithm (BAT) [67], and
(viii) Hunger games search (HGS) [68].

As seen in Table 3, each optimizer retains a particular set
of parameters. As the number of search agents increases, so
does the likelihood of finding a worldwide optimal. )e
sample size is set at 50 in all experiments. )e number of
search agents could be reduced complexity.

)e nine optimization techniques were combined with
standard machine learning classifiers to produce the

findings, such as KNN, SVM, and SGD. (a) According to
KNN, an unidentified sample’s classification is deter-
mined by the geographical sharing of benefits in that
population. We can then find out where the k closest
examples are located. )e length among items is used to
determine consistency. A typical length in a Euclidean
distance is based on a mathematical formula. (b) It is
possible to use SVMs as classification algorithms by al-
tering the distributed space of data. SVM uses statistical
knowledge for the classification task, and hyperplane
arithmetic can be used to understand statistics. )e hy-
perplane is defined based on the kernel used during a plot.
Linear, polynomial, and RBF kernels are among the most
common kernel types. (c) )ere are many advantages to
using the SGD technique. An explanation for such success
had to cover a broad duration of the procedure, which
became apparent. Only the most robust DL learned on
data, already in the test stage, have difficulty in solving the
challenge.

4.4. Analysis Results. When evaluating these optimization
techniques, multiple measures are used. Evaluation of each
method was based on recall, precision, accuracy, and F1
score. PH2, ISIC-2016, and Blood-Cell datasets are repre-
sented in 4, 5, and 6, respectively. In these tables, the bolded
results are the highest accurate ones. According to the
outcomes shown in these tables, the SGD-based CGO beats
PSO, MVO, GWO, MFO, WOA, FFA, BAT, and HGS.

On the PH2 dataset, Table 4 shows that the CGO ap-
proach plays a significant role in feature selection when
applying an SGD classifier since the findings are still ef-
fective; this is apparent throughout all measures. Analyzing
results on the accuracy metric, using the SGD classifier,
CGO can classify 97.52% of the test set, which is higher than
the findings of the other optimization algorithms. According
to the CGO, the BAT, HGS, MVO, MFO, and GWO in the
second level are both at 97.50%. Moreover, the PSO’s ac-
curacy results are on par with WOA’s, at 97.14%. Lately, the
FFA’s result has been the worst performance (i.e., 96.79%).
On another view, the CGO achieved 97.54% on the precision
metric, which was the best result on the SGD algorithm.
BAT, HGS, MFO, and MVO came in the second level,
97.53%. )ey are followed by the GWO, which achieved
97.51%. )en, with the same level of precision, PSO and
DLOHGS both have 97.19%. Last but not the least, FFA has
the lowest performance with 96.84%. To make things even
better, the recall measure for the SGD classifier was 97.51%
for CGO, 97.50% for HGS, MVO, MFO, and BAT, 97.49%
for GWO, 97.14% for PSO, and WOA, and 96.79% for FFA.
In terms of F1 score, our CGO algorithm came out on top,
with 97.51%. CGO is followed by the BAT, HGS, MFO,
MVO, and GWO algorithms, 97.50%. Also, WOA achieved
97.15%. )e last algorithms, PSO and FFA, are the worst in
performance. In addition, the balanced accuracy measure for
our CGO algorithm was 97.93%. Following CGO are BAT,
MVO, MFO, GWO, and HGS algorithms with 97.92% each.
More than that, the PSO has 97.62% accuracy. Lastly, FFA
and WOA had the worst results with 97.32% and 97.02%,
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respectively. However, integrating these nine optimization
techniques with the KNN classifier and SVM classifier
produced the lowest metrics results compared with the SGD
classifier.

)e proposed CGO algorithm outperformed other op-
timization techniques on the ISIC-2016 dataset, as seen in
Table 5. )e accuracy of the CGO algorithm for the SGD
classifier was 88.39%, which was the best performance. In
comparison, the BAT was at the second level, with 87.60%.
With 87.07% of the vote, the HGS algorithm follows the
preceding two. )e PSO algorithm, which has 85.75%,

follows the preceding three methods. )e FFA and MVO
algorithms (84.77%) are similar to their predecessors’ al-
gorithms.)e algorithms that follow are the GWO (84.43%),
WOA (83.91%), and MFO (79.95%). For the precision
measure, our suggested CGO approach achieved a score of
87.81%. Following the FFA comes the HGS, which has an
87.75% rating. It was 86.22% for the HGS algorithm to keep
up with them. 84.82% and 83.99% are the relative per-
centages for the PSO andWOA algorithms after the previous
two algorithms in order of importance. )e previous al-
gorithms are followed by GWO,MVO, and FFA, which have
respective success rates of 83.92%, 83.99%, and 83.78%. )e
MFO, on the other hand, has the lowest performance of
80.15%. As a result of the recall metric, 88.39% of the test
samples were able to be compared using CGO, BAT, HGS,
PSO, FFA, MVO, and GWO algorithms, while 83.91% of
them were compared using the WOA method and 79.95%
were compared using the MFO algorithm. For example, the
proposed CGO outscored previous algorithms by 87.51% on
the F1 score scale. 86.14% was obtained by HGS, which HGS
followed. Next, BAT, MVO, GWO, and WOA have 85.79%,
84.18%, 84.14%, and 83.95%, respectively. Finally, MFO gets

Table 1: Dataset description.

Dataset name Class Training data Test data # Images per class

Ph2

Common Nevus 68 12 80
Atypical Nevus 68 12 80
Melanoma 34 6 40

Total 170 30 200

ISIC-2016
Malignant 173 75 248
Benign 727 304 1,031
Total 900 379 1279

Blood-Cell

Neutrophil 2499 624 3123
Monocyte 2478 620 3098
Lymphocyte 2483 620 3103
Eosinophil 2497 623 3120

Total 9957 2487 12444
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Figure 5: Example medical image samples for classification task from the three selected datasets.

Table 2: Various performance parameters.

Metrics Formula
Recall TP/TP + FN
Precision TP/TP + FP
Accuracy TP + TN/TP + TN + FP + FN
F1 score 2∗Precision∗Recall/Precision + Recall
Sensitivity TP/TP + FN
Specificity TN/FP + TN
Balanced Accuracy Sensitivity + Specificity/2
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Table 4: Results of each algorithms on PH2 dataset.

Optimizer Classifier Recall Precision F1 score Accuracy Balanced accuracy

PSO
SGD 0.9714 0.9719 0.9714 0.9714 0.9762
KNN 0.9564 0.9569 0.9565 0.9564 0.9732
SVM 0.9679 0.9684 0.9679 0.9679 0.9702

MVO
SGD 0.9750 0.9753 0.9750 0.9750 0.9792
KNN 0.9561 0.9566 0.9562 0.9561 0.9762
SVM 0.9679 0.9684 0.9679 0.9679 0.9702

GWO
SGD 0.9749 0.9751 0.9750 0.9751 0.9792
KNN 0.9719 0.9721 0.9716 0.9715 0.9762
SVM 0.9678 0.9694 0.9679 0.9679 0.9702

MFO
SGD 0.9750 0.9753 0.9750 0.9750 0.9792
KNN 0.9714 0.9719 0.9714 0.9714 0.9762
SVM 0.9679 0.9684 0.9679 0.9679 0.9702

WOA
SGD 0.9714 0.9718 0.9715 0.9714 0.9732
KNN 0.9571 0.9576 0.9572 0.9571 0.9762
SVM 0.9714 0.9719 0.9714 0.9714 0.9762

FFA
SGD 0.9679 0.9684 0.9679 0.9679 0.9702
KNN 0.9564 0.9569 0.9565 0.9564 0.9762
SVM 0.9714 0.9719 0.9714 0.9714 0.9762

BAT
SGD 0.9750 0.9753 0.9750 0.9750 0.9792
KNN 0.9561 0.9566 0.9562 0.9561 0.9762
SVM 0.9714 0.9719 0.9714 0.9714 0.9762

HGS
SGD 0.9750 0.9753 0.9750 0.9750 0.9792
KNN 0.9564 0.9569 0.9565 0.9564 0.9732
SVM 0.9714 0.9719 0.9714 0.9714 0.9762

CGO
SGD 0.9751 0.9754 0.9751 0.9752 0.9793
KNN 0.9750 0.9753 0.9750 0.9750 0.9792
SVM 0.9714 0.9719 0.9714 0.9714 0.9762

Table 3: )e parameters of each FS optimizer and their values.

S# Optimizer Parameter Value

1 PSO
Vmax 6.0
Wmax 0.9
Wmin 0.2

2 MVO WEPMin 0.2
WEPMax 1.0

3 GWO A 2.0
R (−1, 1)

4 MFO B 1.0
L (−1, 1)

5 WOA A 2.0
R 1.0

6 FFA
Alpha 0.5

BetaMin 0.2
Gamma 1.0

7 BAT QMin 0.0
QMax 2.0

8 HGS

VC2� 0.03 0.0
Vmax 6.0
Wmax 0.9
Wmin 0.2

9 CGO β and c (1, 2)
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the poorest performance with 80.05% but not the latest.
)ere was a 75.69% balanced accuracy of the CGO algo-
rithm, which was the best performance. Regarding the
WOA’s and the HGS’s performance in the second and third
levels, respectively, they scored 74.90% and 73.86%. GWO is
behind with 73.72%. FFA scored 64.85%, which is the lowest
possible score.

For the Blood-cell dataset, the results of the CGOmethod
and other optimizers are shown in Table 6. )e SGD, SVM,
and KNN classifiers have been combined on the nine opti-
mizers in the table. According to the table, merging the CGO
algorithm with SGD surpassed other algorithms by 88.79%,
which is the accuracy score. GWO is thenused to get the same
outcome as MFO (i.e., 88.74%). )ere is also 88.70% in the
MVO. BAT and HGS had the worst score, with 88.58%. )e
CGO also had the best results on the precision metric, with
91.10% of the vote. Ninety-one% (91.07%) was the second-
best result, which belongs to MFO and WOA. Two other
algorithms (BAT and HGS) performed poorly, with 90.92%
and 90.83% of their respective performances, respectively.
Recall results were better when using the CGO algorithm,
with the best outcomes.)eGWOandMFOall have the same
recall (i.e., 88.74%). )ey are followed closely by the MVO;
88.66% was reached by the FFA and WOA, whom the FFA
and theWOA followed. Finally, the BATandHGSalgorithms
have a worse outcome of 88.58%. )e proposed CGO also
outperformedother algorithmsonF1 score,with 89.95%.)e
MFO and GWO optimizers came second with 88.98%.)ere
are also 88.95% for eachof the other algorithms:MVO,WOA,

FFA, PSO, and BAT, correspondingly. Finally, the HGS gets
the poorest performance with 88.82% of the population. In
the CGO algorithm, 88.78% accuracy was attained. At the
same time, MFO was ranked second (88.74%) by the GWO.
With88.66%,WOAandFFAalgorithmsarenext in line.Only
BAT and HGS achieved a score of 88.58%.

According to a different perspective, Figure 6 depicts the
average accuracy of each feature selection optimization al-
gorithm on the three selected datasets examined on the SGD
classifier. )e total average result on three databases is about
91.57% for the CGO, while the BAT technique comes in
second with 91.23%. About 91.05% of outcomes from the
HGS are better than those from the PSO. )ose are followed
by the MVO (90.03%), GWO (90.23%), FFA (90.05%), and
WOA (89.90%). Last but not the least, the MFO has the
lowest performance (88.73%).

According to a client, the complete method takes far less
time to execute. Figure 7 shows that the suggested CGO and
HGS algorithms have an average execution time of 0.5672
and 0.5189 seconds for the three datasets, respectively.)ese
results are lower than those of other algorithms that have
been compared. )e MFO optimizer took 0.7164 seconds to
run, whereas GWO, WOA, FFA, BAT, and MVO took
0.7169 s, 0.7177 s, 0.7332 s, 0.7644 s, and 0.7723 s, respec-
tively. )e highest (or worst) execution time was attained
(1.0576 s) for the PSO.

Figure 8 displays the average balanced accuracy of each
feature selection approach on the three datasets, namely,
ISIC-2016, PH2, and Blood-Cell, from a different

Table 5: Results of each algorithms on the ISIC-2016 dataset.

Optimizer Classifier Recall Precision F1 score Accuracy Balanced accuracy

PSO
SGD 0.8575 0.8482 0.8390 0.8575 0.6852
KNN 0.8657 0.8569 0.8523 0.8657 0.7072
SVM 0.8654 0.8570 0.8587 0.8654 0.7454

MVO
SGD 0.8470 0.8389 0.8418 0.8470 0.7288
KNN 0.8633 0.8539 0.8498 0.8633 0.7121
SVM 0.8654 0.8570 0.8587 0.8654 0.7454

GWO SGD 0.8443 0.8392 0.8414 0.8443 0.7372
KNN 0.8391 0.8310 0.8341 0.8391 0.7189
SVM 0.8681 0.8598 0.8610 0.8681 0.7470

MFO
SGD 0.7995 0.8015 0.8005 0.7995 0.6892
KNN 0.8364 0.8317 0.8338 0.8364 0.7273
SVM 0.8681 0.8598 0.8610 0.8681 0.7470

WOA
SGD 0.8391 0.8399 0.8395 0.8391 0.7490
KNN 0.8678 0.8605 0.8531 0.8678 0.7139
SVM 0.8681 0.8598 0.8610 0.8681 0.7470

FFA
SGD 0.8470 0.8378 0.8204 0.8470 0.6485
KNN 0.8654 0.8570 0.8514 0.8654 0.7238
SVM 0.8681 0.8598 0.8610 0.8681 0.7470

BAT
SGD 0.8760 0.8775 0.8579 0.8760 0.7068
KNN 0.8670 0.8601 0.8520 0.8670 0.7206
SVM 0.8654 0.8570 0.8587 0.8654 0.7454

HGS
SGD 0.8707 0.8622 0.8614 0.8707 0.7386
KNN 0.8649 0.8565 0.8510 0.8649 0.7272
SVM 0.8760 0.8684 0.8680 0.8760 0.7520

CGO
SGD 0.8839 0.8781 0.8751 0.8839 0.7569
KNN 0.8311 0.8233 0.8265 0.8311 0.7089
SVM 0.8628 0.8544 0.8564 0.8628 0.7437
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perspective. On an average, KNN, SVM, and SGD classifiers
outperform the CGO approach by 86.74%; the HGS method
comes second with 86.72%. )e WOA delivers superior results
than GWO and MVO, with 86.62 and 86.53%, respectively.
86.22% of the vote goes to the BAT. After that, the MFO, PSO,
and FFA optimizer obtained the lowest results, with an average
balanced accuracy of 86.10%, 85.74%, and 85.56%, respectively.

)e SGD, SVM, and KNN classifier’s average accu-
racy on the three selected datasets are shown in Figure 9
on various techniques for optimization (i.e., the nine
optimizers, which are introduced before). In the figure,
we can see that the SVM outperformed other classifiers
on the accuracy metric. To be more specific, the SVM
achieved 90.78% accuracy, whereas the KNN achieved
90.13% accuracy. In the end, the SGD algorithm achieved
90.40%.

However, the time to complete the full procedure is
shorter than that for a user. As a result, the average execution
time of the optimization algorithms for the three databases is
presented in Figure 10. SGD’s classification algorithm took
the least amount of time, according to the results, then
comes the SVM classifier, which takes 0.2767 seconds to
complete its task. 1.7271 seconds is the longest (and therefore
the worst) time for another classifier, KNN.

To sum it up, the CGOoptimization technique pairedwith
theSGDclassifierearnedthegreatest accuracymetricamongall
combinations for the ISIC-2016, PH2, and Blood-Cell datasets.
Moreover, theSGDoutperformsotherclassificationalgorithms
(i.e., KNN and SVM) according to the results.

4.5. Comparison with the Literature Studies. )is section
compares with other state-of-the-art medical image classi-
fication techniques. Table 7 shows the results of state-of-the-
art methods. )e development of high-accuracy technology
for medical image classification is a major undertaking. It is
important to compare our strategy to other models that have
been tested on the same datasets. Using ISIC-2016, PH2, and
Blood-Cell datasets, Table 7 evaluates the performance of
several techniques for disease identification.

For the ISIC-2016 dataset, the following advanced skin
cancer identification methods were compared: Based on
segregation and then validation [69], relied on feature-fusion
[70], correlated with fisher-coding and deep residual net-
works [71], multi-CNN interactive learning model [31],
ensemble method [32], and integrating fisher-vector and
CNN fusion [33]. To differentiate characteristics, a fine-
grained classification concept is applied [34].

For the PH2 dataset, the following advanced techniques
for diagnosing melanoma have been included in the artificial
neural network approach; as introduced in [72], they de-
veloped a decision-aid system. Also, it was proposed by the
authors of [73] to use sparse kernel models to represent
feature data in a high-dimensional feature vector. According
to the authors of [74], U-Net can be used to detect malignant
tumors automatically. As a part of their IoT system, the
authors of [75] employed transfer learning and CNN. A
hierarchical architecture founded on two-dimensional pixels
in the image and ResNet was introduced in [76] for
advanced DL.

Table 6: Results of each algorithms on the Blood-Cell dataset.

Optimizer Classifier Recall Precision F1 score Accuracy Balanced accuracy

PSO
SGD 0.8862 0.9104 0.8888 0.8862 0.8862
KNN 0.8866 0.9100 0.8890 0.8866 0.8866
SVM 0.8862 0.9102 0.8888 0.8862 0.8862

MVO
SGD 0.8870 0.9106 0.8895 0.8870 0.8870
KNN 0.8858 0.9094 0.8883 0.8858 0.8858
SVM 0.8866 0.9109 0.8892 0.8866 0.8866

GWO
SGD 0.8874 0.9102 0.8898 0.8874 0.8874
KNN 0.8854 0.9093 0.8880 0.8854 0.8854
SVM 0.8858 0.9110 0.8885 0.8858 0.8858

MFO
SGD 0.8874 0.9107 0.8898 0.8874 0.8874
KNN 0.8870 0.9107 0.8895 0.8870 0.8870
SVM 0.8858 0.9104 0.8885 0.8858 0.8858

WOA
SGD 0.8866 0.9107 0.8892 0.8866 0.8866
KNN 0.8870 0.9107 0.8895 0.8870 0.8870
SVM 0.8866 0.9109 0.8892 0.8866 0.8866

FFA
SGD 0.8866 0.9100 0.8891 0.8866 0.8866
KNN 0.8858 0.9094 0.8883 0.8858 0.8858
SVM 0.8858 0.9102 0.8884 0.8858 0.8858

BAT
SGD 0.8858 0.9092 0.8883 0.8858 0.8858
KNN 0.8850 0.9090 0.8876 0.8850 0.8850
SVM 0.8850 0.9098 0.8877 0.8850 0.8850

HGS
SGD 0.8858 0.9083 0.8882 0.8858 0.8858
KNN 0.8862 0.9090 0.8886 0.8862 0.8862
SVM 0.8862 0.9101 0.8888 0.8862 0.8862

CGO
SGD 0.8879 0.9110 0.8995 0.8879 0.8878
KNN 0.8878 0.9112 0.8902 0.8878 0.8878
SVM 0.8866 0.9109 0.8892 0.8866 0.8866
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Figure 8: Average balanced accuracy of the selected datasets based on nine FS algorithms.
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As a result of the CNN solution, the SVM-based clas-
sifiers were able to classify data, as proposed in [77]. Besides,
a granularity feature and SVM are used in [78]. In order to
identify and count essential blood cells in the Blood-Cell
dataset, they used the following identifying and counting
methods. In order to automate the entire procedure, CNNs
were presented as a DL method in [79].

5. Discussion

)e bottom line is that we can remove superfluous features
from high-dimensional medical image representations ob-
tained by CNN (i.e., MobileNetV3). )e MobileNetV3
models achieved the effective performance as a feature ex-
tractor in our work. )e class activation map for the
MobileNetV3 model was prepared where the activation
provided by the last layer is represented as an overlayed heat
map, as shown in Figure 11. In the figure, the red regions
represent the most important discriminative regions, while
the other colored regions are less important.

In order to include a more complex comparison among
different algorithms,wehaveused theFriedman(FD) test.)e
FD test is nonparametric that calculates and ranks the sta-
tistical value. In Reference [80], the FD test is used to de-
termine whether there is a significant difference between
differentmethods. Furthermore, Figure12compares theCGO
method to the nine optimization techniques on the three

datasets in terms of recall, precision, F1 measure, accuracy,
and balanced accuracy. When the CGO’s results are analyzed
using the five metrics, it is clear that the CGO algorithm
surpasses the others. In terms of balanced accuracy, the CGO
has the lowest mean ranking of 1, following the GWO has the
mean rankof 3.50.MFOandMVOhavenearly identicalmean
levels, with 4. WOA and HGS have a mean rank of 4.17.
Finally, BAT, PSO, and FFA are lower than the others, with a
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Figure 9: )e averaged results of the selected dataset in terms of accuracy metric using the three classifiers.
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Figure 10: Average execution time of the three classifiers.

Table 7: Accuracy results (%) of the existing approaches.

Source Dataset Year Classification
model Accuracy(%)

[69] ISIC-
2016 2016 CUMED 85.50

[70] ISIC-
2016 2017 BL-CNN 85.00

[71] ISIC-
2016 2018 DCNN-FV 86.81

[31] ISIC-
2016 2019 MC-CNN 86.30

[32] ISIC-
2016 2019 KNORA-E 88.00

[33] ISIC-
2016 2020 MFA 86.81

[34] ISIC-
2016 2020 FUSION 87.60

Our ISIC-
2016 present CGO+SGD 88.39

[72] PH2 2017 ANN 92.50
[73] PH2 2019 Kernel Sparse 93.50
[74] PH2 2020 DenseNet201 + SVM 92.00
[75] PH2 2020 DenseNet201 +KNN 93.16
[76] PH2 2021 ResNet50 +NB 95.40
Our PH2 present CGO+SGD 97.52

[77] Blood-
Cell 2013 CNN+ SVM 85.00

[78] Blood-
Cell 2017 CNN 87.08

[79] Blood-
Cell 2019 CNN+Augmentation 87.00

Our Blood-
Cell present CGO+SGD 88.79
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mean rank of 6.17, 7.33, and 7.83, respectively. According to
the FD test results for accuracy,CGO is also better thanothers,
with a mean rank of 1. )ey were followed by GWO, which
achieved 3.83. On the other hand, MVO and BAT have the
samemean level of 5,whereasMFOandHGShave5.33.Lastly,
PSO, FFA, and WOA have the highest mean ranking. Fur-
thermore,wediscovered that theCGOin theF1-scoremeasure
has the best mean rank of 1, and the GWO andMVOhave the
second and third mean ranks of 3.83 and 4, respectively. BAT
and HGS have nearly identical mean levels (i.e., 5). Finally,
MFO and WOA have a mean rank of 5.17 and 6.00, respec-
tively. Finally, PSO and FFAhave lower than the others, with a

mean rank of 7.33 and 7.67, respectively. Finally, the precision
measure difference between the CGO and the BAT, MVO,
MFO, WOA, HGS, PSO, GWO, and FFA optimization al-
gorithms averages 4.5, 4.83, 5, 5.17, 5.17, 5.33, 6, and 8, re-
spectively. According to the FD test results for recall, CGO is
also better than others, with a mean rank of 1. )ey were
followed byMVO, which achieved 4.33. BAT has amean rank
level of 4.67, whereas MFO and HGS have 5. Lastly, GWO,
PSO, FFA, and WOA have the highest mean ranking. As a
result of Friedman’s test, there is a noticeable difference be-
tween the proposed model and the other models (where the p

value is less than 0.05), as shown in Figure 12.
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Figure 11: Grad-CAM heatmaps on the skin images using the MobileNetV3 model.
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Figure 12: )e mean rank of FD test on several feature selection algorithms on the SGD classifier.
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)ese reasons support that our approach obtains the best
results. )us, CGO is an effective search algorithm for
tackling complex optimization issues; therefore, it is critical
to pick its parameters carefully. For example, when the
clusters of the population in CGO were analyzed, CGO
worked better when the population of an optimal so-
lution was classified into two parts. Second, CGO per-
formed searches more consistently than other methods,
as evidenced by lower standard deviation values in the
results. Finally, CGO’s exploration and exploitation
techniques are successfully applied since they worked
equally well on datasets with a wide variety of dimen-
sions, making FS challenges adaptable.

However, our approach also has some limitations,
mainly in time and memory complexity. )erefore, we are
currently working on trying to improve the efficiency of our
approach. In fact, we are assessing to take into account other
augmentation procedures, as introduced in [81]. Moreover,
we plan to use other deep learning models such as Swin or
Vision transformer, which achieved the best results and have
been more recently used in different computer vision tasks.

6. Conclusion and Future Work

)e automatic medical image classification task has been
expanding rapidly in recent years. However, existing ap-
proaches are still incapable of achieving good performance
due to the similarity in physical attributes of images, the
diversity of medical experience, and a small medical image
dataset.

)erefore, this paper demonstrates a new method of
classifying medical images that uses the IoMT system to
help clinicians and patients make a quick and advanced

diagnosis of diseases in any area. )e proposed system
relies on the classification models trained in the cloud
center before being used, after extracting features from the
medical images acquired from IoT nodes and passing
them to fog computing. To obtain the features, Mobile-
NetV3 was used. )e MobileNetV3 was finetuned on
medical image datasets to generate higher sophisticated
and informative representations and retrieve feature
vector representation.

After that, we used a new metaheuristic method in the
binary form (as chaos game optimization) to reduce the
features’ representation space. )is algorithm leads to an
enhancement for the convergence rate toward the optimal
subset of relevant features. )erefore, CGO produces a high
convergence speed. )is indicates that it avoids trapping in
local optima. )us, it successfully balances the exploration
and exploitation phases because of the fast determination of
the threshold values and the high accuracy presented in the
results.

)e learned model’s efficiency is evaluated either by
transmitting it to a tested medical images cloud center or by
using fog computing with a clone of the learning algorithm.
Our experiments were applied on three databases, ISIC-
2016, PH2, and Blood-Cell.

According to the results, the new CGO optimization
method outperforms other existing feature selection
methods. )e work evaluated the combinations of nine
optimizers with three different classifier configurations. )e
most significant results for accuracy, F1 score, recall, and
precision metrics for these datasets were achieved with the
CGO optimizer combined with the SGD classifier. For ISIC-
2016, the accuracy value was 88.39%; for PH2, the accuracy
was 97.52%;, finally, for Blood-Cell, the accuracy was
88.79%.

(1) Input:
(2) D: the number of starting eligible seeds.
(3) Initialize the starting positions (Sj

k) with random values of eligible seeds (Sk).
(4) Output:
(5) G: the global best eligible seed.
(6)
(7) Method:
(8) Compute the objective function for each eligible seed.
(9) repeat
(10) for k� 1 to D do
(11) Create a mean group (Mk).
(12) Construct a temporary triangles on three vertices of Sk, G, and Mk

(13) Create new seeds by Equations (3) to (6).
(14) if boundaries are crossed by new seeds then
(15) Position limitations can be adjusted for new seeds.
(16) Assess the fitness of new points.
(17) if new seeds have higher objective function than the last initial eligible seeds then
(18) Substitute the last points by the new ones.
(19) if the best solution is achieved then
(20) Amend G.
(21) until the iteration criterion has been met.
(22) Return G.

ALGORITHM 1: Algorithm of CGO.
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Furthermore, the results of the comparisons with some
other state-of-the-art medical image classification technol-
ogies demonstrated that the created IoMTmethodology is an
appropriate mechanism. In the near future, this system
would be available in hospitals with the aim of monitoring
the patients’ condition from home. Patients would auto-
matically send a report to the hospital through the connected
devices, with vital information about blood pressure, insulin
levels, etc. )en, professional staff at the hospital would
follow up each case and, if needed, would directly com-
municate to the patient.

However, there are still some limitations to the
proposed model, being the most relevant the require-
ments for computational resources, that is, more time is
needed to obtain the results, and also the requirements
for memory resources.

We are currently working on lowering complexity
and enhancing the efficiency of the suggested system.
Also, we plan to propose a CGO-based multiobjective
feature selection approach for high dimensional data
with a small instance to simultaneously maximize the
classification performance and minimize the number of
features, using more efficient classifiers. Additionally,
automatic cluster number determination and the ap-
plication of hyperheuristic approaches in FS can also be
an exciting line of research. Moreover, a more com-
prehensive volume of medical data will be evaluated in
the future study. Finally, merging several classifications
algorithms is an attractive object of investigation that
could allow practitioners to influence the performance of
existing methods.
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