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Smart mobile devices such as smartphones or tablets have become an

important factor for collecting data in complex health scenarios (e.g.,

psychological studies, medical trials), and are more and more replacing

traditional pen-and-paper instruments. However, simply digitizing such

instruments does not yet realize the full potential of mobile devices: most

modern smartphones have a variety of di�erent sensor technologies (e.g.,

microphone, GPS data, camera, ...) that can also provide valuable data

and potentially valuable insights for the medical purpose or the researcher.

In this context, a significant development e�ort is required to integrate

sensing capabilities into (existing) data collection applications. Developers

may have to deal with platform-specific peculiarities (e.g., Android vs. iOS)

or proprietary sensor data formats, resulting in unnecessary development

e�ort to support researchers with such digital solutions. Therefore, a

cross-platform mobile data collection framework has been developed to

extend existing data collection applications with sensor capabilities and

address the aforementioned challenges in the process. This framework will

enable researchers to collect additional information from participants and

environment, increasing the amount of data collected and drawing new

insights from existing data.

KEYWORDS

sensors, mHealth, software architecture (SA), mobile data collection, smart mobile

devices

1. Introduction

Collecting data in various scenarios has become an important factor for researchers

and healthcare providers from different fields. Especially in medical or psychological

scenarios, a lot of personal health data is needed to provide appropriate treatment

to patients. Such data, in turn, are predominantly collected with pen-and-paper

questionnaires (so-called instruments), which have a variety of drawbacks. The collected

data must be transferred into digital spreadsheet documents, which is error-prone and
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time-consuming. Especially in large-scale and long-lasting

scenarios such as clinical trials, this approach is outdated in

most cases. For example, Pavlović et al. (1) found that about

50% of the cost of data entry can be saved if digital instruments

are used instead of traditional paper-based instruments. In

addition, studies show that digitally captured data sets have

a higher degree of completeness (2) and higher data quality

(3). Most importantly, participants accept such digital solutions

(4, 5), and psychometric properties (6) are not violated. Recent

publications also show an increasing use of electrocardiography

sensors in conjunction with smart mobile devices to diagnose

various diseases (7–14). Sensors are also used to measure heart

rate variability (HRV). For example, recent literature describes

an interplay between HRV and various psychological and

physiological diseases (15–17).

In the last decade, smart mobile devices (i.e., smartphones

or tablets) have become a ubiquitous part of our daily lives.

In this sense, such devices can provide researchers with new

opportunities to collect large amounts of big data in a relatively

short period of time (18). In addition, mobile devices are

equipped with many sensors (e.g., microphone, GPS, camera),

which allows additional opportunities for metadata collection.

For example, researchers can now not only provide digital

questionnaires to assess participant data (i.e., patient-related

data), but also collect environmental (e.g., current location) or

physiological data (e.g., pulse measurement while working on

the instrument). This is often referred to as remotemeasurement

technology (19). In the context of this manuscript, we consider

anything that generates data automatically (i.e., without human

interaction) to be sensor. For example, internal hardware sensors

such as microphone, GPS, or battery status, but also software

applications such as the internal clock or external web services

(e.g., for weather information) should be mentioned at this

point. Unfortunately, there is no standard operating system

for mobile devices. The market share of operating systems for

mobile devices is mainly divided between iOS and Android.

As a direct result, mobile application development can be

cumbersome, especially when targeting an audience from both

platforms (i.e., iOS and Android). When developing native

applications for these platforms, the latter in turn enforces the

use of the vendors’ intended programming languages (i.e., Java

or Kotlin for Android; Objective C or Swift for iOS), software

patterns and paradigms, and platform-specific APIs.

To cope with the complexity of native application

development, the so-called cross-platform development

frameworks aim to take an alternative development approach.

In this approach, a single code base is used to create a mobile

application for different platforms (20). Most frameworks

rely on modern web technologies to achieve the latter. Unlike

native applications, such web-driven applications are not

tied to a specific operating system, but to a specific browser

implementation that is largely standardized. Schobel et al. (21)

describes and compares different implementation strategies

and approaches for such mobile cross-platform applications.

Thus, developing mobile data collection applications using such

cross-development approaches can also be a viable strategy, as

such applications mainly consist of simple form elements for

data entry (22). Moreover, the resulting application is readily

available for all major platforms and devices. To date, there is

no generic approach for integrating sensors into sophisticated

data collection scenarios, such as healthcare. However, sensor

frameworks that bundle commonly used sensors or offer

different communication protocols (i.e., common wireless

standards) are predominantly developed for native applications

(i.e., Android or iOS platforms).

To support researchers in sophisticated data acquisition in

practice, a sophisticated sensor framework is required for the

reasons mentioned above. The latter must be compatible with

the cross-platform development approaches to significantly

accelerate development. Finally, the framework should

allow application- and scenario-specific adaptations to meet

researchers’ requirements.

In the course of this manuscript, we mainly focused on the

following research questions:

RQ1: Is it possible to realize a pluggable sensor framework

with state-of-the-art cross-platform development

technologies?

RQ2: How can we providemechanisms that allow IT experts to

easily integrate our developed framework into their own

existing mobile data collection application?

RQ3: How can we develop and maintain an easy to

extend framework, allowing to deal with demanding

requirements from researchers when collecting data from

a multitude of sensors?

The main contributions of the manuscript are as follows:

• We describe different Application Scenarios, where sensors

can be used to extend the patient-reported datasets.

Furthermore, we present Requirements derived from long-

running real-world scenarios.

• We present a generic extensible framework Architecture

to extend already existing mHealth data collection

applications with sensing capabilities.

• We illustrate different Sensor Interaction Patterns that

describe the communication between Sensors and the

mHealth data collection application.

2. Related work

Several projects have already been proposed in research and

industry, and a kind of sensor frameworks have been proposed

and implemented by them. In this section, related work are

discussed in this context.
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The authors of Katevas et al. (23) present a framework

that enables the communication with and the collection of data

from many different sensors. For this purpose, the SensingKit

framework provides special client libraries, both for the iOS

and Android platforms. These libraries can be integrated

into an existing mobile application to support a wide variety

of on-device sensors, such as the microphone, GPS sensors

or the camera. External sensors are controlled via wireless

communication using Bluetooth Low Energy (24). In Ferreira

et al. (25), the authors present AWARE, a framework for

mobile context instrumentation. AWARE provides a ready-to-

use client application for Android and iOS to collect sensor data

and information (e.g., free text such as opinions, sentiments,

and others). This framework enables researchers to create

mobile data collection applications with sensor capabilities, but

without the requirement of programming skills. In addition,

the framework is available as an Android and iOS library

for developers to use in their own applications. Similar to

the aforementioned frameworks, Brunette et al. (26) presents

a sensor framework (Open Data Kit), capable of connecting

many different sensors. However, Open Data Kit is only

available for Android, which limits its applicability in large-

scale research projects. All three projects cannot be used in

the development of applications if cross-platform development

approaches are pursued.

RADAR-Base is an open source mobile health platform

for collecting, monitoring and analyzing data using sensors,

wearables and mobile devices (27). RADAR-Base provides a

full-featured platform with an application for passive and

active monitoring, an Apache Kafka-based backend, and a

management portal for configuring pilot studies. The project

has been successfully applied in various scenarios such as

depression, multiple sclerosis, epilepsy, and Alzheimer’s disease

(28, 29). While the platform provides a sophisticated all-in-one

solution for data collection, monitoring and analysis, there are

scenarios where the development of a new mobile application is

required and the use of a pure sensor framework that simplifies

the use of sensors is preferable.

There are several other platforms such as RADAR-Base

and AWARE, all of which focus on a user-friendly approach

that allows researchers to easily create studies, deploy them

in a generic mobile application, and store the collected data

in the cloud [e.g., LAMP (30), Sensus (22), mCerebrum

(31)]. However, medical or psychological studies often have

challenging requirements for which such generic "one-size-

fits-all" solutions may not be suitable. In such scenarios, the

proposed sensor framework takes a different approach that

offers valuable advantages. In particular, it allows developers

to create custom-tailored mobile applications and extend them

with sensing capabilities. In addition, it allows researchers to

store collected data on-site rather than in the cloud, which may

be of particular interest in the context of medical psychological

studies (i.e., GDPR concerns).

Google Fit is a cloud-based platform for collecting and

storing fitness and health data, developed and provided by

Google1. The platform allows developers to collect data from a

mobile application and store and share data from the device’s

sensors in a central hub. External sensors (e.g., a heart rate

monitor) are connected via Bluetooth Low Energy if the

required standard GATT profile is available. Google provides

an extensive API for communicating with sensors. Common

sensor data types are pre-modeled, allowing IT professionals

to develop their applications in a relatively short time. In line

with this, Google provides a full-fledged Android library for

fitness application development. Mobile applications developed

for other operating systems (e.g., iOS) rely on a RESTful API

to communicate with the server. RESTful APIs are a common

architectural style and development paradigm for web services

(32) .

Similar to Google Fit, Apple also offers its HealthKit

platform2 with similar functionality. However, access to this

platform and the corresponding data is only possible via the

Apple ecosystem using special software development kits that

are only provided for iOS.

Henriksena et al. (33) describes an approach to using

Google Fit and Apple HealthKit to collect fitness data in a

large-scale population study. This data will in turn provide

detailed insight into participants’ physical activity. Researchers

expect great benefits from accessing such health data stores, as

they may also contain historical information. Farshchian and

Vilarinho (34) compares the featured platforms by developing

a health application. The researchers also discuss performance

issues of sensors between different smart mobile devices when

developing cross-platform applications (35). Note, however, that

depending on the device manufacturer, the quality of sensors

(i.e., resolution, Frequency) may vary. This potential issue may

not be a problem with Apple devices, but can be critical when

developing for the Android platform.

3. Concept

In this section, a running application scenario for this

manuscript is presented and requirements are derived from it.

Finally, an extensible architecture for the sensor framework is

presented.

3.1. Application scenarios

The use of sensors to capture additional information during

data acquisition has become commonplace in a variety of

1 https://developers.google.com/fit/overview; last accessed 2021-11-

25.

2 https://www.apple.com/ios/health/; last access 2021-11-25.
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application areas. When developing the concept and proof-of-

concept implementation of the present sensor framework, we

had two different application scenarios from themedical domain

in mind. These scenarios are explained in more detail below.

3.1.1. Remote patient monitoring

According to the World Population Aging Report (36),

the number of elderly people increased substantially within

recent years, with about 900 million people worldwide aged

60 years or above in 2015. This trend seems to go even

further, with an estimated increase of 50% until 2030 (36).

Furthermore, the number of people suffering from chronic

diseases, such as heart failure or diabetes, increases dramatically

(37). With an increasing number of people requiring long-term

medical treatment, traditional healthcare approaches (i.e., on-

sight patient examination and treatment) could easily reach their

limits. Therefore, a shift toward delivering remote healthcare

may significantly relieve healthcare systems and provide benefits

for patients. As a direct consequence, one central research

topic focuses on the design and implementation of applications

enabling a continuous monitoring of the health status outside a

clinical environment.

For example, Bot et al. (38) evaluated the feasibility of

remotely collecting information about changes in symptoms of

patients with Parkinson’s disease. With the current standard

of care, affected patients would visit a physician every

4 − 6 months. The approach proposed by the authors

requires patients to participate in self-assessments daily via

a provided mobile application. Besides processing Parkinson-

specific questionnaires, participants were asked to execute

physical tasks on a day-to-day basis. These tasks incorporate

smartphone sensors, such as microphones for recording voice

activities or accelerometers, and gyroscopes for evaluating the

patients’ gait and balance.

In Suh et al. (39), a platform for monitoring patients with

congestive heart failure is presented. The respective platform

aims to facilitate the early detection of acute symptoms,

prevention, monitoring, and treatment of such patients. The

developed application can communicate directly with external

sensors in weight scales or blood pressure monitors via

Bluetooth. Further, smartphone sensors are combined to

implement fall detection. A real-world study showed that the

number of weight and blood pressure measurements outside

of an acceptable range could be successfully reduced with the

proper use of such an application.

Besides monitoring patients with chronic diseases, remote

patient monitoring may also be applied in other medical

scenarios. Marko et al. (40) investigated the applicability

of mobile applications with other connected devices for

monitoring health conditions in prenatal care scenarios. Again,

in this setting, digital weight scales and blood pressure cuffs were

given to participants to collect data at home during pregnancy.

Collected data were scanned for irregularities and clinicians

were informed. An associated study revealed a high patient

satisfaction and was able to identify episodes of abnormal weight

gain. Due to the COVID-19 pandemic, there was an increased

need to monitor the health status of patients outside of the

hospital to prevent the spread of the virus. Yamamoto et al.

(41) investigated how a mobile application for personal health

records (PHR) could be used to accomplish this task. They found

that health observation with PHRs can also be used effectively as

a measure against infectious diseases.

3.1.2. Intensive longitudinal methods

Intensive longitudinal methods summarize various research

methodologies, such as Experience Sampling, Daily Diaries, or

Ecological Momentary Assessments (EMA) (42). The named

methodsmay be used to examine feelings, thoughts, or behaviors

in a natural, real-time context and frequently (i.e., daily) over an

extensive period.

The TrackYourTinnitus platform, for example, relies on

Ecological Momentary Assessments to support researchers

in collecting data from patients suffering from tinnitus

(43). Since tinnitus is a subjective perception, assessing

symptoms can only be achieved with the help of reports

from affected patients (44). In addition to a digital data

collection procedure, TrackYourTinnitus uses smartphone-

internal sensing capabilities to enrich the dataset with contextual

data, like the current GPS position or environmental sound

level.Most importantly, the TrackYourTinnitus platform and

its generic API (45) have been adapted to other diseases as

well. For example, the same technology stack is used to support

researchers in assessing data in the context of stress (46), diabetes

(47) or hearing loss. The study presented in Beierle et al. (48)

examines physical and mental well-being during the COVID-

19 pandemic using an app that combines questionnaire-based

surveys with mobile sensor recordings.

The study described in Cao et al. (49) investigated

the feasibility of using smart mobile devices to monitor

depression symptoms. Among typical self-reported data, the

mobile application collected a variety of different sensor data

regarding the movement (step counter, GPS coordinates) or

social interaction (amount of messages, call duration). Study

results indicate that the combination of data was able to

predict the score of PHQ-9 (50), a well-established and validated

instrument from clinical psychology, with an accuracy of 88%.

Additional information provided by relatives of patients further

increased the accuracy, allowing researchers to predict the

respective outcome. Schobel et al. (51) evaluated a mobile

application to support medical staff from psycho-oncology

through mobile data collection. Comparing the acceptance

of mobile digital screenings with paper-based ones. Sixty

participants were divided into two groups, 31 of which used

paper-based questionnaires and 29 the digital version. The
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results show that the general acceptance increases by 58.5% in

the mean when the digital instead of the paper-based approach

is used.

3.2. Challenges and requirements

As described in Section 3.1, gathering sensor data may

be indispensable in mobile data collection scenarios, especially

in healthcare. Integrating sensors into the data collection

procedure may result in several benefits for both, study directors

(i.e., researchers, medical staff) and participants (i.e., patients).

Smart mobile devices offer a huge variety of internal sensing

capabilities and interfaces to connect with external sensing

devices. However, there is no uniform way of addressing such

sensors generically. Sensors differ in their type of connection

(i.e., internal, wired or wireless), communication protocols (i.e.,

direct API, Bluetooth), interaction paradigms to collect data, or

their output format, just to mention a few factors. Depending

on the respective mobile operating system (iOS vs. Android),

communicating with such sensors requires specific APIs. This

requirement imposes massive challenges for IT experts as it

requires deep knowledge about all the different sensors, the

underlying platform infrastructure, and the application domain,

respectively. Gathering knowledge about the API of each sensor

which the IT expert must use in an application is a time

consuming task. A sensor framework should reduce the time

required by offering an abstraction layer over all used sensors.

The saved up time can then be invested in developing the actual

mHealth application instead of reading API documentations for

every sensor.

Existing mobile applications used for data collection

purposes may already access sensor information to enrich

participant data. In this context, they often use dedicated,

application-specific implementations. However, this results in

hard-to-maintain applications or reuse existing features in

other applications or scenarios. While there are libraries and

frameworks (see Section 2) that aim to provide a more

generic and standardized way of addressing a broad spectrum

of available sensors, the latter may only be available for

specific platforms or lack the functionality required for more

complex scenarios. To support IT experts in developing

sophisticated applications using cross-platform development

strategies, a novel framework was realized. In this context,

further requirements were extracted from conducting structured

interviews with experts responsible for collecting data in

different medical projects. Further, insights from implementing

long-running mobile data collection applications and deploying

the latter in real-world scenarios were considered. The insights

from implementing the projects shown in Table 1 were

incorporated into the requirements. Finally, requirements from

the literature were added as well.

TABLE 1 Realized mHealth data collection applications.

mHealth application

scenario

Country Sensors

Study on tinnitus research (52) World-Wide Microphone, GPS

PTSD in war regions (53) Burundi Microphone, Camera

PTSD in war regions (54) Uganda Microphone, Camera

Adverse childhood experiences

(55)

Germany Microphone, Camera

Learning deficits among medical

students

Germany Pulse

Corona check (56) Germany GPS

Corona health (48) Germany GPS, Apps used

PTSD, post-traumatic stress disorder.

Req-01 (Support Device Internal Sensors): Modern smart

mobile devices are equipped with a rich set of onboard sensing

capabilities. The framework should provide ways to access and

communicate with these sensors and gather data from them.

Req-02 (Support External Sensors and Devices): Smart

mobile devices offer a variety of interfaces to communicate

with external resources via different protocols. The connection

may be wired (i.e., USB) or wireless (i.e., WiFi, Bluetooth). The

framework should therefore provide possibilities to establish a

connection with such devices.

Req-03 (Provide Default Set of Sensor Implementations):

The framework should provide a set of default sensor

implementations that can be used in common application

scenarios.

Req-04 (Custom Sensor Implementations): Since there

are many different sensors, it is impossible to provide

predefined implementations for every single one. Therefore,

the framework should allow for communicating with

framework-compliant sensor implementations.

Req-05 (Fine-grained Configuration during Runtime):

Sensors differ in the type of data they measure and their

behavior (i.e., sampling rate, resolution). This configuration

should be customizable when requesting data during runtime,

allowing for a more versatile framework use in different

application scenarios.

Req-06 (Support Different Sensor Interaction Patterns):

Sensors differ in the type of data they provide and how

they are providing it (i.e., provide a single measurement vs.

continuously sending data). The framework should support a

variety of interaction patterns for various sensors.

Req-07 (Offline Usage): Depending on the application

scenario or the application’s environment, a stable Internet

connection may not be guaranteed. The framework should

follow an offline-first approach. Sensor implementations

should not require an Internet connection in general.
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Req-08 (Support Different Mobile Operating Systems):

Existing frameworks often target one specific mobile operating

system. The framework described in this manuscript explicitly

focuses on a cross-platform approach, resulting in a framework

that can be used for both iOS and Android applications.

Req-09 (Output Format): Data gathered from sensors should

be described and formatted to be suitable for further

processing (i.e., visualization). Sensors, therefore, should

provide respective meta- information about themselves and

their data.

Req-10 (Fault Tolerance): By providing a generic way of

communicating and accessing sensors on different platforms,

specific error scenarios have to be taken into account (i.e.,

sensors are not available, hardware failure). Errors in the

framework should not cause the host application to stop

working or even crash.

Req-11 (Extensibility): It should be easy to extend the

functionality of the framework by addingmore custom sensors.

The framework itself should favor a plug-and-play architecture.

Req-12 (Easy Integration of the Framework): Since the

primary purpose of the framework is to enhance existing

mobile data collection applications with sensing capabilities,

integrating the latter should be as easy as possible.

3.3. Architecture

When carefully elaborating the requirements, a modular and

extensible software architecture was developed (see Figure 1).

The framework itself should be a ready-to-use module

comprising all necessities and features to be integrated into

an existing mobile data collection application. Communication

between the data collection application and sensors should

not take place directly, as this may lead to unwanted

side effects. Instead, the communication should be routed

through a central communication and coordination unit

within the sensor framework (see Sensor Framework Manager,

Figure 1), which provides an extensive interface for the data

collection application.

To address specific implementations in a generic way,

proper abstraction mechanisms were implemented and made

available (see Abstract Sensor Definition). The latter defines

basic interfaces and already implements common behavior for

sensors within the framework. This abstraction can also be

used when implementing custom sensor drivers, which may be

specifically tailored for a given application scenario. While this

abstract definition provides a solid foundation for all sensors,

the latter can be refined with sensor-specific implementations

(seeConcrete Sensor Definition) to better reflect specific behavior

or available interaction patterns. The communication with

the actual sensor for both internal and external devices, is

implemented in dedicated native implementations (seeWeb and

Native Plugins).

All sensor implementations to be discovered and accessed

through the framework are registered in a central Sensor

Registry. The latter may include some predefined sensors

shipped with the framework (i.e., microphone, GPS, camera)

as well as custom sensor implementations defined outside

the framework.

Finally, the framework provides a set of user interface

components (see UI Widgets) that can be embedded directly

into an existing UI of the data collection application.

Notably, custom sensor implementations may also provide their

own visualization.

This modular design guarantees that different parts of the

framework can be easily adjusted or extended according to

scenario-specific needs.

Note the work presented in this manuscript does not

cover the architecture and implementation of the mobile data

collection application nor the backend service that can store all

collected information.

4. Implementation

This section of the manuscript provides in-depth

information on the implementation of the actual sensor

framework. The sensor framework was developed using an

agile software development process (57). New features were

derived from user stories and developed in sprints over 2 weeks.

A sprint was typically dedicated to one user story and went

through the following steps: planning, designing, developing,

testing, and reviewing.

Since one of our main requirements is that the framework

should be used across different platforms, we decided to

rely on the well-established Ionic framework (Version 5.0.0)3.

The latter allowed us to build the framework using state-

of-the-art web technologies. Further, the framework can be

executed within a web browser, but also enabled us to integrate

the framework into mobile applications built with Capacitor

(Version 1.4). Capacitor, in turn, is a runtime environment

that allows accessing the native platform features and APIs.

As another feature of Capacitor, IT experts are not tied to

a specific frontend framework to represent the user interface.

Our prototype implementation relies on a lightweight web

components framework called Stencil4. Those components can

be easily integrated into the latest state-of-the-art frontend

frameworks like Angular, React, or pure Vanilla JavaScript.

The source code of the sensor framework can be found on

Github5.

3 https://ionicframework.com/; last accessed: 2021-11-29.

4 https://stenciljs.com/; last accessed: 2021-11-29.

5 https://github.com/hnu-digihealth/sensorframework; last accessed:

2022-01-14.
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FIGURE 1

Architecture of the sensor framework.

4.1. Sensor communication

Due to its energy efficiency, Bluetooth Low Energy enjoys

growing popularity as a wireless communication standard

for external sensing devices (i.e., heart rate monitors or

weight scales). In order to be able to communicate with

such external devices, a respective Bluetooth connector

was implemented, which is compatible with all peripheral

devices implementing one of the standard Bluetooth profiles.

The connector allows for scanning for available devices,

connecting and disconnecting a sensor to the mobile

device or requesting data from the sensor. Behind the

facade, respective native APIs from Android or iOS are

accessed. Furthermore, web-based implementations are

provided to be able to use the framework in browser-based

environments as well. Moreover, a common interface for

internal sensors (i.e., camera, GPS) was implemented. Again,

this class acts as an abstraction layer to platform-specific

native implementations.

4.2. Sensor interaction patterns

When analyzing existing data collection applications that

use sensors to collect additional information from participants,

we were able to identify different interaction patterns between

the involved parties (i.e., sensor and mobile application). These

patterns are illustrated in Figure 2 and described in more

detail below.

GET: When using this pattern, the sensor returns a single

measurement (i.e., get the current location of the

participant).

WATCH: This pattern returns a continuous stream of sensor

measurements (i.e., when monitoring the heart rate

of a patient). A callback method can be passed,

which is triggered for each measurement.

RECORD: This pattern allows for gathering sensor data

until the sensor is stopped (i.e., record a video

or audio stream). When calling the record()
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FIGURE 2

Identified and implemented sensor interaction patterns.

method, a recordingId is returned. Data can

be retrieved later via this Id, once the sensor

is stopped.

PUSH: This pattern allows for pushing data from the

application to the sensor (i.e., making a HTTP

POST request).

All aforementioned methods used to interact with the

sensor accept an optional options parameter. This parameter

is specific to one particular sensor and may be used

to configure its behavior during runtime (i.e., change the

camera’s resolution, use kg instead of lb). Note that the

sensors have to implement a respective hook method to

be able to take part in such an interaction pattern (i.e.,

implement the onGet(), onWatch(), onRecord() or

onPush()methods).

5. Integration

This section finally illustrates the process of enhancing an

existing mobile application with sensing capabilities, as well as

the workflow to extend the framework with custom sensors. It

should be mentioned that data privacy is outside the scope of

the implemented framework. Therefore, the developers of the

mobile application which uses this framework are in charge

ensuring the privacy of user data. As the main target of most

applications with sensing capabilities is data collection, it can be

assumed that those applications will use some sort of backend

to store the collected data. In this case, the developers have

to ensure that the connection between the application and

the backend is encrypted and that the stored data is safe

concerning the users’ privacy. There are some actions to improve

privacy on the operating system level (e.g., iOS and Android

require user permission to access certain internal sensors),

but those are not sufficient to guarantee data privacy for the

whole system.

5.1. Enhancing existing applications with
sensing capabilities

The proposed sensor framework is meant to be used

to enhance existing applications. As such, it could be, for

example, used to add remote measurement technology to an

mHealth application. For demonstration purposes, a newmobile

application was created. The respective sensor framework that

was introduced in the course of this manuscript can be easily

added as a dependency via common package manager, like npm

or yarn. As the user interface of the developed application

relies on web components (i.e., viaStencil), the automatically

generated defineCustomElements() utility method has

to be called at the top-most level of the application hierarchy6.

Note that other state-of-the-art frameworks like React or Vue

can also be used as they adhere to the web components standard.

In general, there are two different ways of interacting with

the framework during run time. Two Angular components

were implemented to showcase both approaches, each of

them covering one particular approach of interacting with a

different sensor.

5.1.1. Access sensor via sensor framework
manager

The more common approach of accessing sensor data is

by directly addressing the provided Sensor Framework

Manager. For example, we implemented a component for

displaying the current location of the user. Thereby, the position

should be initially retrieved from the GPS sensor and updated

continuously whenever the location of the device changes.

After importing the Sensor Framework Manager

instance in our application, the latter can be used to access the

GPS capabilities of the devices directly. Note that the framework

6 The documentation can be found at https://stenciljs.com/docs/

overview; last accessed: 2021-11-29.
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< senso r−e l ement
s e n s o r = " b l e−hea r t−r a t e "
a c t i o n = " watch "
s cope= " l o c a l "
( sampleData )= " s e tH e a r t R a t e ($ e v en t ) " >

< / s enso r−e l ement >

Listing 1 Custom HTMLSensorElementwithin

heart-rate.component.html.

s e tH e a r t R a t e ( e v en t ) {
cons t { d a t a } = e v en t . d e t a i l s ;
/ / work w i th t h e da ta h e r e . . .

}

Listing 2 Event Handler for Heart Rate Measurements.

< senso r−e l ement
∗ngFor= " l e t c o n f i g o f s e n s o rC on f i g u r a t i o n s "
[ s e n s o r ]= " c o n f i g . s e n s o r "
[ a c t i o n ]= " c o n f i g . a c t i o n "
[ o p t i o n s ]= " c o n f i g . o p t i o n s "
( sampleData )= " onDa t aAv a i l a b l e ($ e v en t ) "
( e r r o r )= " onSen so rE r ro r ($ e v en t ) " >

< / s enso r−e l ement >

Listing 3 Dynamic Creation of multiple HTMLSensorElements.

already provides a ready-to-use implementation for this sensor.

This predefined implementation may also serve as a blueprint

for custom adaptations if needed. The device’s current position

can be requested by calling the get() method (see Section

4.2). In order to continuously receive updates on the location,

the watch() method should be called. This method, in turn,

triggers a user-defined callback method, which can be used to

adjust the map displaying the current user location properly.

5.1.2. Access sensor via web component

The second approach offers a higher level of abstraction

by making use of the provided HTMLSensorElement. To

showcase the HTMLSensorElement approach, a Bluetooth

Low Energy heart rate monitor is connected. The retrieved data,

in turn, is visualized through a new user interface widget (see

Listing 1).

As indicated, the sensor can be set up by simply

integrating the HTMLSensorElement within the

HeartRateComponents template. Further, sampleData

events containing collected sensor data may be intercepted

by binding the event to a corresponding handler within the

business logic of the HeartRateComponent (see Listing 2).

This template-based approach of accessing sensors and their

respective data is beneficial to dynamically gather data from

multiple sources at once (i.e., when building some kind of

dashboard or aggregating data from different sensors). As can be

seen below, multiple HTMLSensorElements may be created

by looping over an array of corresponding configuration objects.

Emitted data can then be aggregated and processed by binding

events thrown by the sensor to a common event handler (see

Listing 3).

5.2. Extending the framework with
custom sensors

To demonstrate how to extend the developed framework

with additional sensing capabilities, a new sensor was

implemented and added to the previously described demo

application. This sensor, in turn, monitors the battery level of

the device.

First, a CustomBatterySensor class, extending the

already existing Sensor base class, has to be created. Note

that there also exist other base classes to extend from

(i.e., the BluetoothSensor) that may offer more features

required (i.e., establishing a connection). Next, respective sensor

interaction patterns (i.e., get() and watch()), as well

as a suitable configuration for this sensor, are defined and

implemented. The business logic of the sensor itself holds a

reference to the Battery Manager from the underlying

platform. Note that this manager is also exposed and accessible

through common web browser interfaces. The onGet()

method may query the current battery level, whereas the

onWatch()method triggers a callback when the charging state

changes (i.e., from normal to charging).

The resulting application with its three implemented sensors

(GPS, heart rate and battery) running on different platforms

is illustrated in Figure 3. Note that the user interface looks the

same across all platforms, but can be easily customized to fit

platform-specific guidelines if needed. Notably, the application

is developed once and can be deployed and used on all

major platforms.

Our sensor framework also includes a set of predefined

implementations to be used in different application scenarios.

The latter include ready-to-use classes for addressing device-

internal sensors as well as external sensing devices. Table 2

provides a brief overview of implementations on different

platforms and current web browsers. Note that the availability

of built-in sensors (and connectivity interfaces like ”Bluetooth

Low Energy”) may differ.

6. Limitations

The limitations of this work are on the one hand technical

and on the other hand related to the choices made in

the construction of the framework. Therefore, the various

limitations are presented in the following two categories.
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FIGURE 3

Resulting application running on di�erent platforms. From left to right: Web Application on Google Chrome, Web Application on Chrome for

Android, Native Android Application, and Native iOS Application.

6.1. Technical limitations

In order to be platform-agnostic, the entire framework was

developed based on web technologies, or more precisely, it was

built on Capacitor. This leads to the fact that the framework can

be integrated into mobile applications on different platforms,

but this also brings disadvantages. Since native access to

the mobile sensor APIs is provided by dedicated Capacitor

plugins, the framework is tightly coupled with this ecosystem.

Therefore, the framework is only suitable for use in regular

web applications or mobile applications that are based on the

Capacitor runtime environment.

Another limitation arises when the framework is to be

integrated into web applications. Since the variety of different

browsers is much larger than for mobile operating systems, it

cannot be assumed that all browsers in different versions support

the necessary functions to address mobile sensors. For example,

some APIs used by the framework to address sensors via the

web browser are marked as experimental functions that must

be manually need to be enabled in the browser settings (e.g.,

SensorAPI or Web Bluetooth API). To realize the full potential

of the developed framework, broader support of modern web

APIs in all browsers is required.

Web API implementations in different browsers also

need to become more reliable. For example, during the

development of the framework, a browser update caused the

NetworkStatusSensor returned inaccurate data. Such a problem

could be prohibitive in production scenarios. However, the latter

issues only affect the web version of the corresponding sensor

implementations, not the native ones.

Although setting up the framework within an existing

application is relatively easy, a complete “plug-and-play”

solution could not be achieved. The setup requires some

manual configuration steps where some lines of code had to

be added to the existing application. This mainly concerns

the registration of the Capacitor Custom Native plugins in

the existing application, which is tolerable but should not

go unmentioned.

Since iOS 13, Apple has reduced the maximum time frame

for background tasks to 30 s. There are ways to extend this

time frame, but this is only possible for a limited number

of allowed background tasks (e.g., location updates, audio

playback, VoIP, use of Bluetooth LE accessories). Therefore,

the application developer must ensure that the appropriate

properties are set in the application. The Bluetooth LE accessory

task may allow reading data from external sensors while the

application is running in the background. Reading data from

internal sensors is currently not possible in background mode.

Another solution could be to use Internet-enabled external

sensors that communicate their intent with a web service. The

web service would trigger a push notification on the device. It is

important to note that this is not part of the sensor framework,

as these considerations have to be made for the respective iOS

application itself.
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Table 2 Availability for predefined sensor implementations on

di�erent platforms.

Sensor A
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Geolocation Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë

Network Status Ë Ë Ë Ë Ë Ë é Ë Ë ? Ë

Microphone Ë ? Ë Ë ? Ë Ë Ë Ë Ë ?

Camera Ë ? Ë Ë Ë Ë Ë Ë Ë Ë ?

Ambient Light Ë é Ë ? ? ? Ë Ë ? é ?

Gyroscope Ë ¦ Ë ? ? ? Ë Ë ? é ?

Magnetometer Ë ¦ Ë ? ? ? Ë Ë ? é ?

Accelerometer Ë ¦ Ë ? ? ? Ë Ë ? é ?

Linear Acceleration Ë ¦ Ë ? ? ? Ë Ë ? é ?

Absolute Orientation é ¦ Ë ? ? ? Ë Ë ? é ?

Relative Orientation é ¦ Ë ? ? ? Ë Ë ? é ?

Gravity Ë ¦ é é é é é é é é é

Proximity Ë ¦ é é é é é é é é é

Ambient Pressure Ë ¦ é é é é é é é é é

Ambient Temperature Ë é é é é é é é é é é

Relative Humidity Ë é é é é é é é é é é

Bluetooth Ë ¦ Ë é ? ? Ë Ë é Ë ?

HTTP Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë

Heart Rate Variability ¦ ¦ ¦ é ? ? ¦ ¦ é ¦ ?

Ë Available, ¦ Not implemented, ? Availability unknown, é Not available or not

supported.

6.2. Framework dependent limitations

A common limitation with frameworks is a certain

restriction on developers’ design freedom.We have tried to keep

this to a minimum, but set specific guidelines that developers

must adhere to. Furthermore, scenarios are conceivable in which

the available sensor interaction patterns presented in Section

4.2 (GET, WATCH, RECORD, PUSH) are not sufficient. For

these cases, the framework would have to be extended by

further patterns.

7. Summary

In various application scenarios, data collection is becoming

increasingly important for researchers. In some areas (e.g.,

healthcare), not only are questionnaires for self-assessment, but

also data collected by sensors (e.g., to measure physiological

parameters) important. As part of our research project, we

evaluated different application scenarios where the benefit for

researchers could be increased by integrating sensors. These

findings, along with interviews with healthcare and psychology

professionals, revealed important requirements for a generic

sensor framework. A structured analysis of existing frameworks

revealed that most of them are focused only on a specific

platform (e.g., Android or iOS), are not flexible enough, or lack

the functionality to be used in challenging real-world scenarios

such as psychological studies or clinical trials.

As web technologies have matured, there has been a

shift toward cross-platform development in industry and

literature. To adapt to this, the sensor framework described

in this manuscript is implemented using state-of-the-art web

technologies. This approach allows IT professionals to easily

integrate it into any web-based mobile application (i.e.,

developed using Ionic) or into a browser-based applications

(e.g., developed with Angular or Electron).

This manuscript illustrates the design process for a

sophisticated sensor framework in a reproducible manner.

In addition, key aspects such as extensibility are highlighted

in detail so that others can accurately understand these

requirements. By elaborating various use cases for the

application of such a framework, we were able to extract different

sensor interaction patterns. The realized sensor framework and

its extensible approach provide a solid foundation for future

mobile data collection applications in a variety of scenarios.

However, further investigation is required as part of this

project. Among other things, the framework is to be used in

a research project in the field of psycho-oncology in order

to improve the possibilities of data collection here. Interviews

with IT experts working on this project could in turn reveal

further interaction patterns or additional requirements. This

may lead to adding more sensors to the framework. It may

also be possible to develop a special library containing mainly

sensors. Such a library can also be added via package managers.

Also, additional support for connectivity aspects may be added

over time. Currently, WiFi and Bluetooth are implemented,

but USB will be added gradually for native platforms. Web

applications, in turn, could make use of the WebUSB API

available in modern browsers. Another useful extension would

be the integration of other services such as the Google Fit REST

API to integrate functions offered by the respective services.

Finally, the code should be made available as Open Source so

that others can use, extend and improve it.
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