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Neuroimaging signatures predicting motor improvement to
focused ultrasound subthalamotomy in Parkinson’s disease
Sue-Jin Lin 1,2,3, Rafael Rodriguez-Rojas4,5✉, Tobias R. Baumeister1,2,3, Christophe Lenglos 1,2,3, Jose A. Pineda-Pardo4,5,6,
Jorge U. Máñez-Miró4, Marta del Alamo4, Raul Martinez-Fernandez4,5, Jose A. Obeso4,5,6 and Yasser Iturria-Medina 1,2,3✉

Subthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising
treatment for Parkinson’s Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of
tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes.
Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a
double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed. A multivariate cross-correlation analysis revealed that the
baseline multimodal imaging data significantly explain (P < 0.005, FWE-corrected) the inter-individual variability in response to
treatment. Most predictive features at baseline included neural fluctuations in distributed cortical regions and structural integrity in
the putamen and parietal regions. Additionally, a similar multivariate analysis showed that the population variance in clinical
improvements is significantly explained (P < 0.001, FWE-corrected) by a distributed network of concurrent functional and structural
brain changes in frontotemporal, parietal, occipital, and cerebellar regions, as opposed to local changes in very specific brain
regions. Overall, our findings reveal specific quantitative brain signatures highly predictive of tcMRgFUS-subthalamotomy
responsiveness in PD. The unanticipated weight of a cortical-subcortical-cerebellar subnetwork in defining clinical outcome extends
the current biological understanding of the mechanisms associated with clinical benefits.
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INTRODUCTION
Dopamine (DA) replacement therapy with levodopa and DA
agonizts along with deep brain stimulation (DBS) are still the pillar
of symptomatic treatment of Parkinson´s disease (PD)1,2. The latter
has become customary treatment of PD patients with levodopa-
induced motor complications worldwide1,3–5. However, the
invasive nature of DBS surgery, patient’s reluctancy for wearing
an implanted device and socieconomics constraints in several
countries make DBS not suitable for ever4,6.
Transcranial magnetic resonance-guided focused ultrasound

(tcMRgFUS) has been recently used to treat neurological
conditions through therapeutic thermoablation of selected
brain regions7. In PD, tcMRgFUS has been proposed as a non-
invasive alternative to DBS8,9. Although the focused ultrasound
technique has been established for years, recent technical
advances with an MR-guided device allows ultrasound waves
to be delivered into target brain regions more precisely,
generating focal “ablations”10,11. The neurosurgical targets
used for ablation and DBS in PD, i.e. the thalamic ventralis
intermedium (Vim)12, the subthalamic nucleus (STN)13, and the
globus pallidum pars interna (GPi)14, are also targeted with
tcMRgFUS. The procedure also aims to disrupt abnormal
neuronal activity in the motor circuit, thus achieving the
desired anti-parkinsonian effect4,8. Focused ultrasound thala-
motomy is accepted for the treatment of tremor-dominant PD,
while unilateral subthalamotomy and pallidotomy have been
mainly used in patients with asymmetric parkinsonism and/or
levodopa-induced motor complications9.

Overall, patients have shown promising improvements with
tcMRgFUS in several PD motor features. Unilateral subthala-
motomy improved all parkinsonian cardinal motor signs
significantly10,15, and thalamotomy provoked 60% improve-
ments in tremor scores16–20. Furthermore, pallidotomy has
been shown to reduce levodopa-induced dyskinesias while
only modest improvement of parkinsonism21. However, varia-
bility in treatment benefits as well as the presence of side
effects is a common finding in the performed studies17,21,22.
Importantly, lesion location and morphometric measures are
the main source for variability, but other patient-specific
factors could contribute as well to safety and efficacy
outcomes23. The fact that not all patients achieve the same
clinical improvement after tcMRgFUS reflects the crucial need
for a quantitative pretreatment individually-tailored prediction
of potential effects. Furthermore, although tcMRgFUS is
undeniably a clear therapeutic advance for PD15, limited
associations between observed clinical outcomes and con-
current brain re-organization effects have been explored. This
implies that the multisystem neurophysiological mechanisms
of individual responsiveness to tcMRgFUS remains unclear.
The two main purposes of this study were to test if imaging-

derived profiles before tcMRgFUS-subthalamotomy can predict
clinical responsiveness and whether or not treatment-induced
functional and structural brain changes can explain observed
clinical outcomes (Fig. 1). To this end, we used multivariate
statistical techniques to analyze MRI-based profiles in relation with
treatment response.
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RESULTS
tcMRgFUS-subthalamotomy improves motor features
remarkably
Subthalamotomy improved unilateral motor signs significantly
(Fig. 2 and Table 1, notice that the more negative the differential
values reported for a clinical variable, the higher the patients’
improvement on the corresponding domain in Table 1). In brief, all
the clinical motor items were significantly reduced (P < 0.0001)
after treatment in paired t-tests with MDS-UPDRS III total, MDS-
UPDRS III treated side, rigidity, akinesia, and tremor. Overall,
tremor was reduced the most with 74% change, followed by a
60% improvement for both rigidity and MDS-UPDRS III at the
treated side. Akinesia and the total MDS-UPDRS III scores reduce
by 47% and 40%, respectively (Table 1 and Fig. 2).

Baseline neuroimaging signature predicts clinical outcomes
We identified a significant PLS-LV component explaining about
82% of the total common imaging-clinical covariance (P < 0.01,
FWE-corrected; Fig. 3). Improvements in most clinical assessments
were consistently associated with the baseline imaging data. A
bootstrapping procedure confirmed that all considered clinical
variables were robustly associated with the imaging data, i.e.
bootstrap CIs of the clinical variables’ salience/contribution did not
cross the zero value (Fig. 3b, Supplementary Fig. S1). For early
imaging predictors, the most influential features (top 5%
predictors from the bootstrapped PLS) included amplitude of
the low frequency neural fluctuations at rest (fALFF) in the
temporal cortex, and gray matter density in the putamen and
posterior part of the brain (Fig. 3c; Table 2). Higher baseline fALFF
values were associated with stronger treatment-induced clinical
improvements (Fig. 3c). Contrary, higher structural atrophy at
baseline in the putamen and posterior regions in the brain
(precuneus, isthmus cingulate, occipital, and parietal gyrus) were
associated with weaker clinical improvements (Fig. 3c).

Mapping brain changes underlying clinical improvements
The analysis with brain changes and the clinical treatment
outcomes revealed one significant LV component (P < 0.005,
FWE-corrected) explaining 90% of the common imaging-clinical
covariance (Fig. 4a).
Figure 4 presents the statistical contribution of the top 5%

imaging features. Ten functional features and ten structural
measures were significantly influential in the model (with boot-
strapped 95% CIs not crossing zero; Supplementary Fig. S2). fALFF
contributed the most with 62% of the total PLS-LV, followed by
gray matter density with 38% (Table 2). Figure 4b, c illustrates the
importance of each regional variable on the cross-correlation
between datasets. All clinical improvements were positively
associated with the functional changes in frontal, precentral,
temporal, paracentral, and posterior cingulate regions, while were
negatively correlated with gray matter differences in the posterior
regions and cerebellar lobules. Thus, stronger clinical outcomes
were related to structural alterations of gray matter density in the
cerebellum and a few posterior cortical regions, while major
patterns of functional changes regarding low frequency neural
fluctuations in frontotemporal areas were associated with smaller

Fig. 1 Flowchart of acquired data and two main study analyses. The purpose of two analyses and the used data for each of them are
outlined in the figure.

Fig. 2 Raw clinical scores at baseline and month 4. Four clinical
variables (a–d) are shown with P-values in paired t-tests, indicating
significant differences before and after treatment in all motor
assessments. Each dot represents a subject. Center lines indicate the
median. Box limits indicate 75th and 25th percentile. Red crosses are
outliers. All scores are corresponding to the treated side.
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absolute clinical outcomes (i.e. weaker improvements). Therefore,
these results suggest that better treatment responsiveness is
consistently associated with concurrent increasing morphometric
changes of gray matter in the precuneus, cerebellum, occipital
gyrus as well as decreasing amplitude of low frequency neural
fluctuations among frontal/temporal/parietal areas.

DISCUSSION
We aimed to decode the neurobiological bases underlying the
positive clinical effects of tcMRgFUS-subthalamotomy. For this, we
first tested the predictability of baseline imaging to motor
improvements as a step towards future patient pre-selection in
clinical trials. In addition, we aimed to detect treatment-induced
functional and structural brain changes underlying the observed
clinical improvements. As discussed below, in addition to the
considered multimodal brain signatures, other factors have the
potential to impact the early prediction of treatment responses
(e.g. lesion topography). Accordingly, our analysis represent an
initial promising step towards the early data-driven identification
of tcMRgFUS-subthalamotomy effects in PD.
We used a robust multivariate approach to explore the cross-

correlation patterns between neuroimaging predictors and clinical
variables24–26. Our results (Fig. 3) indicate that higher values of
clinical improvements were associated with higher structural
atrophy and fALFF values in certain regions at baseline. These
findings support the existence of a specific pretreatment
functional and structural brain signature predictive of individual
responsiveness to tcMRgFUS-subthalamotomy. Specifically, given
that both clinical improvements and atrophy values were
negative, this cross-correlation pattern indicates that stronger
treatment outcomes were related to higher baseline atrophy and
less gray matter density in the putamen and posterior cortical
regions, as well as stronger amplitude of low frequency neural
fluctuations in frontal, parietal, cerebellar regions with a cluster in

the temporal cortex, which may first appears as counterintuitive. A
pausable explanation may be that the effects of tcMRgFUS-
subthalamotomy may be more notable (in MRI and clinical
evaluations) in the clinically more affected patients at baseline,
with confounding factors (e.g. MRI signal to noise ratio) potentially
masking subttle treatment effects in the less affected patients. We
observed that patients with higher baseline MDS-UPDRS motor
scores (more severe disease state) presented higher raw
improvements after FUS subthalamotomy15. Interestingly, DBS-
related findings have suggested similar mechanisms that subjects
with higher baseline UPDRS scores were associated with greater
improvements13, and trials with dopaminergic drugs in PD27–29

have also been associated with greater improvement in the more
affected patients. Finally, as the mechanisms of impaired neural
fluctuations are not fully understood, here we define level of
baseline imaging impairments based on gray matter morphome-
try. Neuronal compensation may be a potential factor underlying
the co-existence of reduced gray matter integrity and stronger
amplitude of low frequency neural fluctuations, with neural
information flow increasing to compensate for structural damage
in order to maintain essential brain functions30.
Our results suggest that treatment responsiveness prediction in

PD requires multiple features across subcortical, cortical, and
cerebellar brain areas rather than specific regions solely.
Functional features at baseline dominated the importance to
predict clinical outcomes with a temporal lobe cluster and other
distributed regions (Table 2, Fig. 3C). For top structural features,
there were overlapping regions between density and atrophy
measures in the precuneus, superior parietal gyrus, and isthmus
cingulate cortex. The precuneus appeared to be influential across
the three analyzed measures, supporting the multifaceted role of
this cortical region in treatment responsiveness. Further, the
precuneus has been identified as both structural and functional
“hub” (highly connected area) in healthy subjects31–33. The
precuneus may impact treatment effects given its hub character-
istics, but its pathophysiological role in PD requires further
investigation. Although there were relatively few baseline
neuroimaging predictors in the subcortical and cerebellar areas
(Fig. 3C), some regions in the deep brain nuclei and cerebellum
were detected as influential when a looser statistical threshold
was considered (Supplementary Table S2). The putamen is
recoghized to play a key pathophysiological role in PD8,34, which
is in line with the observed strong prediction power here for this
region. Surprisingly, even with a looser threshold, only one
significantly imaging predictor in the primary motor cortex was
identified (i.e. precentral gyrus in the untreated side). PD
pathology is well-known to go beyond the nigro-striatal system
and the motor areas35,36, and our results suggest that indeed the
inter-individual variability in tcMRgFUS-subthalamotomy effects
may be determined by not only motor regions but diffuse
networks which include non-motor brain areas as well. Perhaps,
disease progression in the primary motor cortex is a “downstream”
effect, implying less power to predict potential treatment
outcomes compared to those “upstream” regions in the
cerebellum-thalamus-cortical axis. This will be the focus of our
future research.
Here, we assumed that traditional univariate statistics in clinical

studies may not capture the crucial changes contributing to
disease progression or treatment efficiency. Therefore, instead of
reporting the significant imaging differences before and after
treatment with a traditional univariate approach, we focused on
whether the brain changes after treatment were associated with
clinical outcomes in a multivariate fashion (Fig. 4.). The identified
relevant structural reorganizations were located in the cerebellum
contralateral to the treatment site and in the posterior regions (i.e.
occipital and parietal lobes), while the functional changes were
mostly in distributed areas (e.g. frontotemporal, paracentral,
posterior cingulate cortices). The results indicated that (i) stronger

Table 1. Demographics and clinical assessments of 35 patients with
PD. All the clinical assessments were done in off-medication state.
Rigidity, akinesia, and tremor scores are corresponding to the
treated side.

Demographics Mean ± STD

Age 56.6 ± 9.5

Gender 22 males, 13 females

Disease duration in years 7.2 ± 2.8

Treated side 16 right side, 19 left side

Clinical assessments Baseline Month 4

MDS-UPDRS III—total scores* 37.6 ± 8.0 22.9 ± 8.6

MDS-UPDRS III—treated side* 18.8 ± 3.7 7.8 ± 3.6

MDS-UPDRS III—rigidity* 3.5 ± 1.0 1.5 ± 1.2

MDS-UPDRS III—akinesia* 10.0 ± 2.7 5.2 ± 2.6

MDS-UPDRS III—tremor* 5.3 ± 2.5 1.1 ± 1.3

Clinical changes (%)

MDS-UPDRS III—total scores −40.0 ± 18.0

MDS-UPDRS III—treated side −57.7 ± 19.0

MDS-UPDRS III—rigidity −58.0 ± 30.7

MDS-UPDRS III—akinesia −47.1 ± 27.4

MDS-UPDRS III—tremor −74.0 ± 30.5

*Two-sided paired t-test P < 0.0001 [MDS-UPDRS The Movement Disorder
Society-sponsored Revision of the Unified Parkinson’s Disease Rating
Scales].
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clinical improvements were associated with increasing gray matter
density changes in the cerebellum and posterior brain regions,
and (ii) weaker improvements associated with increasing func-
tional changes at rest in frontal, temporal, paracentral, and
posterior cingulate cortices. By modulating the gray matter

integrity of STN, the tcMRgFUS-subthalamotomy may have altered
the cortico-striatal circuit, suppressing excitatory outputs from the
STN to other deep gray matter regions and improving motor
features8. Treatment-associated morphometric changes in several
cerebellar regions (Supplementary Table S2) may be caused by the
spread of treatment effects from the basal ganglia to alter certain
aspects of motor features through cerebellum-basal ganglia-
cortical connections37,38. Given that these connections are highly
integrative across systems37, other cortical regions such as parietal
and temporal-occipital areas may have also received treatment
effects to alter sensorimotor properties. Similarly, previous
functional neuroimaging studies have reported a modulatory
effect of both subthalamotomy11 and STN-DBS28 on the activity of
the cerebellar regions. Increasing evidence supports the cerebel-
lum’s direct role in the pathophysiology of PD (for a review, see38),
which involves cerebellum-basal ganglia anatomical connections,
PD-associated pathological, structural and functional alterations,
and potential compensatory effects38. Furthermore, a prior FDG-
PET study revealed a metabolic effect in posterior parietal and
occipital areas induced by MRgFUS-subthalamotomy11.
High fALFF values within a given region indicate strong low

frequency neuronal activity compared to the full frequency
spectrum39. Our results (Fig. 4) suggest that more changes of
regional functional activity in the posterior cingulate cortex,

Table 2. Mean contributions of each imaging modality in the
significant latent variables space. Contribution values range from 0 to
1, indicating the fraction of total contribution among other modalities.

Threshold of
salience

fMRI fALFF fMRI ReHo GM
atrophy

GM
density

Analysis 1: baseline features VS clinical outcomes

Top 5% 0.61 0 0.21 0.18

Analysis 2: brain changes between baseline and month-4 visit VS
clinical outcomes

Top 5% 0.62 0 0 0.38

fALFF fractional amplitude of low-frequency fluctuation, ReHo regional
homogeneity, GM gray matter.

Fig. 3 Baseline imaging association with tcMRgFUS-subthalamotomy outcomes. a The combinations between imaging features and clinical
variables are significantly correlated. Each dot represents one subject and is color-coded with the MDS-UPDRS changes percent (specific to
the treated side). b Contribution of clinical outcomes (month-4 visit) to the observed association with the baseline imaging. Each bar indicates
the salience/importance of the variables (i.e. bootstrapping ratio). c The contributions of top 5% imaging regional features. Baseline fALFF,
gray matter atrophy, and gray matter density contributions are shown on the left, middle, and right, respectively. Color bars indicate salience/
importance (i.e. bootstrapping ratio) in each component. Of note, as atrophy values are negative by definition, bigger absolute values
represent greater atrophy. [fALFF fractional amplitude of low-frequency fluctuation, US untreated side, TS treated side, GM gray matter; the
full name of each region is included in Supplementary Table S1].
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precentral and paracentral gyrus, as well as a major frontotem-
poral cluster, were associated with weaker treatment outcomes. In
other words, better clinical outcomes could be linked to treatment-
induced decreased regional low frequency activity in these regions.
This supports the notion that distributed cortical networks might
be the key for ameliorating parkinsonian features rather than
frontostriatal circuits only40,41. Many of these cortical regions have
also been previously recognized as functional brain hubs, such as
the posterior cingulate cortex, superior frontal gyrus, fusiform
gyrus, and middle temporal gyrus31,42. Given that cortical hubs are
often more affected than non-hub cortical regions in a variety of
brain disorders including PD and other prevalent neurodegenera-
tive diseases43–45, strengthening the integrity of these regions
could potentially generate resistance against disease, or provide
certain protections to maintain essential brain functions. All
together, our results may reflect that the subthalamotomy initially
altered brain circuits in the basal ganglia and the effects spred to
not only the cerebellum but also to distributed cortical areas
including hubs, which in turn contributed to further propagating
the intervention effects. Such complex brain patterns were
widespread beyond motor loops and frontostriatal circuits,

suggesting that the treatment effects also fulfill the multifocal
nature of PD46.
In both radiofrequency and tcMRgFUS-based treatments, lesion

topography, such as precise location, total volume, and effective
lesion tissue, is believed to be the major determinant of clinical
outcomes23,47. In this study, however, our primary goal was to
evaluate the predictive capacity of pretreatment imaging towards
clinical outcomes, and consequently we did not include specific
morphometric measures of lesions in the analysis. Our results
suggest that, despite considering the pretreatment imaging data
only (and not the lesion topology), it is still possible to significantly
predict (P= 0.005, FWE-corrected; Fig. 3) the individual variability
in clinical response to tcMRgFUS-subthalatomy. Although this is
an interesting finding, its underlying neurobiological basis needs
to be unraveled. Thus, based on the previous findings28,47 and our
current results, it is reasonable to believe that baseline neuroima-
ging data may support lesion characteristics in predicting the
clinical response to tcMRgFUS-subthalatomy in an heterogeneous
PD population. This will be a central aim of coming related studies.
Although both tcMRgFUS and DBS have resulted in significant

clinical improvements while targeting the same region (i.e. STN),

Fig. 4 Longitudinal brain changes associated with tcMRgFUS-subthalamotomy clinical outcomes. a PLS-LV component explains 90.25% of
the common imaging-clinical covariance. Each dot represents one subject color-coded with the total MDS-UPDRS changes in percent.
b Contribution (i.e. bootstrapping ratio) of the five clinical outcome measures in the association with the longitudinal neuroimaging changes.
c Contributions of the top 5% brain regional longitudinal changes after treatment. Changes in fALFF and gray matter density are shown in the
left and right, respectively. [fALFF fractional amplitude of low-frequency fluctuation, TS treated side, US untreated side, GM gray matter; the
full name of each region is included in Supplementary Table S1].
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the underlying mechanisms might be different at a macroscale
level. DBS seemed to strongly modulate thalamocortical circuits,
with imaging measures in the basal ganglia, primary motor cortex,
and motor association regions being predictive of clinical
improvements13,28,29. Meanwhile, the effects of tcMRgFUS-
subthalamotomy are partially overlapped with that in DBS but
with an emphasis on the cerebellum and cortical distribution. This
may not be surprising considering the major role of the primary
motor cortex in PD, but our findings also indicate a strong
association between motor improvements and subcortical-
cortical-cerebellar loops. Cerebellar DBS is also considered in
many studies48,49, but the multimodal imaging outcomes in PD
require further research. Therefore, here we propose that rather
than directly impacting motor circuits in PD, tcMRgFUS-
subthalamotomy preferably modulates the coordination between
subcortical, cerebellar, and cortical hub regions to restore the
balance across the brain.
The study has two major interpretative limitations and a

number of metodhological issues all of which need to be taken
into consideration. First, it is difficult to reconcile conceptually that
greater atrophy in a number of cerebral regions is associated with
better therapeutic outcome. Cortical atrophy in PD as measured
by MRI is well-known to be preceeded by hypometabolism,
together heralding cognitive impairment and a tortous clinical
evolution50. These are not in principle good clinical features for a
positive response to any therapy in PD. It may be that the
correlation with atrophy is determining higher disease severity
and greater parkinsonism, which are known to correlate with
better motor improvement to functional interventions51,52.
Second, the pathophysiological significance of slow oscillations
(i.e. fALFF) in PD is not well understood. The parkinsonian state is
best characterized by increased power in the beta band, which is
recognized as a typical feature of the STN and other nuclei in
PD53,54. Therefore, the relation between low frequency oscillations
and typical beta bust shall be considered. Other technical aspects
also require commenting and qualification. First, the study’s
sample size is relatively small. As considering more than one
variable increases sensitivity in multivariate analyses, our approach
with multivariate cross-correlation has benefits in overcoming
small sample sizes with a high amount of features as well as
detecting treatment effects with longitudinal data55. Second,
although the primary goal was to evaluate the predictive capacity
of imaging rather than to determine the factors contributing to
clinical outcomes, measures of lesion topography shall be
included in future research. Third, imaging changes at month-4
visit showed small variances, i.e. small differences before vs after
treatment (Fig. 4a). Given the relatively short period of time
analyzed, further study of long-term brain and clinical changes is
required to clarify tcMRgFUS-subthalamotomy effects. Fourth, we
included both functional and structural MRI modalities to
investigate neuronal fluctuations and gray matter morphometry.
However, given that PD presents a multisystem nature36 involving
proteomic and neurotransmitter abnormalities, molecular brain
imaging (PET, SPECT) would provide essential information for a
better understanding of underlying pathomolecular mechanisms.
Furthermore, as the primary goal was to explore whether
treatment outcomes were associated with neuroimaging features
rather than studying the specific brain circuits only, the used brain
parcellation is mostly based on major neuroanatomical landmarks.
Regions with unique functions along specific pathways are not
available in such parcellation, such as the association motor
cortex. In order to develop efficient strategies for precision
medicine, improving these limitations will be of crutial importance
in our future work.
In conclusion, this study suggests that baseline neuroimaging is

predictive of tcMRgFUS-subthalamotomy responsiveness in PD,
and clinical improvements are explained by distributed, rather
than localized, functional and structural brain changes.

METHODS
Subjects
Thirty-eight subjects with markedly asymmetric PD were included in two
clinical trials utilizing unilateral subthalamotomy with focused ultrasound
at Centro Integral de Neurociencias, University Hospital HM Puerta del Sur,
Móstoles, Madrid, Spain (Clinical Trial Registration number: NCT02912871,
study duration: April, 2016 to January, 2017 and NCT03454425, study
duration: February 27, 2018 to January 30, 2021)10,15. The study was
approved by the HM Hospitales Ethics Committee for Clinical Research and
all participants provided written consent forms. The detailed inclusion and
exclusion criteria were described in the previous pilot study10,15. In short,
the subjects were not suitable for DBS based on their clinical and
demographical characteristics and subthalamotomy via tcMRgFUS was
considered as the best option. They showed no severe dyskinesia, history
of brain surgery and hemorrhage, unstable cardiac or psychiatric disease.
Two patients presented complications (one showed non-motor problems
and the other one presented mild treatment-induced paresis) and one
subject did not complete clinical evaluations due to the COVID-19
pandemic, which resulted in a total of 35 subjects in the analysis.

Intervention procedure
The procedure of unilateral subthalamotomy via tcMRgFUS was carried out
in an ExAblate 4000 system (InSightec, Haifa, Israel), coupled to a 3 T GE
scanner (Discovery 750w, GE Healthcare, Milwaukee, WI). The detailed
procedure has been reported elsewhere10,15. Subthalamotomy was
performed to treat each patient’s most affected hemibody (sixteen
patients on the right side; nineteen patients on the left side). All subjects
received baseline clinical assessments and image acquisition within
1month prior to tcMRgFUS. After the procedure, anatomical images were
acquired within 24 hours. Subjects underwent clinical and MRI evaluations
at 4 months.

Clinical assessment
For each subject, the MDS-UPDRS part III total, MDS-UPDRS part III on the
treated side, rigidity, akinesia, and tremor scores were recorded in off-
medication status at baseline as well as at the month-4 visit after
treatment. Clinical improvements were calculated based on these scores
with the following approach (Scoremonth 4 – Scorebaseline)/Score baseline ×
100. Paired t-tests were carried out to evaluate whether clinical scores
differed before VS after tcMRgFUS. Patient demographics and clinical
scores are shown in Table 1.

Image acquisition
All subjects underwent both T1-weighted images and resting-state fMRI
acquisition at baseline and the month-4 visit. Within 24 hours after
receiving the treatment, anatomical scans were also acquired in order to
assess the topography of the subthalamotomy and perilesional edema,
which were not included in the analysis of this study. Three-dimensional
T1-weighted magnetization-prepared rapid acquisition gradient echo
(MPRAGE) was used with the following parameters: 176 sagittal slices,
TR= 2300ms, TE= 3.34ms, slice thickness= 1mm, acquisition matrix=
256 × 256, and field-of-view (FOV)= 256 × 256 mm2. For the resting-state
fMRI acquisition, each subject was instructed to remain still with eyes open
fixated on a cross. Images were acquired with an echo-planar imaging (EPI)
sequence with the following parameters: 450 temporal volumes, 35 slices
with 4.0 mm thickness, TR= 2000ms, TE= 30ms, flip angle= 70˚, and
matrix size= 64 × 64. Due to the time availability of the scanner, two
subjects were scanned with 300 volumes, but the rest subjects followed
the original protocol.

Image analysis
T1-weighted images were first registered to the ICBM152 MNI template56

with FMRIB’s Linear Image Registration Tool (FLIRT; FSL, Oxford, UK)57 and
underwent non-uniformity correction using the N3 algorithm50. Next,
images were segmented into gray matter, white matter, and cerebrospinal
fluid (CSF) probabilistic maps using SPM12 (UCL, London, UK). Gray matter
segmentations were further standardized to MNI space using the DARTEL
tool58 and each map was modulated in order to preserve the total amount
of signal/tissue. Mean gray matter density and determinant of the Jacobian
(DJ) values were calculated for 104 brain regions including 70 cortical
regions, 16 subcortical nuclei, and 18 cerebellar areas, which constituted a
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robust local measure of structural atrophy in each region. These regions
were determined based on the cortical Desikan–Killiany Atlas plus
subcortical areas and AAL cerebellar lobules59,60. The measures of atrophy
(from DJ) were mostly negative values, while density measures were
positive values. A list of these regions is included in Supplementary Table
1.
Preprocessing steps for resting-state fMRI were carried out in FSL and

SPM12, which included: (1) removing the first 10 temporal volumes to
avoid unstable signals, (2) motion correction, (3) slice timing correction, (4)
coregistration between fMRI and T1 image with brain masks applied, (5)
spatial normalization to MNI space56 using the registration parameters
obtained for the structural T1 image, and (6) signal filtering to keep only
low-frequency fluctuations (0.01–0.08 Hz). Finally, fMRI signals were linearly
detrended and motion parameters were regressed out. In order to have
regional quantitative indicators of the brain’s functional integrity, the
fractional amplitude of low-frequency fluctuation (fALFF)39 and regional
homogeneity (ReHo)61 were calculated for each brain region mentioned in
the analysis of the gray matter. All functional measures were positive
values.
Nodal measures for subjects who received tcMRgFUS on the right side

were “flipped” to the left side. As a result, the final imaging features for all
subjects were labeled as treated and untreated side.

Multivariate analysis
Multidimensional associations between individual neuroimaging profiles
and tcMRgFUS-subthalamotomy’s clinical outcomes were tested via two
multivariate cross-correlation analyses (Fig. 1). Specifically, we used partial
least square (PLS) cross-correlation, which employs a joint singular
value decomposition (SVD) on the covariance matrix of two different
datasets24–26. This approach seeks the linear combinations of latent
variables (LVs), within two sets of data (imaging, clinical), that maximally
covariate with each other.
Our analysis consisted of two independent experiments (Fig. 1).

Motivated by the fact that early individually tailored prediction of
treatment efficiency remains traditionally unexplored in PD62, we proceed
to test whether neuroimaging-derived structural and functional brain
patterns at baseline could predict tcMRgFUS-subthalamotomy clinical
outcomes. First, all brain imaging features at baseline were included as
predictors of treatment clinical outcomes (Fig. 1 middle). Data included
regional fALFF and ReHo values characterizing functional brain activity at
rest, and gray matter atrophy and density for structural properties. For
clinical outcome, improvements in the total MDS-UPDRS III, treated side
MDS-UPDRS III, rigidity, akinesia, and tremor unilateral scores were
included. All variables (imaging and clinical) were standardized to have
zero mean and standard deviation one. Age, gender, and disease duration
in years were included as co-variables and regressed out in the PLS cross-
correlation.
Furthermore, randomizing permutations and bootstrapping were

executed (1000 iterations each) to determine the statistical significance
of each PLS-LV (indicated as FWE-corrected P-value) and the relative
salience/importance of each original variable, respectively25. For each data
feature, the bootstrapping ratio was calculated as its original model weight
divided by its standard error across the bootstrapping iterations.
Confidence intervals (CI) were also examined to ensure the robustness of
salience/importance from each variable. Finally, in order to quantify which
modalities were contributing the most to the imaging-clinical covariance,
the mean contribution of each modality, which was normalized by the
number of influential features within the modality, was calculated.
In the second analysis (Fig. 1 bottom), we analyzed the multivariate

relationship between the treatment-induced changes in all imaging
features (changes from baseline to month-4) and the clinical outcomes.
For each brain region and imaging feature, the treatment-induced changes
were calculated as the difference between the individual values at month-
4 and at baseline (i.e. featuremonth 4 – featurebaseline), standardizing them
across all subjects to have zero mean and standard deviation one. For
clinical variables, the same treatment outcomes and covariables were used
and all the parameters remained the same. Similarly that for the first
analysis, randomizing permutations and bootstrapping were executed
(1000 iterations each) to determine the statistical significance of each PLS-
LV and the relative salience/importance of each original variable on the
obtained multivariate patterns, respectively25. All the analysis were
performed with in-house Matlab codes and the imaging features were
visualized with BrainNet63.
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