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Abstract: The evolution of an open system is usually associated with the interaction of the system with
an environment. A new method to study the open-type system evolution of a qubit (two-level atom)
state is established. This evolution is determined by a unitary transformation applied to the
qutrit (three-level atom) state, which defines the qubit subsystems. This procedure can be used
to obtain different qubit quantum channels employing unitary transformations into the qutrit system.
In particular, we study the phase damping and spontaneous-emission quantum channels. In addition,
we mention a proposal for quasiunitary transforms of qubits, in view of the unitary transform of the
total qutrit system. The experimental realization is also addressed. The probability representation of
the evolution and its information-entropic characteristics are considered.
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1. Introduction

The open system evolution of a qudit state is known to be the result of interactions with
an environment. Usually, the states of the complete system are thought to evolve by a unitary
transformation in the Hilbert space Ĥ = Ĥq ⊗ Ĥenv, then the density operator of the composite
system leads us, using the partial tracing procedure, to the density operator of the subsystem ρ̂q

(qudit), and its evolution is induced by the unitary evolution of the complete system. In this picture,
the qubit state dynamics needs the structure of the Hilbert space Ĥ corresponding to the presence of
two subsystems, qudit and environment [1]. In this work, we suggest a new mechanism to study the
open system evolution, which does not demand the complete system to have a subsystem.

We show that for any system without subsystems, there exist a unitary evolution, which due to
hidden correlations in the system, evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad
equation [2–5]. We demonstrate this picture using the example of a qutrit (complete system without
subsystems), where the open-like evolution is available for their associated qubits.

In previous works [6–10], a new method to define different qubit density matrices from a qudit
system was established. This procedure uses the occupation probabilities and transition probability
amplitudes for different levels of a qudit system and groups them as if there exists two levels only.
This is done by mapping the qudit density matrix to the closest higher even-dimensional density matrix.
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The partial trace operation then is enacted on the resulting matrix in order to obtain well-defined qubit
density matrices.

The obtained qubits have been used to define a new geometric representation of the d-dimensional
qudit states through d Bloch vectors [10] associated with the generated qubits. Furthermore, it has
been possible to describe quantum phenomena as the entanglement on a two-qubit system in terms of
standard probabilities [9].

The evolution of a qutrit density matrix can provide the quantum channel, which maps the initial
state ρ̂a onto the density matrix ρ̂′a. The proposed open-type evolution establishes a new mechanism,
which will need a special state preparation and a specific unitary operation for the qutrit system, as we
will show later on. The experimental possibilities by which one can realize this new mechanism are
related to superconducting circuit devices [11,12].

Most quantum computing processes consider a set of pure qubit states, which are transformed by
unitary operators, also called gates, that are used to implement different computing algorithms. In this
article, instead, we have density matrices (which might be describing a mixed state) of larger qudit
systems. The definition of a set of qubit states from a qudit system is similar to the ideas established
in [13], where the emulation of a spin system was obtained from qudit states, and in [14], where
the quantum logic of qubits was simplified by the use of a higher dimensional Hilbert space; and in
general, with all the procedures that make use of larger Hilbert spaces. In this work, we demonstrate
that subsystems of qubits defined by larger systems can be used in quantum information. A principal
foundation of quantum computation is the study of quantum channels. These channels are linked to
unitary transformations of the qubit density matrix. There exist several channels that can describe
the interaction between a quantum system and its environment such as the bit-flip, depolarization,
spontaneous emission, phase, and amplitude damping channels. For this, the study of quantum
channels has been of relevance in the error correction theory of quantum computation [15,16].

Here, we present different examples of quantum channels, which act on the associated qubits
to qudit states. These quantum channels have the advantage of being represented as unitary
transformations acting in the qudit system, providing the possibility to study the qubits as if they were
interacting with an environment.

On the other hand, the study of the interaction of three-level systems with electromagnetic fields
has led to the discovery of important phenomena, such as the presence of dark states [17] together
with black resonances [18] and electromagnetically-induced transparency [19–21]. This is important to
our objectives as in some cases, the herein proposed qubit quantum channels can be obtained by a
unitary transformation of dark states, suggesting the possibility of checking our results experimentally.

The work is organized as follows: In Section 2, a review of the qubit density matrices that
are associated with a qutrit state is given. Furthermore, the association of a unitary transform of
the qutrit to the nonunitary transformations of the qubits is studied. In Section 3, the definitions
of the qubit phase damping and spontaneous-emission quantum channels are reviewed. Later,
the unitary transformations of a qutrit system are explicitly given, which yields the phase damping
and spontaneous-emission channels on the associated qubits. A way to obtain a quasi-unitary
transformation on the qubits is also explored. The change of entropy associated with the nonunitary
evolution of the qubits is discussed in Section 4. Finally, some concluding remarks are given.

2. Nonunitary Evolution for the Qubit Decomposition of Qutrit States

In a previous work [10], we showed the existence of six different qubit states associated with a
general qutrit density matrix:

ρ̂ =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 .

To define these states, different maps of ρ̂ to a 4 × 4 density matrix, with one row and one column
equal to zero (in such a way that ensures an eigenvalue equal to zero), were used. Then, the partial trace
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of the resulting 4 × 4 matrix was performed as if it was describing a two-qubit system. The obtained
qubit partial density operators can be explicitly written as:

ρ̂1 =

(
1− ρ33 ρ13

ρ31 ρ33

)
, ρ̂2 =

(
1− ρ22 ρ12

ρ21 ρ22

)
, ρ̂3 =

(
ρ11 ρ13

ρ31 1− ρ11

)
,

ρ̂4 =

(
ρ22 ρ23

ρ32 1− ρ22

)
, ρ̂5 =

(
ρ11 ρ12

ρ21 1− ρ11

)
, ρ̂6 =

(
1− ρ33 ρ23

ρ32 ρ33

)
. (1)

The qubit states can be characterized in different sets by their corresponding von Neumann
entropy Sk = −Tr ρk ln ρk, with k = 1, 2, . . . , 6. These qubits correspond to the reduction of the
three-level system to different two-level systems by the summation of the population probabilities of
two levels into one.

When the qutrit state is transformed using a general three-dimensional unitary matrix Û,
i.e., ρ̂′ = Û† ρ̂ Û, the qubits in Equation (1) are transformed in a nonunitary way. The transformed
qubit density matrices can be written by the following expressions:

ρ̂′1 =
1
D

(
D−M3,1N1,3 + M2,1N2,3 −M1,1N3,3 M3,3N1,3 −M2,3N2,3 + M1,3N3,3

M3,1N1,1 −M2,1N2,1 + M1,1N3,1 M3,1N1,3 −M2,1N2,3 + M1,1N3,3

)
,

ρ̂′2 =
1
D

(
D + M3,2N1,2 −M2,2N2,2 + M1,2N3,2 M3,3N1,2 −M2,3N2,2 + M1,3N3,2

−M3,2N1,1 + M2,2N2,1 −M1,2N3,1 −M3,2N1,2 + M2,2N2,2 −M1,2N3,2

)
,

ρ̂′3 =
1
D

(
M3,3N1,1 −M2,3N2,1 + M1,3N3,1 M3,3N1,3 −M2,3N2,3 + M1,3N3,3

M3,1N1,1 −M2,1N2,1 + M1,1N3,1 D−M3,3N1,1 + M2,3N2,1 −M1,3N3,1

)
,

ρ̂′4 =
1
D

(
−M3,2N1,2 + M2,2N2,2 −M1,2N3,2 −M3,2N1,3 + M2,2N2,3 −M1,2N3,3

M3,1N1,2 −M2,1N2,2 + M1,1N3,2 D + M3,2N1,2 −M2,2N2,2 + M1,2N3,2

)
,

ρ̂′5 =
1
D

(
M3,3N1,1 −M2,3N2,1 + M1,3N3,1 M3,3N1,2 −M2,3N2,2 + M1,3N3,2

−M3,2N1,1 + M2,2N2,1 −M1,2N3,1 D−M3,3N1,1 + M2,3N2,1 −M1,3N3,1

)
,

ρ̂′6 =
1
D

(
D−M3,1N1,3 + M2,1N2,3 −M1,1N3,3 −M3,2N1,3 + M2,2N2,3 −M1,2N3,3

M3,1N1,2 −M2,1N2,2 + M1,1N3,2 M3,1N1,3 −M2,1N2,3 + M1,1N3,3

)
, (2)

where Njk = (ρ̂Û)jk, D is the determinant of Û, and Mjk are the components of the minors of matrix
Û, i.e., its elements are the determinants after eliminating the (4− j)th row and (4− k)th column of
Û. The transformed states are characterized into different sets by their corresponding transformed
entropies S′k = −Tr ρ′k ln ρ′k. We emphasize that the resulting qubit density matrices are associated,
in general, with a nonunitary evolution of the original qubits. This fact establishes a new mechanism
to obtain the open-like system evolution in a noncomposite qutrit system. Additionally, this procedure
can be extended to any qudit system, in view of the general definition of the qubit density matrices
obtained from a qudit system [10].

In [9], we discussed that a two-qubit density matrix with one of its rows and columns equal to
zero describes separable states, if one of the off-diagonal terms is equal to zero, for example, the state:

ρ̂ =


ρ11 ρ12 ρ13 0
ρ21 ρ22 ρ23 0
ρ31 ρ32 ρ33 0
0 0 0 0


is separable iff ρ23 = 0. To show this, one can consider the previous density matrix to be in the
standard two-qubit representation |00〉, |01〉, |10〉, and |11〉. It can be seen that the partial transpose
operation [22] implies the change ρ12 ↔ ρ21, and for this reason, the eigenvalues of ρ̂ with ρ23 = 0 are
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equal to the eigenvalues of its partial transpose. As the partial transpose is a nonnegative operator,
then the system is separable. The separability implies the invariance of the partial density matrices
under local unitary transformations. As this two-qubit density matrix has a pair of row-column with
a diagonal term equal to zero, the correspondence with a qutrit density matrix can be made. On the
other hand, the correspondence between two-qubit local unitary transformations and qutrit unitary
transformations can be made in the same way, e.g., by eliminating one row and one column of the
two-qubit local transformation. This procedure allows us to define different unitary transformations
that almost leave the qubits in Expression (1) invariant.

3. Phase Damping and Spontaneous-Emission Channels

It is known that the interaction of a qubit system with an environment leads to several physical
phenomena such as dissipation and decoherence in the qubit subsystem; an example of these
interactions is the phase damping channel. In this channel, the evolution of the qubit plus environment
(| · · · 〉q| · · · 〉e) is given by a unitary transformation T̂, which acts differently if the qubit is in the ground
or excited state, according to the following rules: T̂(|0〉q|0〉e) =

√
1− p|0〉q|0〉e +

√
p|0〉q|1〉e and

T̂(|1〉q|0〉e) =
√

1− p|0〉q|0〉e +
√

p|0〉q|2〉e with p being a probability, i.e., the environment subsystem
goes to a superposition of the states (|0〉e, |1〉e), or to (|0〉e, |2〉e), if the environment is in |0〉e, or |1〉e,
respectively [15,23]. This two-qubit unitary transformations result in a nonunitary change when the
partial trace over the environment subsystem is taken:(

1− ρ22 ρ12

ρ∗12 ρ22

)
→
(

1− ρ22 ρ12(1− p)
ρ∗12(1− p) ρ22

)
.

When the map is applied a very large number of times (→ ∞), it is straightforward that the initial
state tends to the completely decoherent state:(

1− ρ22 ρ12

ρ∗12 ρ22

)
→
(

1− ρ22 0
0 ρ22

)
,

with an exponential convergence.
The other example is the spontaneous-emission (also called the amplitude-damping) quantum

channel. In this channel, the dynamics of the qubit system plus the environment is determined by a
unitary transform T̂, which only acts if the qubit system is in the excited state |1〉q, according to the
following rules: T̂(|0〉q|0〉e) = |0〉q|0〉e and T̂(|1〉q|0〉e) =

√
1− p|1〉q|0〉e +

√
p|0〉q|1〉e, where p is the

probability [15,23]. This channel then defines a nonunitary evolution over the qubit subsystem, which
transforms the qubit density matrix as follows:(

1− ρ22 ρ12

ρ∗12 ρ22

)
→
(

1− (1− p)ρ22 ρ12
√

1− p
ρ∗12
√

1− p (1− p)ρ22

)
.

If this channel is applied a very large number of times (→ ∞), the density matrix converges to a
ground state, i.e., (

1− ρ22 ρ12

ρ∗12 ρ22

)
→
(

1 0
0 0

)
.

In addition to these examples, there exists another type of quantum channel defined in the theory
of interaction between a quantum system and an environment, which can be considered [15,23].

It is possible to demonstrate that phase damping and spontaneous-emission quantum channels
for qubits ρ̂1, . . . , ρ̂6 in Equation (1) can be obtained by the use of particular unitary transformations
of a qutrit state ρ̂. To justify this, we assumed a two-qubit quantum system where one of the levels
cannot be populated, i.e., the 4 × 4 density matrix has an eigenvalue equal to zero, e.g.,
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ρ̂ =


ρ11 ρ12 ρ13 0
ρ21 ρ22 0 0
ρ31 0 ρ33 0
0 0 0 0

 ; (3)

it is clear that this density matrix is separable since ρ23 = ρ∗32 = 0. The partial density matrices can
be operated locally by unitary transformations of the form û1 ⊗ û2. When only one of the qubits is
operated, i.e., when the unitary matrix corresponds to a controlled operation [15]: û1 = Î or û2 = Î.
If û2 = Î, then the unitary transformation only operates over the second qubit,

û =


u11 u12 0 0
u21 u22 0 0
0 0 u11 u12

0 0 u21 u22

 . (4)

By means of this type of unitary matrix, one can define an operation in the qutrit system that
approximately only affects ρ̂2. This is done by ignoring the fourth row and the fourth column of (3);
the resulting qutrit state is then operated by the unitary matrix resulting from the elimination of the
fourth row and the fourth column of Equation (4). For the operator to be still unitary, the (3, 3) entry
must be replaced by one. Following these and other analogous arguments, we study the application of
the unitary transforms:

Û1 =

 u11 u12 0
u21 u22 0
0 0 1

 , Û2 =

 u11 0 u12

0 1 0
u21 0 u22

 , Û3 =

 1 0 0
0 u11 u12

0 u21 u22

 (5)

on the qutrit density matrices:

σ̂1 =

 ρ11 ρ12 ρ13

ρ21 ρ22 0
ρ31 0 ρ33

 , σ̂2 =

 ρ11 0 ρ13

0 ρ22 ρ23

ρ31 ρ32 ρ33

 , σ̂3 =

 ρ11 ρ12 0
ρ21 ρ22 ρ23

0 ρ23 ρ33

 . (6)

The unitary transformations in Equation (5) can be enacted on any of the density matrices
in Equation (6), which define a nonunitary transformation of the qubits defined in Equation (1).
These qubit transformations are found by the substitution of Equations (5) and (6) into Equation (2),
e.g., the unitary transformation Û†

1 σ̂1Û1 results in the following transformations of the qubits:

ρ̂′1 =

(
1− ρ33 ρ13 u∗11
ρ31 u11 ρ33

)
,

ρ̂′2 =

(
1− u∗12(σ̂1Û1)12 − u∗22(σ̂1Û1)22 u∗11(σ̂1Û1)12 + u∗21(σ̂1Û1)22

u∗12(σ̂1Û1)11 + u∗22(σ̂1Û1)21 u∗12(σ̂1Û1)12 + u∗22(σ̂1Û1)22

)
,

ρ̂′3 =

(
u∗11(σ̂1Û1)11 + u∗21(σ̂1Û1)21 ρ13 u∗11

ρ31 u11 1− u∗11(σ̂1Û1)11 − u∗21(σ̂1Û1)21

)
,

ρ̂′4 =

(
u∗12(σ̂1Û1)12 + u∗22(σ̂1Û1)22 ρ13u∗12

ρ31u12 1− u∗12(σ̂1Û1)12 − u∗22(σ̂1Û1)22

)
,

ρ̂′5 =

(
u∗11(σ̂1Û1)11 + u∗21(σ̂1Û1)21 u∗11(σ̂1Û1)12 + u∗21(σ̂1Û1)22

u∗12(σ̂1Û1)11(r11u11 + r12u21) + u∗22(σ̂1Û1)21 1− u∗11(σ̂1Û1)11 − u∗21(σ̂1Û1)21

)
,

ρ̂′6 =

(
1− ρ33 ρ13 u∗12
ρ31 u12 ρ33

)
.
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From these results, one can notice that the transformed qubits ρ̂′1 and ρ̂′6 correspond to the phase
damping channel of ρ̂1 with different damping parameters. Furthermore, the qubit states ρ̂′2, ρ̂′5
can be seen as quasi-unitary transformations of the initial states ρ̂2, ρ̂5, respectively. In a similar
way, one can obtain all the possible unitary transformations of the density matrices in Equation (6).
These transformations lead to the identification of two types of quantum channels: the phase damping
and a quasi-unitary operation described below.

The unitary transformation over the density matrices σ̂1, σ̂2, and σ̂3 results in a change over their
associated qubits ρ̂1, . . . , ρ̂6, to ρ̂′1, . . . , ρ̂′6, which denote the qubits after the transformation. We have
found the following interesting expressions:

Û†
1 σ̂1Û1 ⇒ ρ̂′1 =

(
1− ρ33 u∗11ρ13

u11ρ31 ρ33

)
, ρ̂′6 =

(
1− ρ33 u∗12ρ13

u12ρ31 ρ33

)
;

Û†
2 σ̂1Û2 ⇒ ρ̂′2 =

(
1− ρ22 u∗11ρ12

u11ρ21 ρ22

)
, ρ̂′4 =

(
1− ρ33 u∗12ρ12

u12ρ21 ρ33

)
;

Û†
2 σ̂2Û2 ⇒ ρ̂′2 =

(
1− ρ22 u∗21ρ32

u21ρ23 ρ22

)
, ρ̂′4 =

(
ρ22 u22ρ23

u∗22ρ32 1− ρ22

)
; (7)

Û†
3 σ̂2Û3 ⇒ ρ̂′3 =

(
ρ11 u22ρ13

u∗22ρ31 1− ρ11

)
, ρ̂′5 =

(
ρ11 u21ρ13

u∗21ρ31 1− ρ11

)
;

Û†
1 σ̂3Û1 ⇒ ρ̂′1 =

(
1− ρ33 u∗21ρ23

u21ρ32 ρ33

)
, ρ̂′6 =

(
1− ρ33 u∗22ρ23

u22ρ32 ρ33

)
;

Û†
3 σ̂3Û3 ⇒ ρ̂′3 =

(
ρ11 u12ρ12

u∗12ρ21 1− ρ11

)
, ρ̂′5 =

(
ρ11 u11ρ12

u∗11ρ21 1− ρ11

)
.

In most of the cases, the resulting qubits ρ̂′j correspond to the phase damping quantum channel
of ρ̂j, as can be seen in Expression (8). In this channel, the probability amplitudes given by the
original off-diagonal terms of the qubits are multiplied by a number. The damping parameters are
associated with different entries of the unitary transformation ujk, which in general are complex
numbers. When the unitary transformation correspond to a real matrix, then the expression for the
standard phase damping map is obtained. As you can see in Equation (8), in some cases, the unitary
transformations leads to the quantum channel of another qubit, e.g., after the application of Û1 to
σ̂1, the qubit ρ̂′6 is the phase damping channel of ρ̂1. Furthermore, in some other cases, the obtained
density matrices correspond to transformations similar to the phase damping channel of matrices
outside the ones in Equation (1), e.g., ρ̂′4 after the application of Û2 to σ̂1. Although these matrices
seem unrelated, they have the same form as the phase damping channel. In the case of Û being a
rotation matrix with a time-dependent angle θ = ωt, the original qubit states can be recovered at the
time t = 2πl/ω, l = 0, 1, 2, . . ..

The unitary transformations (Û1, Û2, Û3) previously described can also lead to quasi-unitary
transformations of the qubits. In particular, for the unitary transformation Û†

1 σ̂1Û1, one gets the
quasi-unitary transformations:

ρ̂′2 = Û †ρ̂2 Û + ρ33

(
|u12|2 −u∗11u12

−u11u∗12 −|u12|2

)
,

ρ̂′5 = Û †ρ̂5 Û + ρ33

(
−|u21|2 −u∗21u22

−u21u∗22 |u21|2

)
, (8)
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with Û =

(
u11 u12

u21 u22

)
being a two-dimensional unitary transformation. For the other qubits, one

can also define quasi-unitary transformations as follows:

(a) From the qutrit unitary transformation Û†
1 σ̂3Û1,

ρ̂′2 = Û †ρ̂2 Û + ρ33

(
−|u12|2 u∗11u12

u11u∗12 |u12|2

)
,

ρ̂′5 = Û †ρ̂5 Û + ρ33

(
|u21|2 u∗21u22

u21u∗22 −|u21|2

)
, (9)

(b) For the transformation Û†
2 σ̂1Û2,

ρ̂′1 = Û †ρ̂1 Û + ρ22

(
|u12|2 −u∗11u12

−u11u∗12 −|u12|2

)
,

ρ̂′3 = Û †ρ̂3 Û + ρ22

(
−|u21|2 −u∗21u22

−u21u∗22 |u21|2

)
. (10)

(c) For the transformation Û†
2 σ̂2Û2,

ρ̂′1 = Û †ρ̂1 Û + ρ22

(
|u12|2 −u∗11u12

−u11u∗12 −|u12|2

)
,

ρ̂′3 = Û †ρ̂3 Û + ρ22

(
−|u21|2 −u∗21u22

−u21u∗22 |u21|2

)
, (11)

(d) From Û†
3 σ̂2Û3,

ρ̂′4 = Û †ρ̂4 Û + ρ11

(
−|u21|2 −u∗12u22

−u21u∗22 |u21|2

)
,

ρ̂′6 = Û †ρ̂6 Û + ρ11

(
−|u12|2 u∗11u12

u11u∗12 |u12|2

)
. (12)

(e) Finally, for Û†
3 σ̂3Û3,

ρ̂′4 = Û †ρ̂4 Û + ρ11

(
−|u21|2 −u∗12u22

−u21u∗22 |u21|2

)
,

ρ̂′6 = Û †ρ̂6 Û + ρ11

(
−|u12|2 u∗11u12

u11u∗12 |u12|2

)
, (13)

For all the cases, Û is a two-dimensional unitary transformation.
As in the phase-damping case, one can think of a rotation matrix with a time-dependent angle

θ = ωt as the unitary operation, i.e.,

Û =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
,
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which, in the case where t ≈ 0, results in the following transformations:

ρ̂′j = Û †ρ̂j Û − ρkk ω t σ̂x +O(t2) , (14)

where σ̂x is the Pauli matrix and ρkk is a diagonal component of ρ̂, which depends on j. Its value is
k = 2 for j = 1, 3, k = 3 for j = 2, 5, and k = 1 for j = 4, 6. It is necessary to point out that, for ρ̂′5
associated with Û†

1 σ̂3Û1, we need to replace ρ33 with −ρ33 in Equation (14).
In the case where the density matrices correspond to states, where one of the accessible levels is

not occupied, i.e.,

σ̂4 =

 ρ11 ρ12 0
ρ21 ρ22 0
0 0 0

 , σ̂5 =

 ρ11 0 ρ13

0 0 0
ρ31 0 ρ33

 , σ̂6 =

 0 0 0
0 ρ22 ρ23

0 ρ32 ρ33

 , (15)

we obtain the expressions:

Û†
2 σ̂4Û2 ⇒ ρ̂′5 =

(
ρ11|u11|2 ρ12u∗11

ρ21u11 1− ρ11|u11|2

)
, ρ̂′6 =

(
1− ρ11|u12|2 ρ21u12

ρ12u∗12 ρ11|u12|2

)
,

Û†
3 σ̂4Û3 ⇒ ρ̂′1 =

(
1− ρ22|u12|2 ρ12u12

ρ21u∗12 ρ22|u12|2

)
, ρ̂′2 =

(
1− ρ22|u11|2 ρ12u11

ρ21u∗11 ρ22|u11|2

)
,

Û†
1 σ̂5Û1 ⇒ ρ̂′3 =

(
ρ11|u11|2 ρ13u∗11

ρ31u11 1− ρ11|u11|2

)
, ρ̂′4 =

(
ρ11|u12|2 ρ13u∗12

ρ31u12 1− ρ11|u12|2

)
, (16)

Û†
3 σ̂5Û3 ⇒ ρ̂′1 =

(
1− ρ33|u22|2 ρ13u22

ρ31u∗22 ρ33|u22|2

)
, ρ̂′2 =

(
1− ρ33|u21|2 ρ13u21

ρ31u∗21 ρ33|u21|2

)
,

Û†
1 σ̂6Û1 ⇒ ρ̂′3 =

(
ρ22|u21|2 ρ23u∗21

ρ32u21 1− ρ22|u21|2

)
, ρ̂′4 =

(
ρ22|u22|2 ρ23u∗22

ρ32u22 1− ρ22|u22|2

)
,

Û†
2 σ̂6Û2 ⇒ ρ̂′5 =

(
ρ33|u21|2 ρ32u∗21

ρ23u21 1− ρ33|u21|2

)
, ρ̂′6 =

(
1− ρ33|u22|2 ρ23u22

ρ32u∗22 ρ33|u22|2

)
.

These transformations in many of the cases can represent the spontaneous-emission quantum
channel. As in the other examples studied above, when the unitary matrices are rotated by angle
θ = ωt, the original qubit systems can be recovered at times t = 2πl/ω; l = 0, 1, 2, . . .. It is important
to mention that the states represented by Equation (15) correspond to three-level systems, where one
of the levels is a dark state, and then only two of the levels can be populated, which have been
experimentally obtained [24]. These kinds of systems have been of relevance as they can be created by
two-photon processes in a three-level system [25] or by the adiabatic variation of the Rabi frequencies
associated with the transitions between the three states [26]. For example, to obtain the state σ̂4, one can
think of an atomic Λ-type three-level system (|1〉, |2〉, |3〉), which interacts with an environment [26];
see Figure 1. The Hamiltonian associated with this system can be written in the form:

Ĥ =

 ω1 0 ω13

0 ω2 ω23

ω13 ω23 0

 ,

where ω1,2 are the energies of the states |1〉, |2〉, respectively. By considering the energy of the ground
state |3〉 equal to zero, ω13 and ω23 are the transition energies. Taking the zero energy in the ground
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state |3〉, we can make the replacements ω13 → ω1 e−iω1t and ω23 → ω2 e−iω2t. The time evolution of
the density matrix can be obtained by the expression:

d
dt

ρ̂ = i[ρ̂, Ĥ] + ρ̂′ , (17)

where the matrix ρ̂′ is given by the interaction of the original density matrix with the environment:

ρ̂′ =

 γ31ρ33 −γ′ρ12 −γ1ρ13

−γ′ρ21 γ32ρ33 −γ2ρ23

−γ1ρ31 −γ2ρ32 −γρ33

 ,

where the parameters γ31, γ32, and γ are the spontaneous-emission rates, which must satisfy
γ = γ31 + γ32, and the relaxation terms for the coherence components are named γ1 and γ2, which also
satisfy γ′ = γ1 + γ2. The resulting differential Equation (17) can be reduced by considering that the
variation of the parameters ρ13, ρ23, and ρ33 over time is smaller compared to the spontaneous emission
and decoherence terms γ31 and γ32; this is called the adiabatic hypothesis. Under this hypothesis,
it is possible to obtain a state with ρ13 = ρ23 = ρ33 = 0, as the solution of the evolution of the density
matrix σ̂4 discussed above.

Another way to obtain these types of systems is the case where the environmental interaction is
neglected, i.e., ρ̂′ = 0 in Equation (17). The corresponding Schrödinger equation is i d|ψ〉

dt = Ĥ|ψ〉,
with |ψ〉 = a1(t)e−iω1t|1〉 + a2(t)e−iω2t|2〉 + a3(t)|3〉, which in view of the initial conditions
a1(0) =

ω2√
ω2

1+ω2
2
, a2(0) = − ω1√

ω2
1+ω2

2
, a3(0) = 0 leads to the solution:

a1(t) =
ω2√

ω2
1 + ω2

2

, a2(t) = −
ω1√

ω2
1 + ω2

2

; a3(t) = 0 ,

so the level |3〉 is never populated.
The density matrices σ̂5 and σ̂6 can be obtained by means of analogous procedures applied to the

V and Ξ configurations of the three-level system depicted in Figure 1.

1

2

3

ω13ω12

ω23

ω13

1

2

3

1

2

3

ω32

ω21

Figure 1. State configurations for the V- (left), the Λ- (center), and the Ξ-level (right) systems.

It is also important to mention that the unitary transformations defined by the matrices Û1, Û2,
and Û3 in Equation (5) can be generated experimentally by different proposed mechanisms, such as
sliding mode control [27], adiabatic passage [28–30], and the robust control scheme [31,32]. We want
to emphasize that the resulting quasi-unitary evolutions and the different quantum channels obtained
in our work can have applications in quantum computing and quantum information theories. We
think so because the quasi-unitary operations discussed here could be used as approximations to the
standard quantum gates, and furthermore, the obtained quantum channels could also be used in the
quantum correction algorithms found in the literature.
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4. Probability Representation of the Qubit-State Evolution

In the quantum tomographic approach of qubit states [33,34], the states are identified with
tomographic probability distributions. In the case of the minimal number of probability parameters,
the density matrix of the qubit (spin-1/2) state reads [6]:

ρ̂ =

(
p3 p1 − 1/2− i(p2 − 1/2)

p1 − 1/2 + i(p2 − 1/2) 1− p3

)
,

3

∑
j=1

(
pj −

1
4

)2
≤ 1

4
, (18)

where 0 ≤ pk,≤ 1 with k = 1, 2, 3 are the probabilities to obtain the value +1/2 in the x, y, z
axis, respectively. Thus, any qubit state can be identified through the probabilities p1, p2, and p3,
i.e., given the density operator, one can get the set ρ̂ ↔ p1, p2, p3 and vice versa. In the case of
qubits (1) associated with the qutrit state, the evolution of the probabilities after the unitary operation
of the qutrit is determined by Equation (2). For example, we have a probabilistic representation
corresponding to ρ̂′5 in the first formula of Equation (17), i.e.,

p3 → p3|u11|2, p1 − 1/2− i(p2 − 1/2)→ (p1 − 1/2− i(p2 − 1/2))u∗11 . (19)

The change of probabilities can be characterized by the evolution of the Tsallis and Shannon
entropies. For example, in (19), the unitary matrix parameter u11 determines the evolution of the
Shannon entropy related to a coin probability distribution (p3, 1− p3) (assume that we have two
nonideal classical coins I and II in such a game as coin flipping, coin tossing, or heads (up, ⊕) or tails
(down, 	), which is the practice of throwing a coin in the air and checking which side is showing
when it lands, in order to choose between two alternatives Pk or (1− Pk); k = 1, 2). This evolution is of
the form:

S(Û) = −p3|u11|2 ln
(

p3|u11|2
)
− (1− p3|u11|2) ln

(
1− p3|u11|2

)
.

This entropy, as a function of the unitary evolution applied to the qutrit state, characterizes some
aspects of the open dynamics of qubits. We point out that, as for p3, there exist other classical entropic
characteristics associated with the evolution of p1 and p2 given by Equation (19).

5. Concluding Remarks

A new mechanism to study the open system evolution of a noncomposite qudit system was
established. As an example of the general procedure, we considered a qutrit system. Associated with
the qutrit system, one can define different qubit density matrices, which evolve in an open-like way
when a unitary transformation is enacted on the qutrit.

The application of the resulting transformations for the qubits within the qutrit was also discussed.
The quasi-unitary transformations obtained here might be used as an approximation to quantum gates,
whereas the quantum channels could be employed in quantum correction protocols.

Different types of quantum channels can be observed using the qubit decomposition of a qutrit
system. In particular, the phase damping and the spontaneous-emission channels were obtained using
a unitary transformation acting on specific qutrit density matrices. The phase damping channel was
obtained when a unitary transformation of the density matrix with one off-diagonal term equal to zero
was performed. A spontaneous-emission channel can be observed by unitary transformations acting
over a dark state, i.e., a three-level state where one of the levels cannot be populated.

In addition to these channels, quasi-unitary transformations of the qubit states can be defined.
This was also done by the application of a unitary matrix to the generic qutrit state.

The entropy evolution of the tomographic-probability distributions determined by the system of
qubits was discussed.

We can extend our analysis to other qudit systems without subsystems since, o an arbitrary spin-j
density matrix and the spin unitary evolution, one can associate the smaller spin j′ < j evolution.
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The possible experimental implementation of the procedure was also addressed, given that
there exist several proposed ways to generate the unitary transformations such as by sliding mode
control [27], adiabatic passage [28–30], or the robust control scheme [31,32].
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