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Abstract: Falls are unusual actions that cause a significant health risk among older people. The
growing percentage of people of old age requires urgent development of fall detection and prevention
systems. The emerging technology focuses on developing such systems to improve quality of life,
especially for the elderly. A fall prevention system tries to predict and reduce the risk of falls. In
contrast, a fall detection system observes the fall and generates a help notification to minimize the
consequences of falls. A plethora of technical and review papers exist in the literature with a primary
focus on fall detection. Similarly, several studies are relatively old, with a focus on wearables only,
and use statistical and threshold-based approaches with a high false alarm rate. Therefore, this paper
presents the latest research trends in fall detection and prevention systems using Machine Learning
(ML) algorithms. It uses recent studies and analyzes datasets, age groups, ML algorithms, sensors,
and location. Additionally, it provides a detailed discussion of the current trends of fall detection and
prevention systems with possible future directions. This overview can help researchers understand
the current systems and propose new methodologies by improving the highlighted issues.

Keywords: fall detection; fall prevention; machine learning; review paper

1. Introduction

Aging is a worldwide problem related to life expectancy [1]. The World Health
Organization (WHO) states that the elderly population is 20% of the world’s population [2].
Another report states that older people (above 65 years) will increase to 1.5 billion by the
end of 2050 [3]. In general, old age reduces the overall physical, cognitive, and sensory
functionalities [4,5]. Therefore, an older adult faces difficulty performing routine tasks
such as walking, jogging, eating, and dressing up [6–8]. Falling is a significant challenge in
the elderly group that can reduce life expectancy. Approximately 35% of people (above
65 years) have one or more falls per year [9]. In addition to old age, several other factors
such as environment, physical activity, and cardiovascular disorders cause falls. It is a
major source of physical injuries, and often, these injuries require hospitalization [10–12].
Annually, 37.3 million falls need medical attention, and 0.65 million falls resulting in
deaths [13].

A fall can be described as an unpredicted event leading the participants to rest on the
lower level (ground or floor) [14]. As a result, it causes injuries that can often be fatal [15,16].
Psychological grievances are also considered as the consequence of falls. People may suffer
from anxiety, depression, activity restriction, and fear of falling [17,18]. The primary
physiological issue in older adults is fear of falling, restricting their Activities of Daily
Life (ADL) [19]. This fear leads to activity restriction, which may lead to inadequate gait
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balance and weakened muscle that affects the mobility and independence of older adults.
Therefore, remote/wearable technologies are required to track, detect, and prevent falls
for improving the overall quality of life (QoL) [20,21]. For this purpose, understanding
of falls can be classified as fall prevention and fall detection. Fall detection refers to the
detection of a fall using sensors/cameras to summon help. In contrast, fall prevention aims
to avert falls by observing human locomotion. Numerous systems have been developed
using different sensors and algorithms to detect and prevent the fall.

The authors of [14,22] presented an overview of the fall detection techniques. However,
both the studies include relatively old literature published in 2007 and 2008, respectively.
Mubashir et al. [23] classified the fall detection approaches into wearable, ambient, and
camera-based approaches. Similarly, Igual et al. [24] talks about the issues and trends in
fall detection schemes. The study [25] is specific to fall detection using wearable sensors.
All the above-mentioned reviews only discuss fall detection schemes with no interest in fall
prevention. In 2014, Delahoz et al. [26] presented a review on fall detection and prevention
techniques. Recently, Saboor et al. [27] published a review on gait analysis using machine
learning. However, only 14% of their studies are specific to fall detection and prevention.
Ren et al. [28] present a comprehensive overview of fall detection and prevention tech-
niques. However, most presented schemes use statistical approaches that often generate
many false alarms during detection and classification. Furthermore, statistical approaches
are less efficient in the presence of complex and nonlinear problems [29]. In general, gait
analysis for fall detection and prevention often generates noisy data during the acquisition.
Statistical methods are generally sensitive to noisy data that leads to performance degra-
dation [30]. Therefore, the latest research incorporates Machine Learning (ML) because of
high classification accuracy for fall detection and prevention. Recently, Islam et al. [31]
presents a review on fall detection using deep learning techniques. However, the scope of
the review is limited to deep learning techniques for fall detection only. This paper aims to
provide an overview of studies using ML for fall detection and prevention. The overall
contributions of this paper are as follows:

• It provides an overview of the fall detection and prevention systems using wearables
and non-wearables.

• It elaborates on the frequently used ML algorithms in fall detection and prevention.
• It provides a detailed analysis of the recent state-of-the-art studies. The analysis covers

the dataset, participants, ML algorithms, acquisition sensors, and their placements.
• It evaluates performance parameters such as accuracy, sensitivity, and specificity for

different combinations of ML algorithms, sensors, and placements.
• It provides a detailed discussion on the latest trends in fall detection and prevention

systems along with the future directions.

The paper’s overall structure is as follows: Section 2 provides an overview of fall
detection and fall prevention approaches. Section 3 elaborates on the frequently used
ML techniques in fall detection and prevention. Section 4 is the proposed methodology,
followed by the discussion and analysis in Section 5. Section 6 consists of discussion and
future work. Finally, Section 7 concludes the work.

2. Fall Detection and Prevention Systems

The development of fall detection and prevention systems has become a hot research
topic during the last few years. Various approaches are used for developing such systems.
These systems are classified into two broader categories: wearable systems and non-
wearable systems.

2.1. Non-Wearable Systems

Non-wearable systems are composed of sensors placed around the human proximity
for data/gait monitoring. These systems are further subdivided into vision-based sensors,
and floor-based sensors [32]. Vision sensors such as cameras, infrared sensors, and Laser
Range Scanners (LRS) [33] take optical measurements and use image processing for analysis.
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Video surveillance is a common type of such system, which captures images and uses
different algorithms to determine fall occurrence. In contrast, floor-based sensors such as
Ground Reaction Force (GRF) sensors and pressure sensors observe the force extracted
by human feet to observe the fall [34]. The number of sensors varies from experiment to
experiment. The primary drawback of non-wearable systems is their limited coverage.
Such systems can be implemented at offices, homes, and experiment labs, making them
less scalable and expensive. Non-wearable systems also compromise users’ privacy [35,36].
Therefore, it is not optimal to use such systems for most real-life applications.

2.2. Wearable Systems

Wearable systems consist of devices/sensors that can be attached to the human body
for data collection. Wearable systems consist of accelerometers, gyroscopes, magnetome-
ters, IMUs, etc. [37]. An overview of wearable sensors is given in Table 1. The primary
advantage of wearable systems is their ability to collect data outside the laboratory environ-
ment [38]. Therefore, such systems are feasible for analyzing fall detection or for preventing
falls while performing ADLs. These sensors are often embedded in smartphones that can
collect data without investing in any new equipment [39]. Additionally, they provide better
privacy than non-wearable systems. However, wearable devices have limited lifetime
processing power [40,41]. Furthermore, the wearable’s data need further processing using
statistical or ML algorithms for decision making, as shown in Figure 1.

Table 1. Overview of Wearable Sensor.

Name of Sensor Functionality

Accelerometer Measures the rate of change of velocity (acceleration) of an object
along its axis.

Gyroscope
Measures rotational changes concerning orientation. Hence, it
calculates the angular velocity along three axes, pitch (x-axis), roll
(y-axis), and yaw (z-axis)

Magnetometer Measures the relative change of a magnetic field, its direction, and
strength.

Inertial Measurement
Unit (IMU)

Consists of an accelerometer, gyroscope, and magnetometer. It
provides 2 to 6 degrees of freedom, which refers to different object
movements in 3-dimensional space.

Surface Electromyography
(sEMG)

It is used for detecting potentials using electrodes placed on the
skin using electrochemical transducer [42].

Figure 1. An Overview of Fall Detection and Prevention System.
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The statistical approaches often lead to low classification accuracy and prove to be less
efficient with noisy data. Therefore, ML techniques are widely used for fall identification
and prevention [43]. Basic fall activities that are identified are falling forward, falling
backward, falling sideways, spinning clockwise, and spinning anticlockwise [44]. The
ML algorithms classify fall activities from non-fall activities based on the classifier being
trained [44–46]. Similarly, these ML classifiers identify the abnormalities in gait and try to
prevent falls using techniques such as muscle stimulation [47]. An overview of a general
system is presented in the next subsection.

2.3. System Overview

The overall system for fall detection and prevention consists of the five steps as shown
in Figure 2. The first step is data collection depending on the application requirements.
There are various data collection methods, i.e., public datasets, controlled environments,
and realistic environments. Publicly available datasets include gait features that can be
used to develop such systems [48,49]. In contrast, a lab or realistic environment uses
wearable [50–53] or non-wearable devices [54] for data acquisition.

Figure 2. Procedure for fall detection and prevention.

In general, the acquired data are noisy. Therefore, preprocessing helps to remove
the noisy and unwanted signals from the data. For that, the system uses preprocessing
filters such as Kalman Filter [55] and Median Filter [56] etc. The third step is feature
extraction to obtain the desired features from the preprocessed data. The features can
vary from experiment to experiment performed by different researchers. For example,
in speech recognition, the desired features are sound length, noise ratio, matching filters,
and relative power. Similarly, edges and objects are used as desired features in computer
vision applications. In contrast, fall detection or prevention applications require a change
in acceleration, rotation, or angular velocity as the desired feature set. The slight change in
any of these parameters helps visualize the gait changes, resulting in fall detection or fall
prevention. Therefore, the mean, standard deviation, and variance of these features are
considered valuable data for such application. Overall, feature selection is a crucial step, as
classification accuracy heavily relies on the selected features. Feature selection also reduces
the dataset volume and cost of the pattern recognition process. Features can be selected
using filter methods or wrapper methods [57,58].

A large number of features can cause overfitting, while fewer features may cause
underfitting. Therefore, this step requires additional attention to enhance the overall
performance of the system. The fourth step uses ML algorithms to classify irregular gait,
falls, or ADL. Generally, it divides the data into training and testing data. The ratio of
each data type depends on the experiment of system design. This step applies the ML
algorithms on training data to identify fall activities or irregular gait for fall prevention.
After training the classifier, it uses test data for the performance evaluation. This step
includes various matrices such as the accuracy, sensitivity, and specificity of the results
obtained to analyze the system’s overall performance. As we can see, the ML algorithms
help in identifying fall detection or prevention. Therefore, the next section discusses the
functionality of major machine learning algorithms used for fall detection and prevention.

3. Machine Learning Algorithms

ML provides a learning ability to the system based on the dataset and trends in data.
During the data collection process, sensors provide the data associated with different fall
parameters. Thus, the ML algorithms are used to process the data to classify or identify fall
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activities based on the application requirements. The most widely used ML algorithms for
fall detection and prevention are the following.

3.1. Support Vector Machine (SVM)

The SVM is a supervised machine learning model to find a hyperplane in an n-
dimensional space (where N is the number of features that distinctly divide the data). In
general, a hyperplane reduces an n-dimensional space to (n-1)-dimensional space. The
SVM can be used for classification and regression, but it is mainly used for classification
problems [59]. There are two types of SVM: linear and non-linear. The linear classifier [60]
assumes that each data point is isolated linearly. Therefore, it separates the two classes by
identifying the optimal hyperplane with maximizing the margin. However, in the widely
used non-linear classifier [61], the data are first mapped with a kernel, and a discriminant
function is found. That discriminant function is associated with the hyperplane in the
transformed space. In addition, the kernel is used in various machine learning algorithms
for pattern analysis.

In SVM, the data points are available in a plane that can be obtained from different
classes based on their locations. A hyperplane [62] acts as a decision boundary to classify
these data points. There are multiple hyperplanes available, but the main objective is to
find the plane that has the maximum distance between the support vectors, as shown in
Figure 3. Support vectors are the data points that lie near the hyperplane and play an
important role in identifying the position of the hyperplane. The SVM tries to generate
a decision boundary [63] where the gap between the classes is the most comprehensive.
Hence, it is a widely used classifier for differentiating fall activities from daily life activities.
For example, class 1 in Figure 3 represents the regular walking pattern and class 2 shows
the fall feature.

Figure 3. Support vector machine algorithm.

3.2. Artificial Neural Network (ANN)

An ANN is a machine learning algorithm whose methodology is inspired by the
working of the human brain [64]. The human brain is composed of billions of neurons that
process information in the form of electric signals. The neurons generally make a decision
based on the electric signal strength. Similarly, the ANN consists of many interconnected
processing elements to solve a specific problem, as presented in Figure 4.

Here, x variables (x0, x1, x2, . . . , xn) are the input to the ANN, and w variables (w0,
w1, w2, . . . . . . , wn) are the weights of each input. Each weight represents the strength of
the input signal. The bias function (b) shifts the activation function up or down according
to needs [65]. The activation function translates the input function to the ANN output
signal. Along with the input and output layer, there can be various hidden layers between
these two layers to classify data better. Therefore, ANN is called a Multi-Layer Perceptron
(MLP) [66]. In the presence of a hidden layer, the ANN output signal of one layer can be
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used as input for the next layer. The ANN requires a trainer for the identification of the
response for every given input. Therefore, additional training is required to predict the
output for every input. A cost function is used to find the difference between the actual
value and the predicted value [67]. The cost function is calculated for every layer in the
network, and weights are adjusted for the following input. This process is repeated until
the minimized cost function is obtained, providing the minimum difference between the
actual value and predicted value. Therefore, it can help predict or prevent falls.

Figure 4. Artificial neural network algorithm.

3.3. Random Forest (RF)

Random forest is also a supervised classification algorithm consisting of a large num-
ber of decision trees, as shown in Figure 5. A decision tree consists of nodes (representing a
test) and branches that show the specific test outcome [68]. After that, it builds the classi-
fication based on the paths in the tree. However, the decision tree is sensitive to training
data. Small changes in training data cause significant changes in the overall tree structure.
Therefore, bagging is used in the random forest. In bagging, each tree randomly selects a
random sample from the dataset to generate multiple decision trees [69]. Every tree in the
random forest forms a class, and voting is performed to identify the best prediction class of
the model.

Figure 5. Random Forest Algorithm.

Random forest follows the wisdom of crowds rule. Every tree applies the decision
tree model to predict the result. The class with the majority of the votes (i.e., predicted
by multiple trees in the random forest) is considered the predicted class [70]. Therefore,
a random forest can be used to model categorical data to avoid the overfitting problem.
Hence, it is helpful for the classification of ADL from fall activities.

3.4. k-Nearest Neighbors (kNN)

kNN is a supervised learning algorithm for solving classification and regression
models. kNN assumes that similar things lie in close proximity [71]. Hence, it tries to
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find the distance between the data points known as the Euclidean distance. Initially,
a k value is selected to choose the number of neighbors for a data point. The k value
is responsible for marking the boundaries of clusters or classes [72]. kNN generates a
sorted list containing the distance between each point and the other points. Eventually,
the first k entries are selected for regression and classification. kNN is very simple and
computationally inexpensive and does not require additional assumptions [73]. Therefore,
it is widely used in recommendation systems [74]. Therefore, kNN can help distinguishing
fall behaviors from non-fall behaviors.

3.5. k-Means

k-means is a simple and popular unsupervised machine learning algorithm. k-means
groups similar data points together for discovering underlying patterns [75]. It identifies
the various clusters (k) in a dataset for classification [76]. A cluster consists of similar data
points that are specific to activities such as gait of fall. By defining k, it determines the
number of centroids needed in the dataset [77]. The centroid is the center of each cluster.
Each data point is associated with the nearest cluster while keeping centroids as small as
possible. This technique is extensively used in data cluster analysis and feature learning.
The performance of the k-mean algorithm may vary because a slight change in data may
lead to high variance. Therefore, it is rarely used in fall prevention or detection algorithms.

3.6. Linear Discriminant Analysis (LDA)

LDA is a supervised classification technique used for dimensionality reduction [78].
It is mainly used as a pre-processing step. The main goal of LDA is to transform the
high-dimensional data into low dimensional data, which helps in reducing the cost and
resources [79]. Usually, gait analysis acquires large data with similar patterns using wear-
ables. Therefore, LDA helps reduce data dimensionality, especially when the processing is
done at low-power devices.

3.7. Naive Bayes

Naive Bayes is also a supervised learning algorithm that works on the principle of the
Bayes Theorem [80]. It is one of the simple and most widely used classification algorithms
that can provide fast predictive results [81]. In general, it constructs classes based on
probability using the Bayes theorem. Based on classes, irregular gait and fall can easily be
detected quickly.

The algorithms mentioned above are primarily used in fall detection and prevention
applications. In addition, there exist other algorithms for such applications, such as
Logistic Regression, Dynamic Time Wrapping (DTW), and decision trees. Another way
for identifying falls is to consider them as an anomaly detection problem. In such systems,
autoencoders are used for detecting falls [82]. Autoencoder learns features by training the
ADL models. Hence, fall activities are identified as an anomaly based on the reconstruction
error. It consists of an encoder, decoder, and code layer. An encoder learns and compresses
the important features of the input. The code layer acts as the middle layer that contains
compressed and relevant data information. In comparison, the decoder transforms the
data into original input. This method can help to reduce data dimensionality, obtained
desired gait features, and detect unseen falls [83].

4. Literature Review

This review uses the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [84] technique for the paper selection, as presented in Figure 6. The
PRISMA approach uses three steps for the paper selection:

1. Identification
2. Screening
3. Inclusion
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Figure 6. Proposed Methodology

The initial screening process provides approximately 16,890 results using the strings
in Table 2. The results were more extensive using small strings such as “Fall Detection”,
“Fall Prevention”, or “Machine Learning”. However, the use of multi-strings and long
strings helps in reducing the dimensionality of the data. The screening process involves the
identification of relevant publications using the title of the paper. It identifies 766 records,
as shown in Figure 6.

The identification process involves checking for English language and duplicates and
resulted in 703 publications for the screening process. The screening is a multiple-step pro-
cess that analyses records based on abstract and conclusion. This helps in removing review
papers. Furthermore, it performs the retrieval and eligibility checking. The eligibility check
ensures that:

• The paper is published after 2010.
• The publishing venue is a Journal or Conference.
• The study is using ML for fall detection or prevention.
• The study is using a detailed methodology and results.

Through this scrutiny, we selected 33 papers for our review that were used for analysis.
The overall analysis of selected papers is presented in the next section.
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Table 2. Strings Used in Search Engines.

Academic
Library

Search String

Google
Scholar

⇒ Fall detection using machine learning
⇒ Fall prevention using machine learning
⇒ Fall classification using machine learning
⇒ Machine learning for Fall Classification
⇒ Fall Detection and Prevention Using Machine Learning
⇒ Detecting Fall in Elderly Using Machine Learning

IEEE
Xplore

⇒ (((“All Metadata”:Fall Detection) AND “All Metadata”:(Machine
Learning)
//Filters Applied: 2010–2020
⇒ (((“All Metadata”:Fall Prevention) AND “All Metadata”:Machine
Learning) //Filters Applied: 2010–2020
⇒ (((“All Metadata”:Fall Detection and Prevention) AND “All Meta-
data”:Machine Learning) //Filters Applied: 2010–2020

Science
Direct

⇒Fall Detection Using Machine Learning. Limited to research articles,
conference abstracts.
⇒Fall Prevention Using Machine Learning Limited to research articles,
conference abstracts.
⇒Fall Classification Using Machine Learning Limited to research articles,
conference abstracts.

5. Analysis of Fall Detection and Prevention Schemes

We have shortlisted 33 papers related to fall detection or fall prevention. Each paper
uses an ML algorithm and follows a particular methodology for data collection, feature
extraction, and decision making. Twenty-nine papers describe fall detection methods in
our analysis. In contrast, only four papers present fall prevention techniques using ML.
The overall analysis is given below.

5.1. Data Collection

Data collection is an essential part of fall detection or prevention systems. The available
dataset is crucial for the working/results of the ML algorithms. The extensive and accurate
dataset improves the accuracy of ML schemes for a specified task. Our analysis shows that
the majority of the studies collected data in controlled lab conditions under supervision.
The participants were trained to perform the falls and ADL for data acquisition. After
training, a volunteer/participant performs fall and non-fall activities for data collection.
Roughly 67% studies generated their datasets using the controlled lab environment. In
contrast, only 33% of studies relied on publicly available datasets for their experiments, as
shown in Figure 7.



Sensors 2021, 21, 5134 10 of 23

Figure 7. Methods of Data Collection.

5.1.1. Participants Age

The majority of studies aim to develop a system for older people to detect and pre-
vent falls. However, most volunteers in different studies are adults ranging between
20 and 40 years. Figure 8 illustrates that the percentage of this age group is 36%, double
that of people aged above 50 years. Approximately 25% of the studies use the public
dataset consisting of participants ranging between 18 and 70 years. Therefore, it is hard to
classify them in a specific age bracket. Similarly, 21% of the studies did not reveal the age
of volunteers.

Figure 8. Age of Participants.

5.2. Devices for Data Acquisition

The analysis shows that studies mainly used wearables for data acquisition. The
frequently used wearables were mainly independent and phone-based IMUs. Figure 9
shows that the percentage of IMUs is 88%, including independent and phone-based IMUs
However, IMUs consist of multiple sensors (accelerometer, gyroscope, and magnetometer).
They can use single or multiple sensors to acquire the participant’s data. The analysis
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highlights that the accelerometer signal is used for the acquisition in 52% of the studies. In
comparison, 30% of studies used gyroscope signals.

Figure 9. Types of Sensors.

5.3. Sensors Placement

As explained earlier, the majority of studies use wearables. A wearable can be placed at
multiple spots on a human body to measure different values, depending on the application
requirements. Generally, a sensor should be placed so that the maximum movements and
signals can be captured. Figure 10 shows different positions where sensors are placed for
collecting data. The analysis shows that the frequently used locations are the waist, wrists,
and spine.

Figure 10. Placement of Sensors.

5.4. Number of Sensors

Another critical factor for collecting data is the number of sensors involved in the
collection process. Figure 11 illustrates that most studies rely on a single sensor’s data.
However, some studies use multiple sensors such as 2,4 and even 10, as shown in the figure.
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Figure 11. Number of Sensors.

5.5. ML Algorithms

The most crucial factor of our paper is ML algorithms for performing the experiment
and finding results. Depending on the methodology, authors used single as well as multiple
ML algorithms. In the case of multiple algorithms, authors compared multiple algorithms
for a specific task, such as fall detection, to identify the best-performing algorithm. Figure
12 shows that 36% of studies used and compared multiple ML algorithms. They includes
a variety of supervised and unsupervised ML algorithms. Figure 13 lists the frequently
used ML algorithms. It shows that the SVM is the most common choice for such systems,
followed by kNN.

Figure 12. Use of Multiple or single machine learning algorithms.
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Figure 13. Frequency of Different Machine Learning Algorithms.

5.6. Performance Analysis

Analysis shows that different metrics are used for performance evaluation in different
studies. However, it is difficult to compare all these studies using a specific evalua-
tion metric such as accuracy. The primary reason for this is using the different datasets,
acquisition processes, participants, environment, acquisition devices, device locations,
and ML algorithm in different studies. However, for analysis, we present Table 3 show-
ing the relationship between the ML algorithm, acquisition device, device location, and
evaluation metrics.

Table 3. Performance Analysis of ML Algorithms using Different Sensors and Locations.

ML
Algo

Sensor Sensor
Placement

Accuracy Sensitivity Specificity References

SVM
IMU Waist 98% 100% 100% [46,52,53,85–88]

Wrist 91.13% 99% NA [50,89]

SmartPhone
(IMU)

Waist 97.80% 99.50% 95.20% [39]

Thigh 91.70% 95.80% 88.00% [39]

kNN IMU

Wrist 99% 99% NA [89,90]

Waist 99.78% 100% 99.91% [89]

5th lumbar
vertebra and
sacrum

99.40% NA NA [91]

ANN

IMU Waist 95.25% 96.50% 94.00% [46,92]

SmartPhone
(IMU)

Wrist 92.96% 99.45% 100% [93]

IMU L5 vertebra 96.3% NA NA [94]

RF

IMU
Hip 73.70% 84% NA [95]

Lower legs,
posterior pelvis

77.30% 66.10% 84.70% [96]

SmartPhone
(IMU)

Hand NA 99% 98% [51]

For this paper, only the top four frequently used algorithms are considered to illustrate
the findings. SVM using the IMU on the waist is the commonly used method for such
systems. It also provides an average accuracy of 98% and 100% specificity and sensitivity.
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Therefore, this combination is a good starting point to design such fall detection systems.
The results also indicate that independent IMU devices such as Shimmer’s IMUs provide
better results than the mobile-based IMUs using any ML algorithm. The table highlights
that RF’s performance is significantly low compared to SVM, KNN, and ANN. Table 4
shows the learning outcomes for ML algorithms and sensor placement deduced by the
overall analysis.

Table 4. Learning Outcomes from Analysis of ML Algorithms and Sensor Placement.

Learning Outcomes Using ML Algorithms

ML Algorithm Learning Outcomes

SVM

- The pattern of a falling and standing person can have a wide margin around
the hyperplane. It can easily distinguish fallers from non-fallers.
- SVM does not suffer from overfitting and handles high-dimensional data
effectively; that is the case of fall detection.
- It is memory-efficient in nature that is optimal for wearables.

kNN

- It is faster and learns from the datasets at time of making real time
predictions. Therefore, small change in input data have not much effect on
the classification results.
- As classifier adopts to new data points, it can be used for classifying fall
detection and prevention in real time.
- The systems may be computationally expensive because a lot of memory is
required to store the training data.

ANN

- Neural networks have the ability to learn by themselves and not depend
only on the input data. After learning from the initial inputs and their
relationships, ANNs can infer results from unseen data, making the model
generalized. Therefore, when we provide unseen input data, the network learns the
fall and non-fall activities and predicts better results.
- As neural networks learn from examples, it can be helpful in determining
falls in real-time conditions when input data may differ from training data.

RF

- The benefit of RF is that it is fast and effective with larger data. Therefore, it
is a good choice to observe the fall activities or irregular gait for fall
prevention.
- The results of RF change considerably with minor changes in data due to
large tree structures.
The human gait is very dynamic and tends to change abruptly. Therefore, it
often results in low accuracy and precision, as shown in the studies.
- It consumes high memory, which makes it less efficient for wearable devices.

Waist

- As the center of gravity lies around the waist, body movements can be measured
accurately. Use of an accelerometer enables easily detecting the linear movements
of the body, while a gyroscope can identify the turns or movement around the
axis.
- Therefore, sensors placed on the waist can help in identifying gait irregularities
and be useful for fall detection and prevention.
- Generally, a belt or pouch is required to wear the sensor on the waist, which
may not be optimal for daily usage.

Wrist

- Provides good wear time compliance.
- Wrist accelerometers can detect multiple intensities of activities that can
be helpful in fall classification.
- However, sometimes, the movement of the wrist may cause false alarms for
fall detection.
- Sedentary behavior (walking or lying down etc.) can be estimated
accurately by a wrist-worn accelerometer.
- Wrist-based sensors cannot predict lower body movements, so they are not suitable for
fall prevention systems requiring minor gait details.

Hip
- Hip-worn sensors are limited in collecting data for different body movements.
- A hip angle is similar for different walking activities, which makes it not feasible
for fall prevention.
- In contrast, hip angle/sensors can be useful in detecting falls.

Thigh
- Sensors worn on thigh can detect specific gait angles, making them useful for fall
detection and prevention applications.

An overview of all the selected papers is given in Table 5, and the discussion of all the
findings is presented in Section 6.
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Table 5. Comprehensive Analysis of Selected Papers for Fall Detection and Prevention.

Ref. Year ML Algorithm(s) Sensor Placement of
Sensors Target Area Tool(s)

Salleh et al. [46] 2020
Nonlinear Auto
Regression neural
network (NARnet)

Invensense
sensor Waist Fall Detection NA

Kumar et al. [47] 2019 SVM IMU Hip Fall
Prevention DART

Chelli et al. [97] 2019 KNN, ANN, QSVM,
and EBT IMU NA NA Fall Detection NA

Dubois et al. [54] 2019 Clustering
Microsoft Kinect
v2 sensor
(camera)

In front at 2 cm
distance

Fall
Prevention NA

Kim et al. [44] 2019 Multi class Pre-Impact
Fall Detection Model IMU Left anterior iliac

crest of the pelvis Fall Detection NA

Wang et al. [45] 2019
Multi-view ensemble
learning with missing
values (MELMV)

NA NA Fall
Prevention NA

Santos at el. [98] 2019 Convolutional Neural
Network

Smart phone or
smart watch NA Fall Detection NA

Villar et al. [99] 2019
SAX TS representation
together with the
TF-IDF

3DACC sensor Wrist Fall Detection R Studio

Yacchirema et al.
[100] 2019 DT, Ensemble, LR,

Deepnets IMU NA Fall Detection NA

Hua et al. [95] 2018 Random Forest IMU Hip Fall Detection STEADI

Shahzad et al. [39] 2018 SVM Mobile Phone Waist, thigh Fall Detection MKL_SVM

Putra et al. [101] 2018 EvenT-ML Shimmer sensors Chest, Waist Fall Detection NA

de Quadros et al. [90] 2018 KNN, DT, SVM, LR,
LDA

GY-80 IMU
device Wrist Fall Detection NA

Hussain et al. [86] 2019
DT, LR, KNN, SVM
classifier with
Quadratic kernel
function.

IMU Waist Fall Detection MATLAB

Hsieh et al. [87] 2018 SVM with RBF Kernel
function IMU Waist Fall

Prevention NA

Aicha et al. [92] 2018
Combines
convolutional and
recurrent models
(ConvLSTM)

IMU Lower Back Fall risk NA

Rescio et al. [102] 2018 LDA sEMG
Lower limb
(Gastrocnemius
and Tibilias
muscles)

Fall Detection MATLAB

Rodrigues et al. [91] 2018

SVM, Boosted and
bagged DT, kNN,
k-mean, Hidden
Markov models

IMU
5th lumbar
vertebra and
sacrum

Fall Detection MATLAB

Saleh et al. [52] 2019 Two SVM combined IMU Waist Fall Detection NA

Serpen et al. [103] 2018 Random Forest, SVM SHIMMER Chest, thigh Fall
Detection, NA

Hu et al. [29] 2018 Deep learning network
(LSTM) IMU L5 vertebra Fall Detection Python

Mauldin et al. [93] 2018 NB, SVM, Deep
Learning Smart watch Wrists Fall Detection NA

Drover et al. [96] 2017 Random Forest
Classifier IMU

Lower legs (left
and right lateral
shanks), posterior
pelvis

Fall Detection MATLAB
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Table 5. Cont.

Ref. Year ML Algorithm(s) Sensor Placement of
Sensors Target Area Tool(s)

Fan et al. [104] 2017
Directed Acyclic Graph
Support Vector
Machine (DAGSVM)

NA Video frames Fall Detection NA

Shawen et al. [51] 2017

Random forest, SVM,
Gradient boosting,
wXtreme Gradient
Boosting (XGBoost)

Mobile Phones
(Samsung Galaxy
S4)

Waist, in a pocket,
hand Fall Detection

MATLAB
and
Python

Hsieh et al. [105] 2016 SVM, kNN IMU Wearable sensor Fall Detection NA

Bourke, et al. [9] 2016 DT IMU L5 (fifth lumbar
spine) Fall Detection Matlab,

Weka

Chen et al. [53] 2015 SVM IMU Waist Fall Detection NA

Özdemir et al. [89] 2014

kNN, LSM, SVM,
Bayesian Decision
Making (BDM), DTW,
ANN

IMU

Head, chest,
waist, right wrist,
right thigh, and
right ankle

Fall Detection NA

Aziz et al. [85] 2014 SVM Inertial sensor Waist Fall Detection Matlab

Albert et al. [106] 2012 SVM, LR, Naïve Bayes,
Class reg tree, KNN Mobile phones

Attached on belt
and centred at the
back

Fall Detection MATLAB

Caby et al. [50] 2010
A radial basis function
network classifier,
SVM, KNN, Naive
bayesian

NA
Knee, ankle,
wrists, elbow,
shoulder (both
left and right)

Fall Detection NA

Shan et al. [88] 2010 SVM IMU Waist Fall Detection MATLAB

6. Discussion

The previous section provides an overview and analysis of the recent studies. This
section has a detailed discussion of the overall analysis. In the finings, it was observed that
a majority of ML-based studies targetted fall detection only. The analysis shows that only
12% of studies used ML algorithms for fall prevention. Contrarily, a very high percentage
(88%) of studies worked on fall detection. Having said that, the considered systems are not
applicable in real life. For example, [54] uses a vision system in a controlled environment to
observe the balance of participants. This system is not optimal for general usage. Similarly,
the demographic characteristic and clinical data are used to prevent falls in [45]. This
may help predict people with a high fall risk, but it is unable to identify the exact fall.
Furthermore, the testing data for fallers in a controlled environment cannot guarantee high
accuracy. One suitable solution to fall-prevention systems is to stimulate the muscle at the
time of falling. Generally, fall prevention systems require very low latency (a few ms) to
observe the irregularities in gait and prevent falls with muscle stimulation. Generally, it is
hard for an ML algorithm to analyze and respond to situations in such a short period of of
time. Furthermore, the muscle stimulation process is painful, and even low frequencies
of false alarms make this system less suitable for usage. Therefore, we observe few fall
prevention studies using ML. One more observation is the use of single or multiple ML
algorithms. Approximately 36% of the papers use and compare multiple ML algorithms
to find suitable detection or prevention algorithms. The use of multiple ML algorithms
allows us to compare results based on the dataset, features extracted, the complexity of
models. Hence, an optimal ML algorithm is selected for the desired application. The recent
trends and analysis suggest that SVM is widely used over the years. The percentage of
SVM usage is always high in the past ten years compared to the other ML algorithms.
ANN and RF are the second and third most used algorithms over the years. One reason
for SVM as the first choice of algorithm is its ability to identify distinct datasets. For
example, the dataset/pattern of a fall and standing person can have a wide margin around
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the hyperplane. Furthermore, SVM does not suffer from overfitting and handles high-
dimensional data effectively, which is the case with fall detection. One more advantage of
SVM is its memory-efficient nature, which is optimal for wearables.

The data collection methods of the majority of the papers consisted of volunteers
between 20 and 40 years. Almost 36% of the papers used volunteers between the ages of 20
and 40. In contrast, only 13% of papers invited older adults (above 50) for data acquisition.
The main argument for choosing adults over the elderly is the physical dynamics. There
are chances of hurting the old age group while performing the fall activities during data
collection. However, the elderly group has a different and irregular gait from healthy
adults, and the system is more relevant to such age groups. Therefore, it is necessary to
acquire data from such groups. One of the observations is that the use of a controlled
environment for system development and testing. Run time testing is not performed for the
systems developed. For the realistic adoption of the system, it should ideally be tested in a
real-time environment. Such systems can help to identify the issues or errors in real-time.

The performance of the ML algorithm depends on the features, dataset, and the
proportion of training and testing data. Each study uses a different dataset, preprocessing
algorithm, classifier, ML algorithm, acquisition device, and location that make it hard to
compare based on specific parameters. Most systems are tested in a laboratory under a
controlled environment that generates better results. However, if the same system is used
for real-time testing, its accuracy and sensitivity may drastically change. For example,
100% accuracy was achieved by [93] when the system was tested in an offline environment.
At the same time, the accuracy was 86% when tested on real-world data.

One last observation is that wearables are widely used in fall detection and prevention
systems. The intuition is to develop a system with real-life applicability. Non-wearable
systems are expensive and less scalable. Therefore, such systems can be restricted to certain
places such as bedrooms and offices. However, people often perform such ADLs outside
these places. Non-wearable systems often include cameras/video capturing that can easily
compromise the user’s privacy. For these reasons, non-wearables were only used in 6% of
studies. Users can wear wearables due to their portability (lightweight and size), which
helps them to perform ADL in more realistic environments.

IMUs are the most frequently used wearables for fall detection and prevention. They
consist of an accelerometer, gyroscope, and magnetometer. As a result, they provides 2 to 6
degrees of freedom, referring to different object movements in three-dimensional space.
Depending on the experimentation and system design, such sensors can easily be attached
to any part of the body, i.e., wrist, hip, and waist. The analysis shows that the waist is
the most widely used location to attach such sensors. One reason is that the center of
gravity (CoG) is located near the waist and can provide better measurements for gait or
fall. Presently, the majority of smartphones have embedded IMUs. It allows the use of
single or multiple sensors at a time. The data of multiple sensors (sensor fusion) reduces
the uncertainty in the data. However, we rarely see the use of sensor fusion in the selected
studies. Based on the detailed analysis and observations, this paper identifies the following
future directions.

1. Energy Efficiency: A wearable-based system can be used in a more realistic environ-
ment. However, these sensors are tiny with limited lifetime and processing power.
Therefore, energy efficiency algorithms [107,108] are required to improve the feasibil-
ity of such a system [109]. The use of an energy harvester can be another potential
solution to enhance the significance of the system. Fog or edge computing [110,111]
is also an exciting solution to mitigate the impact of resource-hungry ML algorithms.
The processing at the edge can eliminate the computational load at the sensors.
Therefore, it is optimal for designing a fall detection application. In contrast, edge
computing introduces the delays that make it unfit for fall prevention applications.

2. Datasets: Most studies created a dataset for their experiments. However, the datasets
were mainly small and consisted of healthy subjects. Extensive datasets improve the
classification accuracy. Therefore, it is essential to generate large datasets, primarily



Sensors 2021, 21, 5134 18 of 23

consisting of elderly data. More real datasets should be created, as current datasets
includes samples from ages under 40, which are physically different from people over
60. The data fusion of custom data with public datasets can generate more accurate
results. The Generative Adversarial Network (GAN) [112] is also an interesting choice
to enhance the datasets.

3. Context Awareness: Context awareness is another exciting future direction. Usually,
fall prevention applications rely on gait. However, the gait of an individual varies
from surface to surface [113]. For example, the gait of a person would be different on
the standard floor and sand. Therefore, there is a need for a context-aware system
that incorporates this problem and minimizes false alarms.

4. Sensor Fusion: Sensor fusion works on the principle of combining the data from
multiple sensors to make a decision [114]. It helps in reducing the uncertainties in the
data. Therefore, sensor fusion can be a potential future direction for fall detection and
prevention systems.

5. Wearable Design: Generally, users will be wearing the sensor-based solution for
longer intervals [115]. Sometimes, a system consists of more than one sensor and
electrodes. This makes the design of a user-friendly system an interesting future
direction. During our analysis, this aspect was totally neglected, which questions the
real-life applicability of the system.

7. Conclusions

Old age directly impacts the physical, cognitive, and sensory functionalities. As a
result, older persons find it difficult to perform regular ADLs. Furthermore, these reduced
functionalities increase the chances of falls, which can have fatal consequences. Therefore,
the development of fall detection or prevention systems is desired to mitigate the fall
impacts. This paper presents an overview of the latest fall detection and prevention
systems using ML. It analyses the systems on various parameters such as participant’s
age, dataset, ML algorithms, sensors, and the desired location of sensors for a specific task.
The analysis shows that SVMs and wearables are frequently used for fall detection and
prevention applications. However, most studies are performed in a controlled environment
with adults, limiting the applicability of these studies. This paper also visualizes the
learning outcomes of ML algorithms, their usage, and performance matrix with different
wearables. In the end, it lists vital future directions such as energy efficiency, sensor fusion,
context awareness, and wearable design.
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Acronym Extended Meaning
ADL Activities of Daily Life
ANN Artificial neural network
CoG Center Of gravity
ConvLSTM Combines convolutional and recurrent models
DAGSVM Directed acyclic graph support vector machine
DT Decision tree
DTW Dynamic time warping
GRF Ground reaction force
GAN Generative adversarial network
IMU Inertial measurement unit
ILFS Infinite latent feature selection
KNN k-nearest neighbor
LDA Linear discriminant analysis
LR Logistic regression
LRS Laser range scanners
LSM Least squares method
LSTM Long short-term memory
ML Machine learning
MELMV Multi-view ensemble learning with missing values
MLP Multi-layer perceptron
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QoL Quality of life
SVM Support vector machine
sEMG Surface electromyography
XGBoost Extreme gradient boosting
WHO World health organization
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