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In this study, a novel emulsion, thymol (Thy) and lauric acid (LA) emulsion (Thy/LA-
Emulsion) was prepared by homogenizing eutectic solvent (Thy/LA mixture) and
caseinate solution. The effects of different thymol and lauric acid mass ratio on the
formation, stability, and antibacterial activity of emulsions were studied. Compared with
thymol alone, adding lauric acid (25, 50, and 75%) could enhance the antibacterial
efficacy of the emulsions. Among them, Thy/LA25%-Emulsion could be stored at
room temperature for a month without the increase of particle size, indicating
that the addition of LA had not impacted the stability of emulsions. Meanwhile,
Thy/LA25%-Emulsion exhibited a greater inhibition zone (3.06 ± 0.12 cm) and
required a lower concentration (0.125 mg/mL) to completely inhibit the growth of
Listeria monocytogenes. Consequently, Thy/LA25%-Emulsion demonstrated the best
antibacterial activity and physicochemical stability due to its long-term storage stability.
Our results suggest that Thy/LA25%-Emulsion may become a more functional natural
antibacterial agent with greater commercial potential owing to its cheaper raw materials,
simpler production processes, and better antibacterial effect in the food industry.

Keywords: Thymol, lauric acid, emulsion, Listeria monocytogenes, antibacterial

INTRODUCTION

Approximately 600 million consumers get sick from the food contaminated by foodborne
pathogens alone according to recognized outbreaks every year (1). Among the common foodborne
pathogen infections, Listeria monocytogenes in bacteria has the highest fatality rate, which is up
to 20–30% (2, 3). Consequently, it is essential to adopt effective measures to prevent foodborne
illnesses caused by pathogens. Antibacterial agents with broad-spectrum and high-efficiency
bactericidal effects are one of the hotspots of current research studies. However, the most commonly
used kind of antibacterial agents, synthetic ones, still face a wide range of disadvantages, such as
toxic residues, environmental pollution caused by their slow biodegradation, the high cost–benefit
ratio, and the risk of microbial resistance (4, 5). Nowadays, consumers prefer natural antibacterial
agents as substitutes for chemical preservatives to inhibit bacteria and the studies on developing
natural antibacterial agents are still in great demand.
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Essential oils (EOs), volatile odoriferous oils, one of the
alternatives to chemical preservatives, are aromatic oily liquids
originated from a variety of plants, which possess diverse
properties, including antibacterial, antifungal, antiviral, anti-
inflammatory, antioxidant, and insecticidal activity (6–10).
Earlier, EOs were acquainted with potential natural antimicrobial
agents and were recommended as “natural food additives” in
food preservation. Nowadays, EOs are used as preservatives in
the food industry to extend the shelf life of food (11). Thymol
(2-isopropyl-5-methylphenol), a natural essential oil and
phenolic compound, is a component derived from some
medicinal plants, such as Thymus, Origanum, and Coridithymus
(12). Thymol (Thy) has been proved to display considerable
antibacterial activity against various bacteria and yeasts by
disrupting bacterial membrane, leading to bacterial lysis and
leakage of components inside microbial cells, resulting in
cell death (13). Therefore, Thy was selected to develop an
antibacterial agent in this study. Nevertheless, the utilization of
Eos, especially Thy, in the food industry is partially limited owing
to their poor solubility (14, 15) and instability (16) when exposed
to light, oxygen, high temperature, and moisture, which might
contribute to the degradation of EOs during the processing,
transportation, storage, and consumption, or even a risk of
forming toxic derivatives (17). Another reason that hinders
the extensive utilization of EOs is that the antibacterial effect
of a single kind of EOs is usually limited, and when sufficient
amounts are added to exert potent antibacterial effects, they can
affect food quality and lead to negative sensory effects (18).

To reduce the concentration of EOs without compromising
their antibacterial ability, several synergies of diverse antibacterial
compounds with EOs has been widely discussed, such as the
synergistic effects of various EOs (19, 20), EOs and antibiotics (12,
21, 22), EOs and other antimicrobial agents [drugs (23), medium-
chain fatty acids (MCFs) (24), polyphenols (25), etc.]. Among
them, the MCFs are saturated fatty acids with 6–12 carbon
atoms, including octanoic acid, capric acid, and lauric acid,
which exist in nature in the form of medium-chain triglycerides,
mainly in breast milk, milk and its products, coconut oil and
palm oil, and little in other natural foods (26). Accompanied
with antibacterial ability, MCFs have been demonstrated to
restrain diverse foodborne pathogens, including Escherichia coli,
Salmonella, and Staphylococcus aureus (27–29). According to a
previous study (24), the synergistic activity of MCFs and EOs
can not only enhance their antibacterial effect, but also lessen
its unique odor and irritation by replacing a portion of EOs,
and meanwhile minimize the loss of nutrients and quality of
food by decreasing the number of antibacterial agents. Moreover,
it is more in line with the prevailing market in terms of
economic benefits because of the relatively lower price of MCFs.
Nevertheless, the problems of poor solubility and instability of
EOs remain unsolved by synergy with MCFs.

Several encapsulation systems (30, 31) have been developed
to conquer the problem, such as liposomes, polymer particles,
solid lipid nanoparticles, cyclodextrin, emulsions, and nanofibers.
Using emulsions to encapsulate EOs is one of the feasible ways
to widen their application, where the emulsions are claimed to
be able to control release, target transport, and improve the

solubility and stability of EOs (32, 33). In addition, emulsions
can offer high drug-loading efficacy, which fits well with the
prevailing market demand as the number of active substances
in the antibacterial delivery system should be maximized. To the
best of our knowledge, there are no previous reports concerning
the influence of lauric acid (LA) on the formation, stability, and
antibacterial activity of Thymol-based emulsions.

In this study, we attempted to resolve this dilemma by
developing a novel emulsion, that is, by homogenizing the
Thymol/Lauric acid (Thy/LA) solutions with caseinate solutions.
And the optimal ratio of Thy/LA and their optimal proportion
in the oil phase were selected. Finally, the impact of different
mass Thy/LA ratios on emulsion stability and antibacterial
effect was evaluated.

MATERIALS AND METHODS

Materials
Thymol (98%) and lauric acid (98%) were purchased from
Aladdin Biochemical Technology Co., Ltd (Shanghai, China).
Sodium caseinate (NaCS) was provided by Sigma Chemical
Company (St. Louis, MO, United States). Yeast extract and
tryptone were donated by Oxoid (Beijing, China). Agar powder
was obtained from Solar Science and Technology Company
(Beijing, China). All other reagents used were of analytical grade.

Preparation of Thy/LA-Emulsion
Briefly, 2 wt% NaCS solution was obtained by adding NaCS
powder into phosphate-buffered solution (5 mM, pH 6.5) and
then kept stirring for 4 h at room temperature. Thy and LA were
mixed at different mass ratios (The ratios of LA are 0, 25, 50,
75, and 100 wt%.). Afterward, the mixtures were obtained by
stirring at 65◦C until a homogeneous liquid was formed. The
final oil phases were prepared by mixing Thy/LA solutions and
corn oil in various ratios (The ratios of corn oil are 0, 10, 20,
40, and 60 wt%.). The Thy/LA crude emulsions (8 = 10%) were
fabricated by stirring at 12,000 rpm for 3 min with a high shear
dispersive machine (ULTRA TURRAX T18 Digital, IKA, Staufen,
Germany). The final emulsion was obtained after passing through
a microfluidizer (M-110EH30, Microfluidic Corp., Newton, MA,
United States) at 70 MPa two times. In addition, the oil phase of
the control group was prepared by mixing Thy and corn oil at
corresponding mass ratios.

Determination of Characterization of
Thy/LA-Emulsion
The mean particle diameters (d3,2) and particle size distribution
of the emulsions were measured by a laser diffraction instrument
(Mastersizer 3000, Malvern Instruments Ltd., Worcestershire,
United Kingdom) according to our previous method (34).
The operating parameters used were as follows: lights
obscuration was from 8 to 13%; the stirring speed was set
as 3,500 rpm/s. Phosphate-buffered solution (5 mM, pH 6.5) was
used throughout the test.

The ζ-potential of the emulsions was measured by using
dynamic light scattering and electrophoresis (Nano ZS, Malvern
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Instruments, Worcestershire, United Kingdom) at 25◦C. The
emulsions were diluted 10-fold by using phosphate-buffered
solution (5 mM, pH 6.5) to obtain an appropriate light intensity
for reliable measurements.

Determination of Thermal Property of
Thy/LA-Emulsion
According to a previous method (35), differential scanning
calorimetry (DSC X7000, Hitachi, Japan) was used to characterize
the phase transitions during the melting process of Thy/LA mixed
solution. By freeze-drying Thy/LA mixed solution, the powder
was collected as the sample. The powder (1.8 mg) was weighed
into an aluminum sample pan. The aluminum sample pan was
heated from −10◦C to 80◦C at 10◦C/min.

Cryo-Scanning Electron Microscope
According to a previous method (36), the effect of LA addition on
microstructure of Thy/LA-Emulsion was determined using cryo-
scanning electron microscope (cryo-SEM) (HATACHI SU8010).
The emulsions with conductive carbon glue were placed on
a table, coated, frozen in liquid nitrogen slush, and then
sublimated and gold-plated by using the cryogenic preparation
and transmission system. The operating conditions of SEM were
as follows: temperature, −140◦C; accelerating voltage, 5 kV.

Determination of in vitro Antibacterial
Activity
Microorganisms
Two kinds of typical foodborne gram-negative bacteria
[Escherichia coli, (10003, E. coli) and Salmonella enterica subsp.
enterica serovar Typhimurium (22956, S. Typhimurium)] and two
kinds of typical foodborne gram-positive bacteria [Staphylococcus
aureus (21600, S. aureus) and Listeria monocytogenes (21635,
L. monocytogenes)] were used to evaluate the antibacterial activity
of the emulsions. The stock cultures were transferred 50 µl into
5 ml sterile Luria–Bertani broth (LB), which were revived at
37◦C for 24 h to 10−9 cfu/ml. The cultures were diluted to 10−4

to 10−6 cfu/ml before use.

Determination of Minimum Inhibitory Concentrations
and Minimum Bactericidal Concentrations
The minimum inhibitory concentrations (MICs) and minimum
bactericidal concentrations (MBCs) of all Emulsions and Thy/LA
mixed solution were determined by 96-well plate microdilution
method based on a previous method (37). The different
proportions of emulsion were diluted to 0.016–2 mg/ml in sterile
LB, and Thy/LA mixed solutions were diluted to 0.0078–1 mg/ml
in sterile LB quickly after heating, which were all prepared in a
96-well plate by an identical twofold serial dilution. Then 100 µl
bacterial inoculum was added to each well, and the 96-well plates
were incubated at 37◦C for 24 h. The MIC was defined as the
lowest concentration of an emulsion that inhibits the visible
growth of bacteria. To determine MBC, 100 µl of culture broth
with invisible growth was taken from each well and transferred
to Luria–Bertani agar plate, and then incubated at 37◦C for 48 h.

The MBC was defined as the lowest concentration that bacteria
did not grow at all on the agar surface.

Determination of the Zone of Inhibition
The zones of inhibition of all emulsions were measured by the
Oxford cup method (38). Initially, 20 ml Luria–Bertani agar was
poured into a 90-mm sterile Petri dish. After solidification, the
diluted test strains (1 ml) were transferred into the agar surface
and distributed evenly over the agar surface by a sterile bent glass
rod. Then, 100 µl emulsion was taken and transferred into the
sterilized Oxford cup (6 mm) that was located in the center of
the dish. After standing for 5 min, the dish was incubated at
37◦C for 48 h. The zone of inhibition (mm) was measured by a
Vernier micrometer.

Determination of Growth Curve
To study the growth curves of all emulsions, the aerobic plate
count was employed (39). Overnight test strains were diluted and
transferred into sterile LB in sterile centrifuge tubes. Afterward,
the emulsion was added to the tube at concentrations of 0, 2
MBC, MBC, 1/2 MBC, and 1/4 MBC. After incubating at 37◦C,
the mixtures were taken and transferred into the agar surface at 0,
4, 8, 12, and 24 h, respectively. After incubating at 37◦C for 24 h,
the colony number was calculated to draw the growth curve of
Thy/LA-Emulsion.

Statistical Analysis
All experiments were repeated at least three times. The mean and
standard deviation were analyzed by statistical analysis software
(SSPS, version 17.0). Statistical differences between experiments
were detected by the least significant difference test (p < 0.05).

RESULTS AND DISCUSSION

The Characterization and Antibacterial
Activity of Thymol/Lauric Acid Mixture
Initially, the effect of Thy/LA mass ratio (The ratios of LA are
0, 25, 50, 75, and 100%.) on appearance, thermal properties by
using differential scanning calorimetry (DSC) and antibacterial
activity of Thy/LA was evaluated. The appearance of Thy/LA
at different mass ratios is displayed in Figure 1. The state of
mixtures depended on different mass Thy/LA ratios at room
temperature, where Thy/LA25% was a clear and transparent liquid
and Thy/LA50% and Thy/LA75% were solid-like. These results
are consistent with DSC thermograms exhibited in Figure 1. All
mixtures displayed a single endothermic melting peak, and their
melting point decreased as the content of LA decreased, which
was lower than LA alone or Thy alone. This suggests that Thy
and LA mutually inhibit crystallization, thus reducing the melting
point of the mixed system, indicating that they have formed an
eutectic solution rather than a simple eutectic mixture (40).

The antibacterial effects of Thy and LA with different
proportions are illustrated in Table 1. At a concentration
of less than 1 mg/ml, LA using alone did not show any
antibacterial effect on four bacteria, while Thy exhibited a
strong antibacterial effect on them, indicating that Thy had a
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FIGURE 1 | Differential scanning calorimetry (DSC) thermograms of
thymol/lauric mixture (Thy/LA) with different mass ratios and the appearance
of thymol/lauric acid mixture with different mass ratios at room temperature.
All line colors correspond to the samples. n = 3.

TABLE 1 | The minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) of different mass thymol/lauric acid ratios against four
foodborne pathogens n = 3.

Bacteria Thy Thy/LA25% Thy/LA50% Thy/LA75% LA

Listeria
monocytogenes

MIC(mg/mL) 0.25 0.0625 0.0625 0.25 –

MBC(mg/mL) 0.5 0.125 0.125 0.5 –

Escherichia coli MIC(mg/mL) 1 1 1 – –

MBC(mg/mL) 1 1 1 – –

Staphylococcus
aureus

MIC(mg/mL) 0.5 0.25 0.5 0.5 1

MBC(mg/mL) 1 0.5 0.5 1 –

Salmonella MIC(mg/mL) 1 0.5 0.5 1 –

MBC(mg/mL) 1 1 0.5 – –

“–” illustrates that MIC or MBC are above 1 mg/ml.

better antibacterial effect than LA, and Thy was the principal
antibacterial agent of the mixture. Compared with two Gram-
negative bacteria, Thy showed a stronger antibacterial effect
on two Gram-positive bacteria, among which the antibacterial
effect against L. monocytogenes was best, so did Thy/LA.
Moreover, the antibacterial effect against L. monocytogenes of
Thy/LA with different proportions was comparable or better than
those of LA and Thy alone. The MIC values for Thy/LA25%
(0.0625 mg/ml) and Thy/LA50% (0.0625 mg/ml) were lower
than LA (>1 mg/ml) and Thy (0.25 mg/ml) alone. The MBC
values for Thy/LA25% (0.25 mg/ml) and Thy/LA50% (0.25 mg/ml)
were lower than LA (>1 mg/ml) and Thy (0.5 mg/ml) alone,
which were equivalent to a quarter of Thy alone, indicating that
Thy/LA25% and Thy/LA50% demonstrated more effects against
L. monocytogenes. This result ties well with a previous study (24)

wherein Thy and LA exhibited stronger antibacterial effects than
Thy or LA alone in certain proportions. According to previous
studies (41, 42). Thy, as a hydrophobic substance, easily interacts
with the phospholipid bilayers of bacteria to increase membrane
permeability, which will lead to the leakage of components inside
microbial cells, resulting in cell death. LA is also an amphiphilic
substance, which can damage the cell membranes of Gram-
positive bacterial (43). A possible explanation might be that the
antibacterial effect of LA and Thy is not a simple superposition,
but a synergistic effect (24), which may be because it acts
on different sites of the cell membrane to increase membrane
permeability, enhancing the antibacterial effect.

Owing to the remarkable antibacterial effect, LA with the ratio
of 25 and 50% was selected to perform the following experiments,
and L. monocytogenes was also selected to detect the bacteriostatic
effect of the samples.

Preparation, Characterization, and
Stability of Thy/LA-Emulsion
The impact of the proportion Thy/LA in the oil phase (The ratios
of LA are 0, 25, 50, 75, and 100 wt%.) on the mean particle
diameter, stability, and microstructure by using cryo-SEM of the
emulsions was evaluated. According to previous studies (32, 44),
EOs are susceptible to Ostwald ripening (OR) causing instability
in emulsions. OR is a common phenomenon in EO emulsions,
based on the diffusion of components of dispersed phase from
smaller to larger droplets through a continuous phase, leading
to droplet growth, creaming, and oiling off. In several feasible
solutions (37, 45), the simplest and most effective measure was to
modify the oil composition by incorporating ripening inhibitors
(corn oil) before homogenization to inhibit the OR. To increase
the stability of the emulsion, corn oil was added to the oil phase
to prepare emulsion, and the impact of LA on the physical
stability of thymol-based emulsion was also studied. First, a
series of emulsions (8 = 10%) with different mass Thy/LA or
Thy and corn oil ratios were prepared [corn oil (%):Thy/LA
(%) or Thy alone (%) = 0:100, 10:90, 20:80, 40:60, 60:40]. After
homogenization, the emulsions were stored for 3 days at room
temperature, and their mean particle sizes were measured in
Figure 2. A downward trend can be seen, where the mean particle
size of the samples decreased as a higher proportion of corn oil
added in the oil phase. The particle size of the emulsion prepared
by the oil phase using only Thy (0% corn oil) was large and the
emulsion was highly unstable as oil separation occurred in the
emulsion after 1-week storage (Figure 2). The phase separation
happened in Thy/LA25%-Emulsion and Thy/LA50%-Emulsion as
well. The results are in line with previous research studies (46).
Chang et al. investigated the impact of cationic surfactants (lauryl
arginate) on the physical properties and antibacterial efficacy of
thyme oil nanoemulsions. It was also found that the emulsions
were highly unstable and rapidly separated at higher thyme oil
levels (≥80 wt%), but emulsions with better stability could be
attained by incorporating a ripening inhibitor (corn oil) to the oil
phase before homogenization. This illustrates that the addition of
corn oil does increase the stability of emulsions by inhibiting OR.
There was a steep reduction in mean particle size of 0–20 wt%
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FIGURE 2 | Effect of corn oil concentration (0–60 wt%) on the mean particle sizes of Thy/LA25%-Emulsion, Thy/LA50%-Emulsion, and Thy-Emulsion. The photo in
the graph shows that Thy-Emulsion appeared oil separation (0% corn oil). n = 6.

corn oil and a relatively gentle reduction in mean particle size of
20–60 wt% corn oil of all emulsions, indicating that all emulsions
were more stable when the quantity of corn oil between 20
and 60 wt% in the oil phase, and the stability of emulsion was
unaffected by the addition of LA. Prior research (32) has shown
that the more corn oil is added, the more the antibacterial efficacy
of emulsions is reduced. All in all, a ratio [corn oil (%):Thy/LA
(%) or Thy (%) = 20:80] was selected for storage research and
antibacterial experiments.

The mean particle size of three emulsions after 1-month
storage at room temperature is shown in Figure 3. The mean
particle size of emulsions is one of the critical factors to evaluate
their physical stability (47). The mean particle size of Thy/LA25%-
Emulsion and Thy-Emulsion did not appreciably change,
illustrating that once an adequate quantity of ripening inhibitor
is incorporated into the oil phase before homogenization,
emulsions are highly stable against droplet growth over a period
of time (48). These results are consistent with the volume fraction
distribution of the particle size of Thy-Emulsion and Thy/LA25%-
Emulsion exhibited in Figure 4. The volume fraction distribution
of the particle size of Thy-Emulsion and Thy/LA25%-Emulsion
were unimodal, and Thy-Emulsion and Thy/LA25%-Emulsion
were stable after 28 days of storage. The mean particle size
of Thy/LA50%-Emulsion increased from 1.44 ± 0.16 µm to
2.53 ± 0.08 µm after 1 week, and solidification appeared on the
surface in the second week. Consequently, to ensure the storage
stability of the emulsion, LA with the ratio of 25% was selected to
perform the following experiments.

The ζ-Potential of an emulsion is generally related to
the net surface electrical charge on the emulsion droplets
and the stability of the emulsion (49, 50). The average

ζ-potential values of Thy-Emulsion and Thy/LA25%-Emulsion
were −33.47 ± 0.78 mV and −42.77 ± 0.81 mV, respectively.
When pH was 6.5, which was higher than the isoelectric
point of casein (pH 4.6), casein had a strong negative net
charge (51). The emulsion droplets had a higher negative
charge due to the absorption of casein at the oil–water (O/W)
interface, so the ζ-Potentials of Thy-Emulsion and Thy/LA25%-
Emulsion are negative. Moreover, with the addition of LA,
the absolute value of zeta-potential of emulsion increased and

FIGURE 3 | Changes of the mean particle sizes of Thy/LA25%-Emulsion,
Thy/LA50%-Emulsion, and Thy-Emulsion during storage for 4 weeks. As
solidification appeared on the surface of Thy/LA50%-Emulsion in the second
week, particle size could not be measured. n = 3.
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FIGURE 4 | Droplet size distributions in the volume of Thy-Emulsion (A) and
Thy/LA25%-Emulsion (B). The solid line represents the 0th day, and the
dashed line represents the 28th day. n = 3.

the Thy/LA25%-Emulsion might have higher stability than Thy-
Emulsion. It has been reported that emulsions with higher zeta-
potential exerted stronger electrostatic interaction and greater

FIGURE 6 | The Zone of Inhibition of Thy-Emulsion (A) and
Thy/LA25%-Emulsion (B) against Listeria monocytogenes. n = 6.

repulsive forces between oil droplets, which could prevent
aggregation and improve the stability of the system (52).

Thy/LA25%-Emulsion and Thy-Emulsion were evaluated by
cryo-SEM (Figure 5), which are consistent with the light
scattering analysis of particle size. All the cryo-SEM images
did exhibit that all emulsions with relatively small individual
oil droplets (<2 µm) were evenly distributed throughout the
samples, which also indicates that the stability of emulsions was
not affected by the addition of LA.

Antibacterial Activity of Thy/LA-Emulsion
Antibacterial activity of two emulsions against L. monocytogenes
was evaluated by using the zone of inhibition (Figure 6)
and growth curves (Figure 7). As shown in Figure 5,
the mean inhibition zone diameter of Thy/LA25%-Emulsion
was 3.06 ± 0.12 cm, which was longer than the mean
inhibition zone diameter of Thy-Emulsion (1.97 ± 0.06 cm).
These results signified that Thy/LA25%-Emulsion exhibited a
stronger antibacterial effect than Thy-Emulsion, indicating that
the antibacterial effects of Thy and LA still demonstrate a
synergistic effect in the emulsion delivery system (24). The
concentration of Thy (Figure 7A) or Thy/LA (Figure 7B)

FIGURE 5 | The cryo-SEM micrographs of the Thy-Emulsion (A) and Thy/LA25%-Emulsion (B). n = 3.
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FIGURE 7 | The growth curves of Thy-Emulsion (A) and Thy/LA25%-Emulsion
(B) incubated for 24 h at 37◦C and (C) the number of colonies formed in
Thy-Emulsion and Thy/LA25%-Emulsion after 24 h (the concentration of Thy or
Thy/LA ranged from 0.625 to 0.5 mg/mL). The solid line represents the 0th
day, and the dashed line represents the 30th day. n = 6.

in the oil phase ranged from 0.625 mg/ml to 0.5 mg/ml,
and the higher the concentration of Thy or Thy/LA in the
oil phase, the better the antibacterial effect of the emulsions
possessed. After 24 h of cultivation, when the concentration
of Thy or Thy/LA25% was 0.125 mg/ml, the number of
colonies in the Thy-Emulsion formed in the agar increased
from approximately 9.0 × 104 cfu/ml to 4.9 × 107 cfu/ml,
while the number of colonies in the Thy-Emulsion formed in
the agar decreased from approximately 9.0 × 104 cfu/ml to
3.2 × 104 cfu/ml. The number of colonies in Thy-Emulsion
formed in agar was approximately 104 times more than it was in
Thy/LA25%-Emulsion (Figure 7C). Thy/LA25%-Emulsion could

completely inhibit the growth of L. monocytogenes, while Thy-
Emulsion demonstrated weak antibacterial activity. When the
concentration of emulsions was 0.25 mg/ml, the number of
colonies in Thy-Emulsion formed in agar was approximately 103

times more than it was in Thy/LA25%-Emulsion (Figure 7C).
Thy/LA25%-Emulsion demonstrated a strong killing effect on
L. monocytogenes, while Thy-Emulsion could only inhibit their
growth. After 1-month of storage, the antibacterial activity of the
two emulsions against L. monocytogenes was evaluated by using
a growth curve (Figure 7), which is represented by a dashed
line. The results showed that the antibacterial properties of Thy-
Emulsion (Figure 7A) and Thy/LA25%-Emulsion (Figure 7B)
did not decrease significantly after 1-month storage. These
results indicated that Thy/LA25%-Emulsion demonstrated better
antibacterial activity and physicochemical stability due to its
long-term storage stability.

These results exhibited that the MIC values of Thy-
Emulsion (0.5 mg/ml) were higher than those samples with Thy
(0.25 mg/ml) alone, so did Thy/LA25%-Emulsion. These results
were broadly in line with the findings of Chang et al. (32),
where Thy emulsions were prepared as potential antimicrobial
delivery systems and found that increasing the levels of ripening
inhibitor in the oil phase reduced the antimicrobial efficacy
of emulsions. This is because the partition of a lipophilic
antibacterial agent between oil phase and aqueous phase hinges
on their relative concentration and oil–water partition coefficient.
After incorporating corn oil, the antibacterial agent will be
more likely to partition into the oil phase of the emulsion,
causing a decrease in the concentration of the antibacterial
agent in the aqueous phase. Because microorganisms exist in the
aqueous phase, the effective antibacterial concentration on the
surface of microorganisms also decreases, thereby reducing the
antibacterial effect (46, 47).

Above all, the incorporation of ripening inhibitor (corn oil)
will reduce the antibacterial effect, but the antibacterial effect is
still considerable due to the synergistic effect of LA and Thy.
When the concentration of Thy was 0.0625 mg/ml (Figure 7C),
the number of colonies in Thy-Emulsion formed in agar was
approximately 1.7 × 108 cfu/ml, while Thy/LA25%-Emulsion
demonstrated a strong killing effect. In summary, compared
with Thy-Emulsion, Thy/LA25%-Emulsion reduced the content
of Thy and enhanced its antibacterial activity. At the same
time, Thy/LA25%-Emulsion not only lessens the unique odor and
irritation of Thy, but also conforms to the prevailing market in
terms of economic benefits due to the low price of MCFs.

CONCLUSION

We studied the antibacterial effects of LA addition on thymol-
based emulsions. The incorporation of LA (25 and 50%) could
improve the antibacterial activity of thymol-based emulsions
against Gram-positive bacteria, especially L. monocytogenes.
Compared with Thy-Emulsion, Thy/LA25%-Emulsion
demonstrated a better antibacterial effect. Thy/LA25%-Emulsion
exhibited a greater inhibition zone (3.06 ± 0.12 cm) than
Thy-Emulsion (1.97 ± 0.06 cm). When a complete antibacterial
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effect was achieved against L. monocytogenes, the concentration
of the antibacterial components (Thy) in the Thy-Emulsion
was 0.5 mg/ml, while the concentration of the antibacterial
components (Thy and LA) in the Thy/LA25%-Emulsion was
0.25 mg/ml. The concentration of Thy in the Thy/LA25%-
Emulsion was 0.19 mg/ml, which lessens unique odor and
irritation and saves cost by reducing the amount of Thy.
Owing to the long-term storage stability, Thy/LA25%-Emulsion
demonstrated the best antibacterial activity and physicochemical
stability. This study may provide a useful and novel antibacterial
measure for food and drugs.
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