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Considerable evidence has shown that elevated plasma or cerebrospinal fluid (CSF)
urate levels correlated with a reduced risk of Parkinson’s disease (PD). Based on
its anti-oxidative properties, urate might serve as one of promising neuroprotective
candidates for PD. However, how urate is transported through cell membranes to exert
its effects inside the cells in PD is largely unknown. To elucidate this, we showed
that increased intracellular urate exerted its neuroprotective effects against 1-methyl-
4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 cells and elevated urate
could antagonize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral
dopaminergic neuronal death in urate oxidase (UOx) knockout (KO) mice. Its transporter,
glucose transporter type 9 (Glut9), was observed up-regulated, which was caused by
the activation of p53. These protective effects could be abolished by Glut9 blocker and
p53 inhibitor. These results suggested that Glut9 was a functional urate transporter,
whose up-regulation by activation of p53 resulted in the increased intracellular urate
levels in PD models. Our findings suggest that Glut9 could be modified to modulate
urate levels in dopaminergic neurons and urate-elevating strategies without increasing
systemic levels to avoid side effects might serve as a potential therapeutic target for PD.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by a progressive
loss of dopaminergic neurons in the substantia nigra (SN) and subsequent dopamine depletion
in the striatum (Hornykiewicz, 1998; Song et al., 2017). The exact etiology and pathogenesis
responsible for dopaminergic neuronal degeneration are largely unknown. Accumulating

Abbreviations: ABCG2, ATP-binding cassette subfamily G member 2; Akt, protein kinase B; ARE, antioxidant
response elements; CSF, cerebrospinal fluid; Glut9, glucose transporter type 9; GSK3β, glycogen synthase
kinase 3β; MAO-B, monoamine oxidase-B; MPDP+, 1-methyl-4-phenyl-2,3-dihydropyridinium; MPP+, 1-methyl-
4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MRP4, multi-drug resistance-associated
protein 4; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; Nrf2, nuclear factor E2 related
factor 2; OAT, organic anion transporter; PD, Parkinson’s disease; ROS, reactive oxygen species; SLC2A9, solute
carrier family 2 member 9; SN, substantia nigra; SOD1, superoxide dismutase 1; TH, tyrosine hydroxylase; UOx, urate
oxidase; URAT1, urate anion transporter 1; 6-OHDA, 6-hydroxydopamine; ∆Ψm, mitochondrial transmembrane
potential.
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evidence indicates that oxidative stress is a major contributor in
the pathogenesis of PD (Jenner and Olanow, 1998; Schapira et al.,
1998), suggesting that antioxidants could have some potential
usages in PD treatment.

Urate, an end product of purine metabolism in humans,
is a natural and powerful antioxidant (Ames et al., 1981;
Becker, 1993). Although high plasma urate levels are risk
factors for several metabolic syndromes, such as gout and type
2 diabetes mellitus, they could decrease the incidence of PD
and its progression (Hayden and Tyagi, 2004; Schwarzschild
et al., 2008; Ascherio et al., 2009). Davis et al. (1996) first
described men with serum urate levels above the median had
a decreased rate of idiopathic PD. Subsequent epidemiological
and experimental studies all suggest that higher dietary urate
intake or early diagnosis of gout has a lower risk of PD
(Alonso et al., 2007; Gao et al., 2008). In addition, reduced
urate levels in the SN have been observed prior to clinical
symptoms in PD patients (Church and Ward, 1994), which is
more likely a predictor of PD diagnosis in the prodromal phase
and neuroprotective intervention before the onset of neurological
symptoms (Fang et al., 2013; Ascherio and Schwarzschild,
2016).

The neuroprotective effects of urate in PD have been
studied by several groups. For example, urate could alleviate
the impaired motor performance in PD animal models in vivo
and prevent the degeneration of dopaminergic neurons in vitro
(Gong et al., 2012; Zhu et al., 2012). Notably, these effects
of urate are shown to depend on its intracellular levels
(Cipriani et al., 2012a; Zhang et al., 2014). However, urate
is an organic anion and could hardly pass through cell
membranes in the absence of its transporters, a question
remains to be answered: how is extracellular urate transported
into cells to exert its effects? Up to now, the related urate
transporters include glucose transporter type 9 (Glut9), urate
anion transporter 1 (URAT1), organic anion transporter (OAT),
ATP-binding cassette subfamily G member 2 (ABCG2) and
multi-drug resistance-associated protein 4 (MRP4; Reginato
et al., 2012). Among these, Glut9, encoded by solute carrier
family 2 member 9 (SLC2A9), is a candidate that could
determine the serum urate concentration (Dehghan et al.,
2008; Wei et al., 2011). Meanwhile, Glut9 is associated
with faster clinical progression and earlier age at onset
of PD, whose single nucleotide polymorphisms related to
lower urate levels could modify susceptibility to PD (Facheris
et al., 2011; González-Aramburu et al., 2013; Simon et al.,
2014).

In the present study, we aimed to explore the urate
transport mechanism involved in its neuroprotective effects
on dopaminergic neurons using MES23.5 dopaminergic cells
and urate oxidase (UOx) knockout (KO) mice. Mutation in
UOx, a liver-specific uricase that oxidizes urate to allantoin
in most mammals, could cause higher levels of urate in
blood and cerebrospinal fluid (CSF) in humans (Wu et al.,
1992; Paganoni and Schwarzschild, 2017). These findings might
provide a novel potential mechanism and direct evidence for
investigating antioxidant, such as urate, as a therapeutic target
for PD.

MATERIALS AND METHODS

Cell Culture and Treatment
The rodent MES23.5 cell line was a kind gift from Dr. Wei-dong
Le at Dalian Medical University (Dalian, China). MES23.5 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)-
F12 (Gibco, USA) containing Sato’s components growthmedium
supplemented with 5% fetal bovine serum, 100 units/mL of
penicillin and 100 units/mL of streptomycin in a humidified
atmosphere containing 5% CO2 at 37◦C.

For experiments, cells were seeded at a density of 1× 105/cm2

in plates and grown to 70%–80% confluency. MES23.5 cells
were pretreated with 100 µM urate (Sigma, Ronkonkoma,
NY, USA) for 30 min, and then co-incubated with 50 µM
1-methyl-4-phenylpyridinium (MPP+; Sigma, Ronkonkoma,
NY, USA) for another 24 h. To investigate urate transport
mechanism, MES23.5 cells were pretreated for 30 min with
500 µM uricosuric probenecid (Sigma, Ronkonkoma, NY,
USA) to inhibit Glut9-mediated urate transport capacity
or 20 µM pifithrin-α (Sigma, Ronkonkoma, NY, USA) to
inhibit p53 transcriptional activity prior to the addition of
100 µM urate followed by co-incubation with 50 µM MPP+

for 24 h.

Cell Viability Measurement
Cell viability was measured using 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. At the end
of treatment, culture medium was replaced with the medium
containing MTT at a final concentration of 5 mg/mL for 4 h at
37◦C. The insoluble formazan was then dissolved in dimethyl
sulphoxide (DMSO). Cell viability was assessed at the wavelength
of 494 nm and 630 nm using a microplate reader (Molecular
Device, M5, Sunnyvale, CA, USA).

Flow Cytometric Measurement of Reactive
Oxygen Species (ROS) and Mitochondrial
Transmembrane Potential (∆Ψm)
The dye 2′,7′-dichlorofluorescein diacetate (H2DCFDA) can
penetrate into cells, whose oxidation to form the highly
fluorescent 2′,7′-dichlorofluorescein (DCF) is proportional to
ROS generation. Rhodamine123 (Rh123) can be accumulated
into mitochondria via facilitated diffusion. The uptake of
Rh123 is decreased due to the reduction of∆Ψm,which can serve
as an indicator of ∆Ψm.

Flow cytometry (Becton Dickinson, USA) was used to
measure the changes of ROS and ∆Ψm. At the end of
treatment, cells were washed with 2-[4-(2-Hydroxyethyl)-1-
piperazinyl] ethanesulfonic acid (HEPES)-buffered saline (HBS)
for three times followed by incubation with 5 µM H2DCFDA
(Molecular Probes, Eugene, OR, USA) or 5 µM Rh123 (Sigma,
Ronkonkoma, NY, USA) for 30 min at 37◦C in dark. After
washing three times with HBS, labeled cells were resuspended
in 1 mL HBS. For analysis, 488 nm excitation and 525 nm
emission wavelengths were used to assess 10,000 cells for each
group. The results were presented as Fluorescence 1-Histogram
(FL1-H), setting the gated regions M1 and M2 as markers
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to observe the fluorescence intensity using CellQuest Software
(Becton Dickinson, USA). Fluorescence values of the control
were normalized to 100%. The results were expressed as the
percentage of fluorescence intensity for each experimental group
relative to the control.

Animals and Treatment
Male 10 month-old UOx KO mice and wild type (WT)
littermates mice were used in the present study. The generation
of UOx KO mice using a high-performance TALEN strategy
was previously described (Lu et al., 2018). Animals were
maintained at constant temperature and humidity on a 12-h
light/dark cycle with free access to food and water. Mice
were intraperitoneal injected with 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP; Sigma, Ronkonkoma, NY, USA)
at the dose of 30 mg/kg, or its vehicle saline solution once per
day for five consecutive days. Twenty-four hours after the last
injection of MPTP, blood and brains were collected for the
following studies. One side of the SN was isolated to assess
tyrosine hydroxylase (TH) protein levels and striatum was
isolated for urate measurement. The other side of the brain was
fixed in 4% paraformaldehyde (PFA) for TH immunofluorescent
staining. This study was carried out in accordance with the
recommendations of National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals. The protocol
was approved by the Animal Ethics Committee of Qingdao
University.

Serum, Striatal and Intracellular Urate
Measurement
For serumuratemeasurement, mice bloodwas collected via inner
canthus into an anticoagulant tube and then incubated at room
temperature for 1 h. After centrifugation at 1500 g for 10 min,
serumwas transferred into Eppendorf tubes and stored at−80◦C
for urate measurement.

The dissection of striatum was performed as previously
described (Glowinski and Iversen, 1966). Briefly, after the
removal of rhombencephalon from the brain, a transverse section
was made at the level of optic chiasma which separated the
cerebrum into two parts. The striatum was dissected with the
external walls of the lateral ventricles as medial limits and
the corpus callosum as lateral limits. Striatum tissues were
weighed and homogenized in 200 µL assay buffer. Then,
the homogenate was spinned down at 12,000 g for 15 min
at 4◦C. The supernatant was collected for the striatal urate
measurement.

To assess intracellular urate levels, at the end of treatment,
MES23.5 cells were washed twice with phosphate-buffered saline
(PBS) and harvested. Then, cells were lysed with 200 µL assay
buffer and centrifuged at 12,000 g for 15 min at 4◦C. The
resulting supernatant was transferred into Eppendorf tubes for
intracellular urate measurement. The protein concentration was
determined using the BCA protein assay kit (Thermo Fisher
Scientific, USA).

Serum, striatal and intracellular urate levels were assessed
using the Uric Acid Fluorometric Assay Kit (BioVision, Milpitas,
CA, USA) according to the manufacturer’s instructions. In

brief, 20 µL samples were mixed with 30 µL assay buffer in
a 96-well plate, followed by adding 50 µL reaction mixture
containing 46 µL assay buffer, 2 µL probe and 2 µL enzyme
mix. The mixtures were then incubated at 37◦C for 30 min
in dark. Fluorescence was measured at 535 nm excitation
and 590 nm emission wavelengths using a microplate reader.
Urate concentration was determined with a standard curve
obtained from the defined concentrations of urate. Serum,
striatal and intracellular urate concentration were expressed as
µM, nmol/mg tissue and µmol/g protein, respectively.

Immunofluorescent Staining
The brain tissues were sliced into 20 µm-thick sections for
TH immunofluorescent staining. After blocking with 10% goat
serum for 30 min, the sections were incubated with anti-TH
antibody (1:1000, Sigma, Ronkonkoma, NY, USA) overnight
at 4◦C. Then, sections were incubated with Alexa Fluorr

555 donkey anti-rabbit IgG (H + L) secondary antibody (1:500,
Invitrogen, Carlsbad, CA, USA) for 1 h at room temperature,
and images were obtained by immunofluorescent microscopy
(Observer A1, Zeiss, Germany). The dopaminergic neurons in
the SN were outlined on the basis of TH immunofluorescent
staining. The number of TH+ neurons in the SN was determined
using stereological quantification as previously described (Zhang
et al., 2015).

Western Blot
Samples from animals and cells were digested with RIPA
lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Nonidet-
40, 0.5% sodium deoxycholate, 1 mM EDTA, 1 mM PMSF)
and protease inhibitors (Roche Diagnostics, Germany) for
30 min. The lysate was centrifuged at 12,000 g for 20 min
at 4◦C, and the supernatant was used for analysis. Protein
concentration was established using the BCA protein assay
kit (Thermo Fisher Scientific, USA). A total of 25 µg
of protein was electrophoresed and transferred to PVDF
membranes. After blocking with 10% non-fat milk for 2 h
at room temperature, the membranes were incubated with
anti-TH antibody (1:1000, Sigma, Ronkonkoma, NY, USA),
anti-superoxide dismutase 1 (SOD1) antibody (1:1000, Santa
Cruz Biotechnology, Dallas, TX, USA), anti-Glut9 antibody
(1:1000, Abcam, UK) and anti-p53 antibody (1:1000, Cell
Signaling Technology, Danvers, MA, USA) overnight at 4◦C.
Membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (1:10,000, Santa Cruz
Biotechnology, Dallas, TX, USA) for 1 h at room temperature.
Blots were visualized with UVP Image System and quantified
with ImageJ Software.

Statistical Analysis
SPSS 17.0 was used to analyze the data. One-way analysis of
variance (ANOVA) followed by the Student-Newman-Keuls test
was used to compare difference between means in more than two
groups. Data were presented as mean ± SEM. A probability of
P < 0.05 was taken to indicate statistical significance.
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RESULTS

Increased Intracellular Urate Was
Responsible for Its Anti-oxidative Effects
in MES23.5 Cells
In this study, we observed that MPP+ treatment for 24 h resulted
in a significant decrease in cell viability in a dose-dependent

manner in MES23.5 cells (Figure 1A). Considering that 50 µM
MPP+ reduced cell viability by 35.6% compared with the
control, which was the minimum concentration to cause cell
damage, 50µMMPP+ was chosen for the following experiments.
Pretreatment with indicated concentrations of urate for 30 min
could antagonize MPP+-induced cytotoxicity at a concentration
range of 100–400 µM (Figure 1B). The lowest effective
concentration of urate was applied for the following studies.

FIGURE 1 | Intracellular urate exerted anti-oxidative effects in MES23.5 cells. (A) Dose-dependent toxicity of MPP+ in MES23.5 cells. Cell viability was determined
by MTT assay. (B) Effects of urate on MPP+-induced cytotoxicity. Pretreatment with urate antagonized MPP+-induced reduction of cell viability at a concentration
range of 100–400 µM in MES23.5 cells. (C) Effects of urate on cell viability at indicated concentrations. (D) Intracellular urate levels were detected using urate
fluorometric assay. MPP+ treatment induced a significant increase in intracellular urate levels compared with solely urate treatment from 18 h. ROS generation (E)
and ∆Ψm changes (F) of different groups were measured using flow cytometry. (G) Western blot was applied to detect SOD1 protein levels. Data were presented as
the ratio of SOD1 to β-actin. Urate pretreatment could antagonize MPP+-induced excessive ROS generation, collapse of ∆Ψm and decreased SOD1 protein levels.
Data were presented as mean ± SEM. ∗P < 0.05, compared with the control; #P < 0.05, compared with the MPP+-treated group; ∧P < 0.05, compared with the
urate-treated group, n = 6.
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To preclude the possibility that urate caused any toxicity, cells
were treated with different doses of urate alone for 24 h. The
results showed that urate did not produce any toxic effects
on MES23.5 cells except for the highest concentration used
(1000 µM; Figure 1C). Therefore, urate pretreatment could
significantly antagonizeMPP+-induced reduction of cell viability
in MES23.5 cells.

To elucidate whether exogenous urate could be accumulated
into MES23.5 cells, we measured the intracellular urate levels. As
shown in Figure 1D, intracellular urate content was gradually
increased in a time-dependent manner. Moreover, MPP+

treatment induced a 1.7-fold increase of intracellular urate levels
compared with solely urate treatment from 18 h. These results
suggested that more urate could be accumulated into cells under
oxidative stress induced by MPP+.

Then, we wanted to illustrate the effects of increased
intracellular urate on MPP+-induced neurotoxicity. Excessive
generation of ROS is a main reason for DNA or RNA damage,
which cumulatively contributes to oxidative stress. In the present
study, we found that intracellular ROS levels showed a 2.5-fold
increase when incubated with 50 µM MPP+ for 24 h. While
pretreated with 100 µM urate, ROS generation was significantly
attenuated (Figure 1E). Moreover, the changes in ∆Ψm were

a marker of mitochondrial function, which was also involved
in oxidative stress. As shown in Figure 1F, urate pretreatment
could remarkably antagonize MPP+-induced decrease of ∆Ψm.
Next, we measured the protein levels of SOD1, which was
a highly potent anti-oxidative agent. It was observed that
SOD1 protein levels were decreased by 35.7% in cells treated
with MPP+, and this effect could be partially reversed by urate
pretreatment (Figure 1G). The above results indicated that
increased intracellular urate could antagonize MPP+-induced
neurotoxicity by its anti-oxidative properties.

Up-regulated Glut9 Accounted for the
Increased Intracellular Urate Levels
Next question is how urate was transported into the cells to
exert its anti-oxidative effects. Since the accumulation of urate
was transporter-mediated, the expression of high-capacity urate
transporter Glut9 was detected in MES23.5 cells. As shown
in Figure 2A, Glut9 protein levels were significantly increased
by 48.9% when exposed to MPP+ compared with the control,
indicating an increased cellular ability to transport urate. Then,
we specifically inhibited Glut9-mediated urate transport with
probenecid, which was also the widely used gout drug. As

FIGURE 2 | Increased intracellular urate levels were mediated by Glut9. (A) Western blot was applied to detect Glut9 protein levels. Data were presented as the ratio
of Glut9 to β-actin. Glut9 protein levels were remarkably up-regulated in MPP+-treated MES23.5 cells. (B) Intracellular urate levels were detected using urate
fluorometric assay. After probenecid treatment, intracellular urate levels were obviously decreased. ROS generation (C) and ∆Ψm changes (D) of different groups
were measured using flow cytometry. (E) Western blot was applied to detect SOD1 protein levels. Data were presented as the ratio of SOD1 to β-actin. Pretreatment
with probenecid completely blocked the anti-oxidative effects of urate in MES23.5 cells. Data were presented as mean ± SEM. ∗P < 0.05, compared with the
control; #P < 0.05, compared with the MPP+-treated group; ∧P < 0.05, compared with the urate-treated group; &P < 0.05, compared with the urate +
MPP+-treated group; $P < 0.05, compared with the urate + probenecid-treated group, n = 6.
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expected, probenecid could significantly diminish urate uptake
from 24 h and intracellular urate levels showed a 1.5-fold
decrease with probenecid treatment when compared with urate
+ MPP+ group (Figure 2B). Moreover, we detected the effects
of urate on MPP+-induced neurotoxicity in the presence of
probenecid. Pretreatment of cells with probenecid completely
blocked the anti-oxidative effects of urate, resulting in increased
ROS generation (Figure 2C), decreased ∆Ψm (Figure 2D)
and SOD1 protein levels (Figure 2E). Together, these results
indicated that increased intracellular urate levels involved in its
neuroprotection were mediated by the up-regulated Glut9.

p53 Was Responsible for the Up-regulation
of Glut9
The above results suggested that urate could be accumulated
into the cells in the presence of urate transporter Glut9. Next,
we attempted to explore the possible molecular mechanisms
involved in the increased Glut9 expression under oxidative
stress. Notably, Glut9 was previously reported to be a direct
transcriptional target of tumor suppressor p53 (Itahana et al.,
2015). In the present study, we found that p53 protein levels were
remarkably increased by 68.3% in MPP+-treated MES23.5 cells,

which in turn increased the expression of Glut9 (Figure 3A).
When incubated with pifithrin-α, which could inhibit the
transcriptional activity of p53, the increased expression of
Glut9 was found to be abolished. These results indicated that
the activation of p53 was responsible for the up-regulation of
Glut9 triggered by MPP+. Furthermore, under MPP+-induced
oxidative stress conditions, there was a 1.4-fold decrease in
intracellular urate levels with pifithrin-α treatment from 24 h
(Figure 3B). Pretreatment with pifithrin-α could also eliminate
the anti-oxidative effects of urate against MPP+ in MES23.5 cells
(Figures 3C–E).

Up-regulated Nigral Glut9 Levels in UOx
KO Mice Antagonized MPTP-Induced
Neurotoxicity
In UOx KO mice, we found that nigral Glut9 protein levels
were significantly increased by 64.6% compared with those of
the WT group (Figure 4A). Moreover, urate levels showed a
5.4-fold increase in serum (Figure 4B) and 2.6-fold increase in
the striatum (Figure 4C) when compared with those in WT
littermates, whose levels were much lower in the brain than that
of the blood.

FIGURE 3 | p53 was responsible for the up-regulation of Glut9 in MPP+-treated MES 23.5 cells. (A) Western blot was applied to detect p53 and Glut9 protein levels.
Data were presented as the ratio of p53 or Glut9 to β-actin. The activation of p53 induced an increased Glut9 protein levels in MPP+-treated MES23.5 cells.
Pretreatment with pifithrin-α reversed the up-regulation of Glut9. (B) Intracellular urate levels were detected using urate fluorometric assay. After pifithrin-α treatment,
intracellular urate levels were decreased. ROS generation (C) and ∆Ψm changes (D) of different groups were measured using flow cytometry after the inhibition of
p53. (E) Western blot was applied to detect SOD1 protein levels. Data were presented as the ratio of SOD1 to β-actin. Pretreatment with pifithrin-α eliminated the
anti-oxidative effects of urate in MES23.5 cells. Data were presented as mean ± SEM. ∗P < 0.05, compared with the control; #P < 0.05, compared with the
MPP+-treated group; ∧P < 0.05, compared with the urate-treated group; &P < 0.05, compared with the urate + MPP+-treated group; $P < 0.05, compared with
the urate + pifithrin-α-treated group, n = 6.

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 January 2018 | Volume 11 | Article 21

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Bi et al. Glut9-mediated Urate Transport in Parkinson’s Disease

FIGURE 4 | Up-regulated nigral Glut9 alleviated MPTP-induced neurotoxicity in UOx KO mice. (A) Western blot was applied to detect Glut9 protein levels. Data were
presented as the ratio of Glut9 to β-actin. The nigral Glut9 protein levels were significantly increased in UOx KO mice compared with the WT group. Urate levels were
detected using urate fluorometric assay. Urate levels in serum (B) and striatum (C) were significantly increased in UOx KO mice compared with the WT group.
(D) Representative pictures showing TH+ neurons in the substantia nigra (SN) of different groups determined by immunofluorescent staining. Scale bar = 100 µm.
(E) Group data showing the number of TH+ neurons of different groups. (F) Western blot was applied to detect TH protein levels. Data were presented as the ratio of
TH to β-actin. The loss of TH+ neurons and decreased TH protein levels induced by MPTP were alleviated in UOx KO mice compared with those in WT mice. Data
were presented as mean ± SEM. ∗P < 0.05, compared with the WT-saline solution group; #P < 0.05, compared with the WT-MPTP group, n = 3.

In MPTP-treated UOx KOmice, the reduction in the number
of TH+ neurons was 25.1% compared with the saline solution-
treated group. However, in WT mice, MPTP induced a 41.3%
loss of TH+ neurons compared with saline solution treatment
(Figures 4D,E). Similar results were observed for the nigral TH
protein levels. In UOx KO mice, there was a 22.9% reduction in
the TH levels afterMPTP injection compared with saline solution
treatment, while a 59.3% reduction in the WT-MPTP group
compared with the WT-saline solution group (Figure 4F). The
loss of TH+ neurons and decreased TH protein levels induced
by MPTP were remarkably reversed in UOx KO mice compared
with those in WT littermates.

DISCUSSION

In the present study, we demonstrated that Glut9-mediated
increased urate uptake was involved in the protection of
dopaminergic cells against MPTP/MPP+-induced neurotoxicity
both in vivo and in vitro.

Urate, primarily as a weak acid, is generated from purine
metabolism (So and Thorens, 2010). In themajority of mammals,
urate undergoes oxidative degradation by UOx to form the
more soluble compound allantoin. By contrast, in humans
and primates, urate constitutes the end product of purine
metabolism due to the absence of functional UOx. Thus, urate

levels in humans are approximately 10 times more than those
in most mammals, which has been hypothesized to reflect an
evolutionary advantage and lengthening lifespan against aging
(Mandal and Mount, 2015). Previous studies have reported that
urate levels in postmortem brains of PD patients are lower
compared with the control (McFarland et al., 2013). Numerous
epidemiological studies have also shown serum or CSF urate
levels were negatively correlated with the risk and severity of
PD (de Lau et al., 2005; McFarland et al., 2013; Gao et al., 2016;
Andersen et al., 2017).

In the present study, we observed a direct protection by
urate against MPTP/MPP+-induced neurotoxicity both in vivo
and in vitro. MPTP, as a common agent for generating
PD animal models (Jiang et al., 2017), is first metabolized
by monoamine oxidase-B (MAO-B) to 1-methyl-4-phenyl-
2,3-dihydropyridinium (MPDP+), and then deprotonates to
generate MPP+, which can enter cells through the dopamine
reuptake system and inhibit complex I of the mitochondrial
respiratory chain to induce oxidative stress (Desai et al., 1996;
Cassarino et al., 1999; Smeyne and Jackson-Lewis, 2005; Shen
et al., 2017). Previous studies have reported that there exists
xanthine oxidase enzyme in brain converting xanthine to urate,
so that the brain has the capacity to generate urate in situ.
Furthermore, urate generated peripherally could also access to
the brain (Bowman et al., 2010). In our study, using UOx
KO mice, which have been reported as a suitable model of
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hyperuricemia and more closely mimic purine metabolism in
humans (Lu et al., 2018), we provided the evidence that serum
and striatal urate levels were significantly elevated. Specific
localization of urate transporters in brain raised the possibility
that urate might be partly transported into ventricular CSF.
CSF-derived urate could also increase the regional urate levels
near the ventricle, for example in the striatum (Tomioka et al.,
2016). In addition, MPTP could induce an increased trend
of striatal urate levels, indicating that urate might be induced
to alleviate the neurotoxicity triggered by MPTP. Moreover,
we found that elevated urate levels could alleviate the loss of
nigral dopaminergic neurons and protect MES23.5 cells against
MPP+-induced cytotoxicity by its anti-oxidative properties.
These findings are consistent with some previous studies.
Urate treatment could attenuate the impairment of motor
performance in 6-hydroxydopamine (6-OHDA)-lesioned rat
models of PD (Gong et al., 2012). In vitro, urate could block
cell injury induced by 6-OHDA, dopamine and rotenone in
dopaminergic neurons (Jones et al., 2000; Duan et al., 2002;
Zhu et al., 2012). Lowering serum and striatal urate levels
by oral allopurinol potentiate striatal dopamine loss but could
not exacerbate dopaminergic neuron degeneration in a dual
pesticide mice model of PD (Kachroo and Schwarzschild,
2014).

Although the beneficial effects of urate have been
demonstrated, the underlying molecular mechanism is still
largely unknown. Urate, in fact, is a natural antioxidant and a

powerful scavenger of free radicals, which accounts for more
than two-thirds of the antioxidant capacity in humans (Ames
et al., 1981). Recently, several studies on the mechanisms for
neuroprotection by urate have focused on its anti-oxidative
properties. It has been reported that urate could induce nuclear
factor E2 related factor 2 (Nrf2) nuclear translocation and further
regulated the expression of antioxidant response elements (ARE;
Zhang et al., 2014), which in turn remarkably increase the
synthesis and release of glutathione (GSH; Bakshi et al., 2015).
Furthermore, protein kinase B (Akt)/glycogen synthase kinase
3β (GSK3β) pathway might be involved in the beneficial effects
of urate against the toxicity of 6-OHDA (Gong et al., 2012).
It should be noted that the anti-oxidative ability of urate
might be dependent on its intracellular levels. Although one
study reported that urate could not be accumulated into rat
mesencephalic dopaminergic neurons, indicating the protective
effects of urate occurred probably extracellularly (Guerreiro
et al., 2009), most studies consistently agreed that exogenous
urate could increase intracellular urate levels through some
unknown transport mechanisms (Cipriani et al., 2012a,b; Zhang
et al., 2014). This discrepancy might in part be explained
by different urate measurement protocols. Thus, in the present
study, we attempted to investigate the urate transport mechanism
responsible for its neuroprotective effects under oxidative stress
conditions.

Urate transporters, such as Glut9, URAT1, ABCG2 and OAT,
play a key role in maintaining urate homeostasis. Glut9, encoded

FIGURE 5 | A schematic diagram of the mechanism underlying the neuroprotective effects of urate on dopaminergic neurons. Under oxidative stress induced by
MPP+, the activation of p53 induced an increased expression of its transcriptional target Glut9. Increased urate uptake mediated by Glut9 could protect
dopaminergic neurons against MPP+-induced neurotoxicity by its anti-oxidative properties.
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by SLC2A9 gene, is a newly identified high-capacity urate
transporter (Caulfield et al., 2008; Vitart et al., 2008; Preitner
et al., 2009). It is widely expressed in liver, lung, heart, kidney,
intestine, leucocytes and chondrocytes. Recent studies show that
Glut9 is also observed in neurons and brain capillaries (Tomioka
et al., 2016). Glut9-mediated urate transport is probably not a
coupled transport system but rather a urate uniporter (Bibert
et al., 2009). Genome-wide association studies (GWAS) has
identified variation in SLC2A9 gene is the strongest known
genetic determinant of plasma urate concentration in humans
(Dehghan et al., 2008; Köttgen et al., 2013). An interaction
between genome-wide variant and serum urate levels may
be a predictor of disease progression and important step for
personalizing prognosis in PD (Nazeri et al., 2015). In this study,
we found that the expression of Glut9 was up-regulated with
MPP+ treatment, resulting in an increased capacity for urate
uptake.

Notably, recent studies have reported that SLC2A9 is a
direct transcriptional target of p53 (Itahana et al., 2015),
which further regulates multiple antioxidant genes, implying a
substantial anti-oxidative function of p53-dependent pathway in
the protection of cells (Tan et al., 1999; Bensaad et al., 2006;
Cano et al., 2009; Hu et al., 2010; Zhou et al., 2013). A growing
number of signals can activate p53, including DNA damage,
oncogene activation, nitrative and oxidative stress, hypoxia and
more (Horn and Vousden, 2007). In the present study, we
found that the expression of p53 was remarkably increased
when exposed to MPP+, and further induced the increased
Glut9 protein levels. Therefore, the activation of p53 played
a causal role in the up-regulation of Glut9. As a result, the
transport of urate into cells mediated by Glut9 was increased.
After the application of probenecid or pifithrin-α, intracellular
urate levels were significantly decreased and its neuroprotective
effects were also found to be abolished. The ability to adapt to
oxidative stress is an important component of cellular defense
strategy in mammalian cells (Wiese et al., 1995). In this study,
the relatively high intracellular urate levels may serve as an
endogenous compensatorymechanism for resistance to oxidative
stress. These adaptive effects are accompanied by, and may be
consequences of defects in cellular anti-oxidative stress system.

As summarized in Figure 5, our present findings suggest
that up-regulation of Glut9, which was caused by the activation
of p53, was responsible for the increased urate uptake in
the MPP+-induced cell model and the MPTP-induced mice
model of PD. Increased intracellular urate antagonized MPP+-
induced excessive ROS generation, collapse of ∆Ψm and
decreased SOD1 levels to exert its anti-oxidative effects. Our
study demonstrated that Glut9-mediated urate uptake was
essential for its neuroprotective effects which strengthened
the rationale for exploring urate-elevating strategies as
potential therapeutic targets for PD. Nevertheless, what is
considered a ‘‘normal range’’ without increasing systemic
urate levels to avoid associated side effects should be further
investigated.
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