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ABSTRACT
Breast cancer patients with Luminal A disease generally have a good prognosis, 

but among this patient group are patients with good prognosis that are currently 
overtreated with adjuvant chemotherapy, and also patients that have a bad prognosis 
and should be given more aggressive treatment. There is no available method for 
subclassification of this patient group. Here we present a DNA methylation signature 
(SAM40) that segregates Luminal A patients based on prognosis, and identify one good 
prognosis group and one bad prognosis group. The prognostic impact of SAM40 was 
validated in four independent patient cohorts. Being able to subdivide the Luminal A 
patients may give the two-sided benefit of identifying one subgroup that may benefit 
from a more aggressive treatment than what is given today, and importantly, identifying 
a subgroup that may benefit from less treatment.

INTRODUCTION

Breast cancer is a heterogeneous disease that 
is driven by different genetic and epigenetic changes 
[1, 2]. Epigenetic changes are considered to be an early 
event in tumor development and one of the hallmarks of 
cancer. The degree of DNA methylation in the promoter 
region of tumor suppressor genes, DNA repair genes and 
transcription factors may play a role in the initiation of 
cancer, tumor progression and response to treatment [3, 4]. 

Gene expression profiling classified breast cancers 
into several molecular subtypes that differ significantly 
in incidence, survival and response to therapies: Luminal 
A, Luminal B, HER2 enriched, Basal-like and Normal-
like [5–9]. Patients with Luminal A tumors usually have 
the best prognosis [7]; this holds true also when tumors 
are treated with contemporary adjuvant chemotherapy 
including anthracyclines and taxanes [10]. 

Large scale methylation analyses have shown that 
breast cancers may also be classified by DNA methylation 
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status, whereby tumors segregate into three clusters. These 
clusters are associated with overall survival, molecular 
subtype, ER expression and TP53 mutation status [11–15]. 
In a previous study, our group investigated the methylation 
status in about 800 cancer related genes across a panel 
of breast cancers and showed that luminal A tumors were 
quite evenly divided between two of the methylation 
derived clusters [15].

Using analysis of copy number aberrations (CNA) in 
tumors, Ciriello and colleagues [16] reported that Luminal 
A tumors may be separated into four groups characterized 
by distinct patterns of CNA and different clinical outcome. 
One subgroup with high level of genomic instability was 
associated with a poor prognosis (copy number high 
(CNH) samples) and had molecular features atypical of 
Luminal tumors.

In the clustering analysis of joint copy number 
and gene expression data from the cis-associated genes 
Caldas and colleagues revealed 10 integrative clusters 
(IntClust 1–10) [17]. Luminal A tumors were divided 
between three clusters (IntClust 3, 7 and 8); IntClust 3 
was associated with the best prognosis with a 10-year of 
around 90%, while IntClust 7 and 8 showed a 10-year 
disease-specific survival rates of around 80%.

Expression of miRNAs has also been proposed 
to influence the methylation profile of cancers as it was 
demonstrated that for example the miRNA-29 (miR-29) 
family targets directly DNMT3A and DNMT3B in lung 
cancer [18].

The aims of the present study were first to refine 
and validate the classification of Luminal A breast 
cancers based on DNA methylation profiles across several 
datasets and, second, to address the prognostic impact of 
such classification, in particular aiming at identifying a 
subgroup of Luminal A tumors with a good prognosis in 
no need of adjuvant chemotherapy. Third, we investigated 
how the split of the Luminal A group may be affected by 
expression of miRNAs of the miR-29 family, and fourth, 
we investigated to what extent the split of the Luminal A 
group was affected by DNA copy number.

RESULTS

SAM40 – a DNA methylation signature 
stratifying patients with Luminal A breast 
tumors according to prognosis

We previously reported that Luminal A tumors were 
segregated into two different methylation derived clusters 
based on analysis of 1505 CpGs in 807 genes ([15]; 
Illumina GoldenGate). Using the Illumina GoldenGate 
DNA methylation profiles we applied SAM to identify 
differentially methylated genes. Forty-one genes were 
found significantly differentially methylated between the 
two methylation clusters of the Luminal A tumors. The 
genes were ADAMTS12, ASCL2, BIRC4, BMP3, BMP6, 

CD40, CDKN1C, COL1A2, DES, DKC1, DLK1, EGFR, 
ESR2, ETS1, ETV1, FES, FLT4, HBII-52, HOXA11, 
ICAM1, IRAK3, KIT, KRT13, LYN, MAS1, MKRN3, 
MYBL2, PALM2-AKAP2, PAX6, PCDH1, PDGFRB, 
PEG10, PITX2, SFRP1, TERT, TMEFF1, TNFRSF10C, 
TNFSF8, TPEF, WNT1 and WT1. The methylation status 
of these genes or any subset available on a given DNA 
methylation platform is from now referred to as SAM40.

The identified 41 genes (or the subset available 
for the different methylation data sets) were used to 
perform hierarchical clustering of Luminal A tumors 
in all four study cohorts. In the Norway27K cohort 
(HumanMethylation27) 39 genes were available 
(ADAMTS12 and HBII-52 did not have probes on the 
27K array). The methylation levels of all probes mapped 
to each gene were summarized using the median. 
Hierarchical clustering showed that the samples segregated 
into two clusters, one with relatively high methylation 
(red) and one with relatively low methylation (blue; 
Figure 1A upper panel). DNA methylation data for the 
three remaining study cohorts (Norway450K, OsloVal and 
TCGA) were generated using the HumanMethylation450. 
The methylation level of the probes that represented the 
5′UTR of each gene was used for hierarchical clustering. 
The genes that were not found with probes in the 5’UTR 
were ADAMTS12, BMP6, CD40, FES, FLT4, HBII-52, 
KIT, KRT13, MAS1, MKRN3, MYBL2, PALM2-AKAP2, 
PCDH1, TERT, TMEFF1, TNFRSF10C and TPEF. Like 
the Norway27K, the three remaining Luminal A study 
cohorts were each divided in two clusters: one cluster with 
high relative methylation (red) and one cluster with low 
relative methylation (blue; Figure 1B–1D upper panels). 

Kaplan-Meier analyses and log-rank tests were 
applied to the four study cohorts to determine the 
prognostic impact of the SAM40 signature. In all four 
study cohorts the patients belonging to the cluster with 
low relative methylation had better prognosis (Figure 1 
lower panels). In the Norway27K and Norway450K 
study cohorts patients in the hypomethylated cluster 
showed significantly better breast cancer specific survival 
(p = 0.00997 and p = 0.0314, respectively), while in the 
OsloVal study cohort patients in the hypomethylated 
clusters showed borderline significantly better breast 
cancer specific survival (p = 0.0827). In the OsloVal study 
cohort, the segregation was statistically significant for 
overall survival (p = 0.0203; Supplementary Figure 1). In 
the TCGA, patients in the hypomethylated cluster showed 
significantly better overall survival (p = 0.00115). 

Other parameters influencing prognosis of 
patients

ER status, TP53 mutation status, TNM stage and 
correlation to gene expression derived subtype centroids 
were determined for samples in the Norway27K study 
cohort. Only one tumor was found to be ER negative and 
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only one tumor harbored a TP53 mutation. No differences 
with respect to TNM stage or the distance to the gene 
expression derived subtype centroids (Luminal A, Luminal 
B or Basal-like) were observed between tumors classified 
in the two clusters (Figure 1A upper panel).

Ciriello et al. [16] reported a subgroup of Luminal 
A tumors with high level of genomic instability associated 
with a poor prognosis (copy number high (CNH) samples). 
The CNH samples in the TCGA data were evenly 
distributed between the two SAM40 derived clusters.

Curtis et al. [17] reported that breast cancer could 
be divided in ten subgroups based on CNA and gene 
expression profiles (iCluster). This classification was 
available for the samples in the OsloVal study cohort, 
and there was no clear difference in distribution of the 
iClusters between the two methylation derived clusters 
(Figure 1C upper panel). 

Absolute methylation levels

Comparing the absolute methylation levels of 
the SAM40 genes in the two clusters of the Norway 
27K cohort revealed 18 out of 39 genes (available on 
the 27K array) to be methylated at significantly higher 
levels in the left cluster compared to the right cluster of 

Figure 1A. Methylation level of normal breast tissue was 
also compared to methylation level of tumors in the two 
clusters, and 27 genes were differentially methylated 
between the hypermethylated cluster and normal tissue, 
while 21 genes were differentially methylated between 
the hypomethylated cluster and normal tissue. In 
general, absolute methylation levels of the samples in 
the hypomethylated cluster differed from normal controls 
to a lower extent than samples in the hypermethylated 
cluster. Absolute methylation level for all genes is shown 
graphically in Supplementary Figure 2, and p-values for 
statistical comparisons are given in Supplementary Table 3.

Pathway analysis

Pathway analysis of the SAM40 genes identified 
significant association to canonical pathways such as 
BMP, NF-κB, IL-8, PTEN and telomerase signaling, and 
regulation of the epithelial-mesenchymal transition (EMT) 
pathway. All significant pathways are shown in Table 1.

Multivariate analysis

To investigate whether the SAM40 signature was 
an independent prognostic marker, a multivariate Cox 

Figure 1: Hierarchical clustering of patients with Luminal A tumors using the SAM40 methylation signature. Patients 
were divided into two groups with different prognosis. The samples were divided in one cluster with low relative methylation and one 
cluster with high relative methylation (upper panels). The patients with low methylation had better prognosis in all four study cohorts 
(lower panels). (A) Norway27K study cohort (24 samples, 39 genes), (B) Norway450K study cohort (32 samples, 24 genes), (C) OsloVal 
(30 samples, 24 genes) and (D) TCGA (108 samples, 24 genes). Patient characteristics are indicated: estrogen receptor status: ER negative 
(gray) and ER positive (black); TP53 mutation status: wild type (gray) and mutated (black); T status: T2 (light gray), T2 (grey), T3 (dark 
grey) and T4 (black); TNM stage: stage I (light gray), stage II (grey) and stage III (dark grey); correlation to PAM50 centroids: high (dark) 
and low (light); iCluster: color corresponds to [17]; copy number high classification: non-CNH (gray), CNH (black) and unknown (white) 
as described by Ciriello et al. [16]. Unknown status is denoted with white.
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proportional hazard model was also performed to adjust 
for therapy regime, age, lymph node status and T status. 
The analyses were performed in the Norway27K study 
cohort (Figure 1A; Table 2A) and in the Norway450K 
study cohort (Figure 1B; Table 2B). Classification by 
SAM40 was significantly associated with survival in the 
multivariate model for the samples in the Norway 27K 
study cohort (p = 0.028), and borderline significant for the 
samples in the Norway450K study cohort (p = 0.072). The 
results are summarized in Table 2. 

Analysis of synergistic effects of deregulated 
methylation and copy-number alteration

To investigate whether the genes in the SAM40 
signature were affected concomitantly by methylation 
and genomic alteration CNAmet analysis was performed 
on samples of the Luminal A subtype. CNAmet is an 
algorithm to analyze the simultaneous and synergistic 
(additive) effect of methylation and copy-number 
alteration on gene expression in cancer. When the analysis 
was performed on the SAM40 genes, only two genes 
(FES and TNFRSF10C) showed borderline significant 
synergistic effects (q < 0.2, CNAmet score > 0). 

microRNAs that target DNMTs may cause 
differential methylation patterns in Luminal A 
tumors

Expression of miRNAs in the miR-29 family, 
known to target the DNA methyltransferases DNMT3A 
and DNMT3B was tested for differential expression in 
the subgroups of Luminal A tumors. In the TCGA study 

cohort one miRNA (hsa-miR-29b-1-5p; p = 0.049) was 
found higher expressed in the samples belonging to the 
hypomethylated cluster. When investigating all samples 
from the MicMa cohort, three miRNAs (hsa-miR-29b, hsa-
miR-29b-1-5p and hsa-miR-29b-2-5p; p = 0.019, p = 0.017 
and p = 0.017, respectively) were also found with higher 
expression in samples belonging to the hypomethylated 
cluster (Figure 2). Correlation between miR-29b expression 
and DNMT expression was investigated, and expression 
of hsa-miR-29b was negatively correlated to expression of 
DNMT3B (p = 0.057). 

DISCUSSION 

Here we report a DNA methylation signature (the 
SAM40) that segregates patients with Luminal A breast 
tumors in two groups with different prognosis. This 
observation was made in four independent data sets 
including The Cancer Genome Atlas. 

It is often difficult for the clinician to assess risk 
of recurrent disease as well as death of disease, and this 
poses a major challenge for the field. Overtreatment of 
breast cancer is a problem in the field, and this problem is 
especially prominent for patients with Luminal A tumors. 
Many patients will have a good prognosis without adjuvant 
systemic treatment such as chemotherapy, and these 
treatments may severely diminish quality of life and may 
cause long term side effects [19]. Our SAM40 signature 
allows subdivision of Luminal A patients and this will give 
a two-sided benefit: identification of one subgroup that 
may benefit from a more aggressive treatment than what 
is given today; and equally importantly, identification of a 
subgroup that may benefit from less treatment.

Table 1: Ingenuity pathway analysis of the 41 genes in the SAM40 signature
Benjamini Hochberg 

corrected p-value Ratio Molecules

Hepatic Fibrosis / Hepatic Stellate 
Cell Activation 0.00015 0.04 COL1A2,ICAM1,CD40,FLT4,PDGFRB,EGFR

BMP signaling pathway 0.00229 0.05 BMP3,PITX2,BMP6,XIAP
NF-kappaB Signaling 0.00229 0.03 CD40,FLT4,IRAK3,PDGFRB,EGFR
Telomerase Signaling 0.00324 0.04 ETS1,TERT,DKC1,EGFR
Role of Osteoblasts, Osteoclasts and 
Chondrocytes in Rheumatoid Arthritis 0.00525 0.02 BMP3,SFRP1,BMP6,WNT1,XIAP

Human Embryonic Stem Cell 
Pluripotency 0.00724 0.03 BMP3,BMP6,WNT1,PDGFRB

Basal Cell Carcinoma Signaling 0.01349 0.04 BMP3,BMP6,WNT1
Regulation of the Epithelial-
Mesenchymal Transition Pathway 0.01660 0.02 ETS1,WNT1,PDGFRB,EGFR

IL-8 Signaling 0.01660 0.02 ICAM1,FLT4,IRAK3,EGFR
Role of NANOG in Mammalian 
Embryonic Stem Cell Pluripotency 0.03311 0.03 BMP3,BMP6,WNT1

PTEN Signaling 0.03631 0.02 FLT4,PDGFRB,EGFR
Atherosclerosis Signaling 0.03631 0.02 COL1A2,ICAM1,CD40
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A recent randomized clinical trial from the Danish 
Breast Cancer Cooperative Group (DBCG) showed that 
patients with Luminal A tumors had comparable 10-year 
disease-free survival regardless of whether or not they 
received adjuvant chemotherapy [20]. This highlights the 
importance of choosing the correct patients for treatment.

A limitation of our study is that each Luminal A 
study cohort is retrospective and rather small. Future 
studies of the clinical impact of the SAM40 stratification 
in larger patient cohorts are of utmost importance, and 
such studies are planned in our hospital. 

Multivariate analyses showed that the association 
between the SAM40 signature and prognosis of Luminal A 
patients was independent of age, T status and N status. Studies 
of larger patient populations are needed for definite conclusions. 

The genes in the SAM40 signature were enriched in 
pathways that are known to be important in cancer, such 
as NF-κB signaling, telomerase signaling, IL-8 signaling, 
and regulation of EMT. Embryonic pathway signaling 
and regulation of EMT has been shown to be commonly 
deregulated in both metastatic breast cancer cells and 
embryonic stem cells [21]. The genes in the SAM40 
signature are all of remarkable function. Bediaga et al. 
[11] reported that CD40 was significantly hypermethylated 
in Luminal B tumors, a patient group with worse survival 
than those with Luminal A tumors. Both EGFR and FLT4 
have been shown to be silenced by DNA methylation in 
cancer [22, 23]. LYN encodes a tyrosine protein kinase 
and plays an important role in the regulation of innate 
and adaptive immune responses, responses to growth 

Table 2: Multivariate Cox proportional hazard survival analysis
A

Coefficient Hazard ratio Standard Error of 
coefficient p-value

SAM40 signature 3.72 41.16 1.70 0.028
Recieved chemotherapy −18.4 1.04E–08 2.01E + 04 0.999
Recieved hormonetherapy −1.89 0.15 1.91 0.322
Age (Older than 55) 1.67 5.32 1.97 0.396
Lymph node positive 3.31 27.49 1.87 0.076
T2 or T3 −0.18 0.83 2.31 0.937
B

Coefficient Hazard ratio Standard Error of 
coefficient p-value

SAM40 signature 1.59 4.92 0.89 0.072
Recieved chemotherapy 0.14 1.14 1.60 0.933
Recieved hormonetherapy −2.31 0.10 1.53 0.131
Age (Older than 55) 1.34 3.81 1.00 0.181
Lymph node positive 2.57 13.1 1.65 0.120
T2 or T3 0.48 1.62 1.12 0.666

Coefficients, hazard ratios, standard error of coefficients and p-values are shown for each investigated variable. A) Norway27K 
study cohort. Samples correspond to those presented in Figure 1A. 1B) Norway450K study cohort. Samples correspond to 
those presented in Figure 1B.

Figure 2: Differential expression of miRNAs in the miR-29 family.
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factors and cytokines, and also responses to DNA damage 
and genotoxic agents. Fackler et al. [24] have reported 
hypermethylation of LYN in ER-positive tumors. SFRP1 
and WNT1 are part of the Wnt pathway, which is important 
in embryonic development, cell differentiation and 
proliferation. WNT1 has been reported to be significantly 
hypermethylated in ER positive tumors [24]. Taken 
together, many of the genes in the SAM40 are involved 
in important pathways and functions that are implicated 
in cancer. 

It has been shown that members of the miR-29 
family have binding sites in DNMT3A and DNMT3B, and 
these miRNAs may therefore be involved in the regulation 
of DNA methylation patterns [18]. Here we show that 
miR-29b is differently expressed between the two clusters 
of Luminal A patients, potentially contributing to the 
different methylation pattern. miR-29b is higher expressed 
in the group with lower methylation, suggesting that this 
miRNA may inhibit the de novo DNMTs resulting in 
tumors with lower methylation. 

Synergistic effects between DNA methylation and 
copy number alterations were only observed in two of 
the genes studied here. Ciriello et al. [16] identified a bad 
prognosis subgroup of Luminal A in the TCGA data based 
on copy number profiles (copy number high; CNH). In the 
present study CNH Luminal A samples were distributed 
quite evenly between the high and the low methylation 
level groups. Thus, our analyses suggest that the genes in 
the SAM40 methylation signature are mostly uninfluenced 
by copy-number changes and that the SAM40 classifier is 
independent of classification by CNAs.

CONCLUSIONS

Breast cancer patients with Luminal A tumors were 
split into two groups using a DNA methylation signature 
(SAM40), and these patients showed significantly 
different prognosis. This novel signature was replicated 
and validated in three independent data sets. Being able to 
identify a subgroup of Luminal A patients with even better 
prognosis may have important implications for treatment 
of breast cancer and may be used as valuable tool for 
avoiding over-treatment of this patient group.

MATERIALS AND METHODS

Patient material

The inclusion criteria for this study was 1) 
that the sample had expression profiling for PAM50 
classification 2) that the sample was classified as Luminal 
A, 3) that the sample had methylation profiling, and 4) 
that the patient had at least 10 year clinical follow up. The 
eligible samples were selected from several patient cohorts 
from the Oslo region in Norway and the DNA methylation 
profiles have been generated for using two different 

Illumina Infinium platforms (HumanMethylation27 and 
HumanMethylation450). The samples were divided in 
three study cohorts based on DNA methylation profiling 
platform and patient characteristics: Norway27K, n = 24 
[25–27], Norway450K, n = 32 [25, 28, 29] and OsloVal, 
n = 30 [30]. In addition, data from TCGA, n = 108 were 
downloaded and comprised the fourth study cohort [12]. 
The four study cohorts are summarized in Supplementary 
Table 1 and the patient characteristics are summarized 
in Supplementary Table 2. Molecular subtypes were 
determined on each main cohort separately according 
to the PAM50 classification algorithm [31]. All patients 
gave their informed consent, and each individual study 
was approved by the regional ethical committee. Since 
Luminal A patients generally have a good prognosis, 
the most appropriate end point for prognosis was breast 
cancer specific survival (BCSS) and this was used for the 
three Norwegian study cohorts. For TCGA, only overall 
survival data (OS) was available.

DNA methylation analysis

Bisulfite conversion and DNA methylation analysis 
using the Illumina Infinium HumanMethylation27 and 
HumanMethylation450 beadchip assays was carried 
out as previously described [32, 33]. Preprocessing and 
normalization involved steps of probe filtering, color bias 
correction, background subtraction and subset quantile 
normalization as previously described [34]. 

Level 3 methylation data from TCGA was 
downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov; [12]). Probes with more than 50% 
missing values were removed, and further missing values 
were imputed using the k-nearest neighbor algorithm (R 
package pamr; k = 10). The clinical data from TCGA were 
downloaded on December 11th, 2013.

Identification of a DNA methylation signature 
for segregation of Luminal A tumors

In Rønneberg et al. [15] we discovered that Luminal 
A tumors clustered in two different groups when using 
DNA methylation level of about 1505 CpGs in 807 
cancer-related genes. In the present study we validate this 
clustering using differentially methylated genes in two 
array platforms, HumanMethylation27 and 450K array. 
We used the SAM function, R package samr [35] with 100 
permutations to identify differentially methylated genes. 
Methods for choosing probes that represent the identified 
genes were different for the two array platforms. For the 
HumanMethylation27 all probes mapped to the each gene 
were used, and the methylation values for each sample 
were summarized using the median, resulting in one 
methylation value per sample per gene. This could be done 
because the HumanMethylation27 only contains promoter 
probes. For the HumanMethylation450 a similar approach 
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was used, but using only probes that were mapped to 
the five prime untranslated regions (5′UTR). Due to 
differences in coverage of the methylation assays, 39 genes 
were covered on the HumanMethylation27, and 24 genes 
had probes in the 5′UTR on the HumanMethylation450. 

CNAmet analysis 

CNAmet analysis was carried out in the Anduril 
workflow environment and with CNAmet version 1.2.1 
[36, 37]. Level 1 gene expression and copy-number 
and level 3 DNA methylation microarray data were 
downloaded from the Cancer Genome Atlas [12]. A 
total of 85 Luminal A subtype primary breast carcinoma 
tumors had all three types of measurement. Copy-number 
data from Affymetrix 6.0 SNP arrays were extracted with 
the R package crlmm [38]. Samples with signal-to-noise 
ratio of less than 5 were removed. Moreover, probes 
with a confidence limit less than 0.9 were removed. 
Samples were normalized to a mean of 2. Log ratios were 
segmented using circular binary segmentation (parameters 
undo.splits=sdundo, undo.SD=3) [39]. All regions where 
segmented log ratios were over 2.3 were considered copy-
number gains and below 1.7 as copy-number deletions. 
Agilent gene expression microarrays were compared to 
59 controls. First, probes matching either multiple or no 
genes were removed. Then, data were normalized to a 
mean of 0. The CNAmet analysis was performed using 
Level 3 Illumina HumanMethylation27 methylation data. 
The data was preprocessed by TCGA, and in addition, 
probes with more than 25 missing values were removed.

CNAmet requires binary copy-number and 
methylation calls. In copy-number data, genes were 
dichotomized according to their gain/deletion status in a 
sample. In the methylation data, samples with methylation 
values in the lowest decile for each gene were considered 
hypomethylated. Similarly, samples with methylation 
values in the highest decile for each gene were considered 
hypermethylated.

Furthermore, the synergistic effect of copy-number 
gain and hypomethylation, and copy-number deletion and 
hypermethylation was analyzed separately. Genes with a 
q-value of less than 0.2 and scores over 0 in the CNAmet 
analysis were considered significant.

Expression of miR-29 family members and DNA 
methyltransferases

Expression levels of miRNAs from the miR-29 
familiy and mRNA from the DNMTs were available for the 
MicMa cohort [40] (GEO accession number GSE19536) and 
the TCGA cohort [12]. As described earlier (Supplementary 
Table 1), samples from the MicMa cohort were split 
between two study cohorts due to platform differences when 
comparing DNA methylation. When comparing expression 
levels, all MicMa samples were treated as one cohort. 

Statistical analysis

All analyses were performed using the R computing 
framework [41]. Mean centered beta values were used 
for hierarchical clustering using Pearson rank correlation 
matrix in an average linkage clustering approach. 
Kaplan Meier survival analyses and log-rank tests were 
performed using the R package survival. Multivariate 
Cox proportional hazard survival analysis was performed 
using the function coxph (R package survival) to adjust 
for treatment regime, age, lymph node status and T status. 
None of these parameters were significantly associated to 
survival in univariate analyses, but were included because 
they are thought to be prognostic in the population. Each 
parameter in the multivariate model was investigated for 
violations of the assumption of proportional hazards using 
the function cox.zph (R package survival). Data were also 
analyzed with Ingenuity Pathways Analysis (Ingenuity® 
Systems, www.ingenuity.com). 
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