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Abstract
Antibodies have been shown to hinder themovement of herpes simplex virus virions in
cervicovaginal mucus, as well as other viruses in other mucus secretions. However, it
has not been possible to directly observe themechanisms underlying this phenomenon,
so the nature of virion–antibody–mucin interactions remain poorly understood. In this
work, we analyzed thousands of virion traces from single particle tracking experiments
to explicate how antibodies must cooperate to immobilize virions for relatively long
time periods. First, using a clustering analysis, we observed a clear separation between
two classes of virion behavior: freely diffusing and immobilized.While the proportion
of freely diffusing virions decreased with antibody concentration, the magnitude of
their diffusivity did not, implying an all-or-nothing dichotomy in the pathwise effect of
the antibodies. Proceeding under the assumption that all binding events are reversible,
we used a novel switch-point detection method to conclude that there are very few, if
any, state switches on the experimental timescale of 20 s. To understand this slow state
switching, we analyzed a recently proposed continuous-time Markov chain model for
binding kinetics and virionmovement.Model analysis implied that virion immobiliza-
tion requires cooperation by multiple antibodies that are simultaneously bound to the
virion and mucin matrix and that there is an entanglement phenomenon that acceler-
ates antibody–mucin binding when a virion is immobilized. In addition to developing
a widely applicable framework for analyzing multistate particle behavior, this work
substantially enhances our mechanistic understanding of how antibodies can reinforce
a mucus barrier against passive invasive species.
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1 Introduction

There are several mechanisms by which antibodies (Ab) produced by the immune sys-
tem can interfere with and even prevent viral infection after an invasion. Antibodies
have long been known to bind to surface epitopes on invading virions, rendering the
pathogen ineffective either by blocking the epitope from binding to receptors on target
cells, or signaling to other immune cells/molecules to inactivate the virus or destroy
virus-infected cells. Recent experiments have revealed a previously under-appreciated
mechanism: physical hindrance of virion motion and potentially the complete immo-
bilization of virions in mucus secretions that lie on the epithelium (Wang et al. 2014;
Newby et al. 2017). Specifically, the presence of virion binding, immunoglobulin G
(IgG) antibody,was shown to directly decrease themobility of the herpes simplex virus
(HSV) virions in human cervicovaginal mucus (CVM) (Wang et al. 2014; Schroeder
et al. 2018), as well as influenza and Ebola virus-like particles in human airway mucus
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Fig. 1 Trajectories of HSV virions for Donor F17 at exogenous antibody concentrations 0µg/mL (left) and
1.0µg/mL (right). Top row: The displacement of HSV virions in the x-direction. The time indicated in the
horizontal axis is shifted for each path so that t = 0 corresponds to the moment the path is first observed.
Bottom row: All two-dimensional HSV virion trajectories overlaid and plotted in a single frame. For all
sub-figures, the trajectory frame rates are 15 observations per second
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(Yang et al. 2018). An example of the effect can be seen in Fig. 1, where we display
virion trajectories for two populations of HSV virions, originally studied in Wang
et al. (2014). The left and right columns show virion movement in the presence of
low and high Ab concentrations, respectively. The degree of activity in the low Ab
concentration is notably higher.

The possibility of using IgG to hinder the motion of different viruses in mucus
provides a novel strategy for immunologists to develop methods to prevent and/or
treat viral infection (Newby et al. 2017; Witten and Ribbeck 2017). Population-scale
experimental methods have shown that Ab are slightly less mobile in mucus than
in phosphate-buffered saline (Olmsted et al. 2001). The reduced diffusivity of Ab in
mucus has been attributed to weak transient bonds between individual Ab and the
polymeric microstructure of mucus, or “mucin mesh” (Olmsted et al. 2001). Mean-
while, many virions have been shown to diffuse unimpeded in mucus in the absence of
a detectable Ab concentration (Olmsted et al. 2001;Wang et al. 2014). For this reason,
the observation that virion mobility in CVM is impeded in the presence of Ab (even
across the menstrual cycle) implies there must be some physicochemical mechanism
at work (Wang et al. 2014; Schroeder et al. 2018).

Recently, the authors and collaborators have explored the possibility that Ab can
work in tandem with the mucin mesh to hinder diffusing virions. (See Fig. 2 for an
idealized schematic of the interactions.) In theory, as a virion diffuses through mucus,
an array of Ab can accumulate on its surface. When a sufficient number of virion-
bound Ab form low-affinity bonds to the mucin mesh, the virion can become tethered
and essentially trapped. This hypothesis was introduced by Olmsted et al. (2001)
and confirmed by Wang et al. (2014), by Newby et al. (2017), and by Schroeder et al.
(2018). In 2014, Chen et al. (2014) introduced a stochastic/deterministic hybrid model
for the immobilization of human immunodeficiency virus (HIV) by IgG in CVM and
demonstrated the potential impact of the tandem effect of Ab–virion binding and Ab–
mucus transient binding on the ability of viral populations to cross, enter, and pass
through a thin mucosal layer. Later, Wessler et al. (2015) used numerical simulations
to explore combinations of Ab–virion andAb–mucus reaction kinetics that produce an
optimal effect. Newby et al. (2017) further demonstrated that very-low-affinity Ab–

Fig. 2 A schematic depiction of
the proposed immobilization
process of virions, green circles,
by antibodies, blue ‘Y’s, in a
mucosal medium. Virions
become immobilized when
“enough” antibodies are bound
to the virions and the mucosal
fibers, gray lines. Arrows
indicate Ab interacting solely
with the mucin fibers. Figure
originally presented in Wang
et al. (2014)
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mucus bonds optimize trapping of diffusing nanoparticles using experimental and
simulated data along with providing theoretical arguments.

Underlying these mathematical models is a Switching Diffusion Hypothesis: that
the chemical reactions responsible for virion (or nanoparticle) immobilization are
reversible and, as a consequence, virions should switch between diffusive and immo-
bilized states. When compared to the experimentally observable timescale of 10–20s,
the Ab–mucin kinetic rates are expected to be fast, while the Ab–virion kinetic rates
are expected to be slow (see Table 1). It is not clear, however, whether the state switch-
ing between diffusion and immobilization should be on a faster or slower timescale
than the observable 10–20s.

In recent modeling efforts, (Chen et al. 2014; Wessler et al. 2015), the effect of
surface-bound Ab on the diffusivity of a virion was assumed to be incrementally
multiplicative. That is to say, there is a constant α ∈ (0, 1) such that the diffusivity
has the following state-dependent form.

Incremental Knockdown Hypothesis : D(S(t), N (t)) = αN (t)D. (1)

Here D is the diffusivity of the virion in mucus in the absence of Ab, N (t) is the
number of virion-bound Ab, and S(t) is the subset of Ab simultaneously bound to the
mucin mesh. This reduction in diffusivity is independent of S(t) because the number
of simultaneously bound Ab changes so rapidly (relative to the number of bound
Ab), the virion only feels the average effect of these changes, which is captured by
the number of bound Ab, N (t). The parameter α can be expressed in terms of the
Ab–mucin binding and unbinding rates (mon and moff, respectively) and the effective
concentration [M] of binding sites on the surfaces of mucin fibers. Ifmon[M] andmoff
are very large, so that there are many on-and-off switches per second, then an effective
diffusivity arises with a so-called knockdown factor α = moff/(mon[M]+moff) (Chen
et al. 2014). In this way, we say that the Incremental Knockdown Hypothesis follows
from assuming that the dynamics is in a Fast Switching Regime. That is to say, in
this modeling regime, one assumes that [diffusion � immobilization] switching is
faster than the times between experimental observations and faster than what we plan
to use as a simulation time step. We depict a typical trajectory of a virion under this
hypothesis in Fig. 3(a). A virion rapidly changes between the immobilized (red) state
and freely diffusing states (green). The resulting path has a reduced effective diffusivity
that is well approximated by Eq. 1, and the virion exhibits qualitatively less movement
than a virion predominately in the freely diffusing state (seen in blue).

Recent particle tracking experiments nowmake it possible to analyze virion behav-
ior as it is modulated by various concentrations of Ab (Wang et al. 2014). In Fig. 1,
we display two populations of HSV virions diffusing in CVM with 0 µg/mL and
1 µg/mL concentrations of exogenous HSV-binding IgG. There is qualitatively less
virion movement in CVM with higher concentrations of Ab, but, as we argue below
using path-by-path analysis, the trajectories of individual virions appear to resemble
either that of a strictly immobilized virion or a strictly freely diffusing virion. This
absence of observable switches between immobilized and freely diffusing states might
seem to ratify the Fast Switching Hypothesis. However, closer analysis of the freely
diffusing particles shows that the diffusivity of freely diffusing virions is essentially the
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Fig. 3 Top row a–c The path of a virion assuming it takes one (green trajectory) or ten (blue trajectory)
simultaneously bound Ab for immobilization. Red intervals correspond to periods of immobilization. Bot-
tom row d–f The virion–Ab–mucin dynamics that govern the movement of the simulated virion directly
above it. Within each frame, the number of bound Ab N (t) is shown by the purple trajectory and the subset
of these Ab that are simultaneously bound to the mucin fibers S(t) assuming a low threshold, T = 1, and
higher threshold, T = 10, shown by the green trajectory and blue trajectory, respectively. The binding rate
cascade factor c increases from left to right: c = 1, c = 20 and c = 200, respectively. Other model param-
eters used in the simulation are ([A]0, [A]exo, N∗) = (0.2µg/mL, 0.1µg/mL, 120). The mathematical
model is fully described in Sect. 2.4

same across all exogenousAb concentrations. This contradicts the IncrementalKnock-
down Hypothesis, which predicts the diffusivity should decrease with increasing Ab
concentration. While there are essentially no observable switches, and the diffusivity
of the free population is not incrementally affected by Ab concentration, we find that
the proportion of completely immobilized virions is unmistakably increasing with Ab
concentration. (See also Wang et al. 2014.) This suggests an alternative hypothesis:
we are in a Slow Switching Regime where switching takes place fast enough (less
than the incubation period of thirty minutes) so that the experiments display different
movement patterns, but slow enough (more than 20s) so that we do not see switches
in the observational time window.

In this work, we develop and implement the tools necessary for making the pre-
ceding claims. To be specific, we use clustering analysis to partition virion paths into
a few distinct behavioral patterns. We implement a Bayesian switch-point detection
algorithm to assess the prevalence of switches in mobile virions.We develop aMarkov
chain model for virion–Ab–mucin interactions for use in our characterization of the
dependence of virion motility on Ab concentration. A critical feature of this model
is the possibility that virion immobilization requires multiple simultaneously surface-
bound Ab and that a single virion–Ab–mucin binding event might lead to a cascade of
such binding events, which would serve to enhance trapping. Using uncertainty quan-
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Antibody-Mediated Immobilization of Virions in Mucus 4075

tification techniques, we explore the limitations of the available data, but argue there is
a reasonable parameter regime that is fully consistent with experimental observations.

2 Data Collection, Statistical Methods, andMathematical Model

2.1 Data Collection

Single particle tracking data of HSV virions were collected from seven different CVM
samples at five added doses of exogenously anti-HSV-1 IgG (0, 0.033, 0.1, 0.333, 1.0)
µg/mL with an incubation period of half an hour to one hour. For each sample, the
virions were tracked for a duration of 20s. The x-position and the y-position of all
traces were observed at a time interval of δ = 1/15s . For all the experiments, the
fluorescent viruses tracked were the HSV-1 mutant 166v, containing a VP22-GFP
tegument protein that serves as an internal fluorophore. The diffusional motion of
the fluorescent virions mixed into fresh human cervicovaginal mucus was visualized
using an EMCCD camera (Evolve 512; Photometrics, Tucson, AZ) mounted on an
inverted epifluorescence microscope (AxioObserver D1; Zeiss, Thornwood , NY),
equipped with an Alpha Plan-Apo 100 x /1.46 NA objective, environmental (temper-
ature and CO_2) control chamber and an LED light source (Lumencor Light Engine
DAPI/GFP/543/623/690). The position time series of virions were recorded using
the MetaMorph imaging software resulting in videos (512×512 pixels, 16-bit image
depth) with temporal resolution of 66.7 ms and spatial resolution of 10nm for 20s.
The x, y position time series were extracted from recorded videos using MetaMorph
software. For a more detailed description of the collection process, see the Methods
section in Wang et al. (2014).

2.2 Statistical Tools for Virion Trajectory Analysis

We used standard statistical techniques to assess whether the behavior of each virion
is consistent with the defining properties of Brownian motion (stationarity with
Gaussian-independent increments) and to infer physical parameters.

2.2.1 Test for Gaussianity and Independence of Increments

We used normal quantile–quantile (qqnorm) plots to qualitatively verify that the path
statistics are approximately Gaussian. The qqnorm plots for the increment processes
had approximately linear relationships for all particles indicating that the x and y
increment processes for all particles could be described as Gaussian. To construct
such plots, we used the qqnorm() function in the R programming language found
in the stats library.

Noting that if a Gaussian process has uncorrelated increments then the increments
are independent, we tested for independence of increments by quantifying the sta-
tistical significance of their correlation. Let {Ui (k) := Xi (kδ) − Xi ((k − 1)δ)}nk=1
and {Vi (k) := Yi (kδ) − Yi ((k − 1)δ)}nk=1 denote the i th particle’s x and y increment
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4076 M. A. Jensen et al.

processes, respectively. For the i th particle, we estimated the correlation between the
x and y increment processes separated h time steps apart using the sample autocorre-
lation function,Ai (h;U ) andAi (h; V ) used in the R programming language. If there
are n increments of uniform duration δ, then for a time lag of hδ

Ai (h; X) :=
1
n

∑n−h
k=1

(
Ui ((k + h)) −Ui

)(
Ui (k) −Ui

)

1
n

∑n
j=1(Ui (k) −Ui )2

, (2)

where Ui := 1
n

∑n
k=1Ui (k) (Venables and Ripley 2013). We say the i th particle’s

increment processes are anti-persistent (persistent) if bothAi (h = 1; X) andAi (h =
1; Y ) are below (above) the critical value for a 95% significance level and independent
otherwise.

2.2.2 Mean-Squared Displacement

The primary statistical tool for describing a population of microparticle paths is the
so-called ensemblemean-squared displacement (MSD), which we denote 〈M(t)〉. To
calculate it, we first compute a pathwiseMSD for each trajectory (denotedMi (t) for
the i th path) and then take an average over these functions. If there are n steps that are
uniform of duration δ, then as defined in Qian et al. (1991),

Mi (kδ) := 1

n − k + 1

n−k∑

j=0

∣
∣Xi (( j + k)δ) − Xi ( jδ)

∣
∣2.

For t between the time points {kδ}, we define Mi (t) by linear interpolation. The
slope of the MSD displayed on a log–log scale provides an estimate for each particle’s
diffusive exponent, ν, in the large time regime (Mi (t) ∼ Ctν). Following standard
particle tracking nomenclature, an individual path is said to be Brownian if ν = 1,
subdiffusive if ν ∈ (0, 1), and stationary if ν = 0.

2.2.3 Effective Diffusivity

A fundamental quantity to measure for a Brownian path is its diffusivity D. If
(X(t),Y (t)) is the 2d position of the particle at time t , then its diffusivity is defined to
be D := limt→∞ E(X2(t) + Y 2(t))/4t . For a Brownian path with n steps of uniform
duration δ, the maximum likelihood estimator (MLE) for its diffusivity has the form

Deff := 1

4δn

n∑

j=1

(
U ( jδ)2 + V ( jδ)2

)
, (3)

shown in Appendix A. We refer to Deff as the path’s effective diffusivity. We note
that this effective diffusivity is only a consistent estimator for D if the path has all
the characteristics of Brownian motion, namely stationary, independent, Gaussian
increments.
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Antibody-Mediated Immobilization of Virions in Mucus 4077

However, as seen in Fig. 4(a)–(c) there are many paths with anti-correlated incre-
ments. For such a process, “diffusivity” is not well defined. For those paths that can be
described by Brownian motion, Deff does not account for observational error. Using
the method proposed by Vestergaard et al. (2014), we found a typical variance of the
localization error to be minor (of order 0.01µm2/s) as compared to the effective dif-
fusivity (of order 1µm2/s) for such virions, see the SI Section 2 for further details and
supporting figure. Nevertheless, we use Deff as a descriptor for these paths because
this serves the purpose to distinguish between the particles in two different states by
the clustering methods described below.

For a given collection of N particles, the ensemble effective diffusivity is the
weighted average effective diffusivity of the tracked particles in the sample, denoted
〈Deff〉. When evaluating population statistics in particle tracking experiments, if par-
ticle paths are weighted independent of path length, then it has been shown that there
is a bias toward highly mobile particles, further discussed in Sect. 2.3.1 (Wang et al.
2015). Based on that analysis, we report the effective diffusivity of an ensemble by
taking an average weighted by path lengths. Let Di

eff denote the effective diffusivity
of i th freely diffusing virion, which has path length ni . Then

〈Deff 〉 :=
N∑

i=1

ωi D
i
eff where ωi = ni

∑N
j=1 n j

. (4)

2.2.4 Bias-Corrected and Accelerated Percentile (BCa) Confidence Interval Method

We constructed confidence intervals for ensemble statistics based on the bootstrapping
BCa method due to its second-order accuracy and invariance under transformations.
See Efron and Tibshirani (1994) for the formulation of confidence intervals using this
method. We used the boot.ci() function in the R programming language found
in the in the boot library to obtain the BCa confidence intervals for the ensemble
statistics as follows. First, we simulated 10,000 booted samples (with replacement)
from an ensemble of N tracked particles weighted by the particle path lengths. The
BCa confidence interval is then the usual confidence interval constructed using this
population of (weighted) bootstrap samples.

2.3 Classification Scheme for Virion Paths

For each donor and concentration, we employed a hierarchical clustering algorithm
to separate the HSV virions into distinct clusters based on a set of pathwise statistics:
x-increment ACF, y-increment ACF, and log 10 transform of the effective diffusivity.
We defined the dissimilarity measure between pairs of virions i and j by a weighted
Euclidean distance d(i, j) with weights of 1/4, 1/4, and 1/2 for the differences in
Ai (1; X),Ai (1; Y ), and log 10(Deff), respectively. The dissimilaritymeasure between
clusters was set to be the average linkage. That is to say, the dissimilarity between
clusters R and Q is defined to be
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4078 M. A. Jensen et al.

d(R, Q) = 1

|R||Q|
∑

i∈R, j∈Q
d(i, j). (5)

Hierarchical clustering is an agglomerative clusteringmethod (KaufmanandRousseeuw
2009). The algorithm is initialized by setting each data point as a distinct cluster. Dur-
ing each iteration, clusters are merged together to minimize the dissimilarity between
all clusters. The algorithm stops when all data points are in a single cluster. This pro-
cess is depicted graphically through the dendrogram where clusters merge at a height
equal to dissimilarity between them. We obtained the k cluster by cutting the resulting
dendrogram at the uniform height yielding k clusters.

Because hierarchical clustering is an unsupervised clustering method, in which the
number of clusters is not known a priori, the number of clusters has to be chosen
by the practitioner. One such method of obtaining the number of clusters is called
the elbow method. In this approach, the within-sum-of-squares values of the clusters
(WSS) is computed and plotted for a range of cluster numbers. The WSS decreases
with the number of clusters, and typically there is a bend or “elbow” in the graph that
guides the selection of an appropriate number of clusters.

In all cases, there was a major drop in WSS from one to two clusters, but it was
rarely clear how to specify the elbow among k = 2, 3, 4 or 5 clusters. We chose to
use k = 4 in almost all cases because the results were consistent with our biophysical
intuition that there might be Freely Diffusing, Immobilized, Subdiffusive, and Outlier
states. A few examples of each class are displayed in Fig. 1 of supplemental materials.
Although we allowed for four clusters when labeling each cluster with a biological
classification, clusters were typically merged together as the Subdiffusive and Outlier
class were few in number.

2.3.1 “Frame-by-frame” Method to Compute Empirical Distribution of Each Cluster

It has been shown inWang et al. (2015) that fast-moving particles are overestimated on
shorter timescales in 2d particle tracking. This bias toward the fast-moving particles
arises due to individual fast particles leaving and reappearing in the focal plane as
distinct traces and to new particles entering and leaving the focal plane throughout
the duration of the experiment. To minimize overestimating the freely diffusing pop-
ulation, we employed the “frame-by-frame” method developed in Wang et al. (2015)
to compute the fraction of each population present in the data. The “frame-by-frame”
method assigns each tracked particle a weight based on the number of frames the
particle appears in the field of view, whereas in the conventional method each particle
has the uniform weight of one. Under this weighting system, for a sample of size N ,
the weighted sample proportion of the i th state is given by

p̂i =
N∑

k=1

ωkδik for ωk = nk
∑N

k=1 ni
(6)

where δik is the Kronecker delta function.
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2.4 Mathematical Model for Asymptotic Probability of Immobilization

We mathematically model the dynamics of a virion under the Switching Diffusion
Hypothesis by the following SDE:

dX(t) =
√
2D

(
N (t), S(t)

)
dW(t) (7)

where W(t) is standard 2d Brownian motion and the state-dependent diffusivity,
D(N (t), S(t)), depends on two time-dependent processes: N (t), the number of anti-
bodies bound to the surface of a focal virion at time t , and S(t), the subset of these
antibodies simultaneously bound to mucin binding sites at time t . We establish a
threshold parameter T. A virion is defined to be immobilized if there are at least T
simultaneously bound antibodies, S(t) ≥ T , and defined to be freely diffusing if there
are fewer than T simultaneously bound antibodies, S(t) < T . Under this convention,
the time-dependent diffusivity is given by

D
(
N (t), S(t)

) =
{
D 0 ≤ S(t) < T

0 T ≤ S(t) ≤ N (t)

where the constant D is the diffusivity of the virion in mucus in the absence of Ab. In
the following sections, we present a mathematical model that describes the asymptotic
probability of the immobilized state when exposed to varying exogenous antibody
concentrations.

2.4.1 Model Assumptions

Based on the initial population clustering analysis, there appears to a subpopulation of
virions that do not interact with the antibodies. We define q to be the probability that a
given virionwill interact with the Ab population. Second, for the sake of simplicity, we
assume that Ab–virion binding sites operate independently from each other. However,
we allow for cooperativity among the Ab in binding to themucosal environment. Once
the virion has T simultaneously bound Ab–mucin–virion interactions (S ≥ T ), the
surface-bound antibodies might bind to the mucin fibers differently than if the virion
was freely diffusing. We parameterize this by a multiplicative change in Ab–mucin
binding rate through the introduction of the dimensionless parameter c. If c > 1, the
parameter has a cascade effect, aiding in the immobilization process (D’Orsogna and
Chou 2009; Goychuk et al. 2014; Holcman and Schuss 2014; Matsuda et al. 2014,
Newby et al. 2017).

2.4.2 A Markov Chain Model for Virion–Ab–Mucin Dynamics

Let N∗ denote the number of independent Ab binding sites on the surface of an HSV
virion. Antibodies bind and unbind from these sites at rates kon and koff, respectively,
with dissociation constant kd := koff/kon.

123



4080 M. A. Jensen et al.

Virion-surface-bound antibodies interact with the surrounding mucosal medium,
binding to and unbinding from mucin binding sites, at rates mon and moff, with dis-
sociation constant md := moff/mon. The total Ab concentration [A] is the sum of the
exogenous [A]exo and endogenous [A]0 Ab concentrations, and the total concentration
of binding sites on mucin fibers is denoted [M]. See Table 1 for a comprehensive list
of variables.

We model the Ab–virion interactions using a continuous-time Markov Chain
(CTMC) assuming linear state transitions. If a given virion has n occupied (Ab-bound)
surface binding sites at time t , then the CTMC transition rates are given by:

n
(N∗−n)kon[A]

�
nkoff

n + 1. (8)

If there are s simultaneously bound Ab cross-linking the virion to mucin fibers at
time t and n occupied virion-surface-binding sites, then the conditional Ab–mucin
dynamics are modeled by a CTMC with state transition rates

s
(n−s)g(s)mon[M]

�
smoff

s + 1 (9)

for s ≤ n, where

g(s) =
{
1 s < T

c s ≥ T .
(10)

The function in Eq. 10 quantifies the impact immobilization has on the rate at which
additional antibodies cross-link to the mucin fibers, i.e., the binding cascade effect,
and results in a nonlinear transition rate when c �= 1. We note that the transition
(n, s) → (n − 1, s − 1) is omitted from our analysis to facilitate with explicit likeli-
hood calculations. This does not qualitatively affect our results because of the timescale
separation between Ab–virion and Ab–mucin kinetics. Since we assume that (condi-
tioned on number of Ab–virion bindings N ) the stationary distribution of S is achieved
rapidly, the initial “error” using S = s instead of S = s − 1 after an N = n → n − 1
transition does not affect long-term dynamics.

We show the impact immobilization threshold, T , and the cascade factor, c, have
on the immobilization process in Fig. 3. Within each frame, it can be seen that a higher
immobilization threshold allows for longer freely diffusion periods, while across
frames a higher cascade factor leads to longer immobilized periods. In Fig. 3(d)–(f), we
simulated realizations of the processes (N (t), S(t)) for various combinations of T and
c. The number of bound antibodies, N (t), is displayed by the purple trajectory, and the
number of simultaneously bound Ab with a low immobilization threshold, S(t) when
T = 1, and with a higher immobilization threshold, S(t) when T = 10, are shown by
the green and blue trajectory, respectively. Moving left to right, the factor by which
the Ab–mucin binding rate changes after immobilization increases, c = 1, 20, and
200, respectively. In Fig. 3(a)–(c), we show how these processes dictate the movement
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of the virion. The virion with process (N (t), S(t) when T = 1) is colored in green,
while (N (t), S(t)when T = 10) is colored in blue. For both trajectories, immobilized
periods, S(t) ≥ T , are colored in red.

When immobilization does not affect the Ab–mucin binding rate (Fig. 3(d)), the
process S(t) rapidly crosses the immobilization threshold (dashed line) resulting in a
virion transitioning between states faster than the experimental time step (as shown
in Fig. 3(a)), for both T = 1 and T = 10. By increasing the cascade factor (as
shown in Fig. 3(e)–(f)), S(t) remains above the immobilization threshold, for observ-
able periods. In this case, the simulated virions in Fig. 3(b), (c) change states on the
experimental timescale of 20 seconds and longer than 20s, respectively.

2.4.3 Our Approximation for the Stationary Probability of Being Immobilized

We assume that the antibody–virion dynamics are slow compared to the antibody–
mucin dynamics. To approximate a virion’s long-term probability of being immobi-
lized, we use a product of two factors. The first is the steady-state distribution for the
number of surface-bound Ab, N (t). Then, we compute the stationary distribution for
the number of simultaneously bound Ab, S(t), conditioned on each value N (t) = n
(where n ∈ {0, . . . N∗}).

We introduce the notation b(x, n, p) for the binomial probability mass function.
That is, if X ∼ Binom(n, p), then P{X = x} = b(x, n, p). Our approximation to
the stationary distribution of immobilization can be understood as an average over
the transitions of the fast process S(t). Let σ denote the time a particle spends in the
immobilized state, and τ the time a particle spends in the freely diffusing state. Then
our approximation takes the form

π̃([A]exo) = q
N∗∑

n=T

E(σ ; T , c, n)

E(σ ; T , c, n) + E(τ ; T , n)
b

(

n; N∗,
[A]0 + [A]exo

kd + ([A]0 + [A]exo)
)

(11)

where

E(σ ; T , c, n) = 1

Tmoff

∑n
s=T b

(
s; n, cmon[M]

moff+cmon[M]
)

b
(
T ; n; cmon[M]

moff+cmon[M]
) ,

and E(τ ; T , c, n) = 1
(n−T+1)mon[M]

∑T−1
s=0 b

(
s; n; mon[M]

moff+mon[M]
)

b
(
T − 1; n, mon[M]

moff+mon[M]
) .

(12)

The derivation of Eqs. 11 and 12 relies on Markov Chain Theory and Renewal Theory
and can be found in Appendix B.
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It follows from the law of total expectation and the timescale approximation, the
expected time immobilized and expected time freely diffusing are, respectively:

E(σ ) =
N∗∑

n=T

E(σ ; T , c, n) b
(
n; N∗, [A]

kd+[A]
)
;

E(τ ) =
N∗∑

n=T

E(τ ; T , c, n) b
(
n; N∗, [A]

kd+[A]
)
.

(13)

We say that a parameter vector is in the Slow Switching Regime if, for all tested
exogenousAbconcentrations, the average times spent in the immobilized anddiffusing
states are more than 20s. To be precise, we define

Θslow := {
θ : E(σ ; [A]exo, θ) > 20 and E(τ ; [A]exo, θ) > 20 for all [A]exo ∈ [0, 1]}.

(14)

2.5 Switch-Point Detection

We develop an algorithm for detecting whether there is a single switch from diffusion
to immobilization or immobilization to diffusion. The mathematical model presented
in Sect. 2.4 (Eq. 7) assumes complete immobilization, but in fact immobilized virions
exhibit spatial motion. Bernstein and Fricks (2016) account for this spatial motion by
describing the bound state as a diffusing particle trapped in a potential well. Using an
expectation–maximization algorithm, they provide an evolving probability for each
particle that it is in an immobilized or diffusing state. In contrast to the many-switch
paths considered by Bernstein and Fricks, we argue in Sect. 3.1.2 that the virion
paths in our data set have at most one or two switches. We therefore developed and
implemented a Bayesian algorithm that is designed to identify the presence of a single
switch point.

To derive a likelihood function, we extend our SDE model Eq. 7 to include a path-
specific trapping potential well, similar to Bernstein and Fricks (2016). Our extended
model for a [diffusion → immobilization] switch is

dX(t) =
{√

2DdW(t) 0 ≤ t ≤ τ

−κ̃(X(t) − X(τ ))dt + √
2DdW(t) τ < t

X(0) = 0 (15)

and for [immobilization → diffusion], we have

dX(t) =
{

−κ̃(X(t) − X(0))dt + √
2DdW(t) 0 ≤ t ≤ τ√

2DdW(t) τ < t

X(0) = 0 (16)
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where X(t) = (X(t),Y (t))T and W(t) is 2d Brownian Motion. These SDEs are
derived from the Langevin equation for particles diffusing in a quadratic (Hookean
spring) potential well. The constant κ̃ = κ/γ where κ is the spring constant and γ is
the viscous drag experienced by the particle. Due to the fluctuation–dissipation rela-
tionship, γ also appears in the diffusivity constant, which has the form D = kBT /γ ,
where kB is Boltzmann’s constant and T is the temperature of the fluid. To obtain
an analytically trackable likelihood function, we introduce simplifying assumptions
that (1) the switch occurs exactly at an observation time point, and (2) there is no
measurement error. We derive the likelihood function in Appendix C.

We take a Bayesian approach to jointly estimate D, κ̃ , and τ under both switching
scenarios using a Gibbs sampling algorithm. If the 95% credible region for τ is com-
pletely containedwithin the interval [0.1Tfinal, 0.9Tfinal] where Tfinal is the duration of a
path, then we say that path is a candidate for switching. For both switching scenarios,
we estimated a false discovery rate for this criterion by simulating freely diffusing
particles and setting the false discovery rate to the percent of simulated Brownian
particles that were labeled as candidates for switching for the given switching model,
as shown in Eqs. 16 or 15. Similarly, we estimated the power of criterion through
simulation. For both scenarios, we simulated particles that switched states once and
set the power to the fraction of paths that were candidates for switching. See Sect. 5
for more details on how these tests were constructed, and the results are presented in
Sect. 3.1.2.

2.6 Uncertainty Quantification

Themodel givenbyEq. 11dependson theparameter vector θ = (T , c, N∗, q, [A]0, kd,
moff, α). In specifying the model to HSV-IgG data (Sect. 2.1) we set kd = 0.8969
(McKinley et al. 2014) and α = 0.90 (Olmsted et al. 2001). The Ab–mucin binding
and unbinding rates have not been directly estimated. We assume they are fast com-
pared to the experimental timescale and, for example, set moff = 100s−1. To assess
the remaining parameters, θ = (T , c, N∗, q, [A]0)—which are the immobilization
threshold value, the binding cascade factor, the number of sites on the surface of viri-
ons, the virion–Ab interaction probability, and the endogenous Ab concentration—we
employed the numerical method of profile likelihoods (Eisenberg and Hayashi 2014;
Raue et al. 2009). We used the numerically obtained relationships among parameters
to obtain conditions on θ such that the Switching Diffusion Hypothesis (in the Slow
Switching Regime) is consistent with the data.

In order to quantify themodel’s error in predicting the immobilized fraction, for each
donor i , we partitioned the paths according to exogenous Ab concentration {[A] j }5j=1
and introduced the following residual function:

χ2
i (θ) =

5∑

j=1

Ni j
(π̃([A] j ; θ) − p̂i j )2

π̃([A] j , θ)(1 − π̃([A] j ; θ))
, (17)

where π̃([A] j ; θ) denotes the model evaluated at [A] j with parameters θ (as defined
in Eq. 11), while Ni j and p̂i j are, respectively, the number of paths observed and
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the fraction that are immobilized in the j th subpopulation associated with donor i .
Assuming a normal approximation to the binomial distribution, our residual function
can be seen as the sum of five independent squared normal random variables, i.e., with
a χ2-distribution with 5 degrees of freedom.

2.6.1 Numerical Method of Profile Likelihoods to Deduce Parameter Identifiability

Because we assume normal approximation to the binomial distribution, working with
a residual function is equivalent to using a likelihood function to define confidence
intervals (Press et al. 1996; Raue et al. 2009). For ease of notation in this section, we
will suppress the dependence on i when considering the residual function χ2(θ) for
donor i .

To discuss identifiability of our model parameters, we use the nomenclature intro-
duced by Raue et al. (2009). Our minimum residual estimator is defined to be
θ̂ := argmin[χ2(θ)]. The likelihood-based confidence region of level α for θ is then
defined to be

Θα,d f := {θ : χ2(θ) − χ2(θ̂) < χ2(α, d f )}, (18)

where χ2(α, d f ) is the α quantile of the χ2 distribution with d f degrees of freedom.
When establishing a confidence interval for one of the parameters, we set d f = 1.
When establish a confidence region for multiple parameters, we set d f equal to the
number of parameters (Press et al. 1996).

Aparameter θk is said to be structurally identifiablewhen there is a uniqueminimum
of χ2(θ) with respect θk , i.e., if there exists a unique θk such that

θk = (
argminθ∈R5{χ(θ))})k .

Alternatively, θk can be unidentifiable due to the structure of the model or because the
quality and quantity of the data are insufficient in estimating θk . For the former case,
we say θk is structurally unidentifiable if the set

θmin := {θ : χ(θ) = min
ϑ∈R χ(ϑ)}

is not unique and contains at least two elements whose θk components are distinct. This
often occurs when there is a functional relationship φ among θk and at least one other
parameter, say θ j such that χ can be expressed directly in terms of φ(θk, θ j ). As for the
latter, data-restricted type of unidentifiability, we say θk is practically unidentifiable
when a unique minimum exists of χ2(θ) with respect to θk , but the likelihood-based
confidence interval for θ extends infinitely in increasing and/or decreasing values of
θk .

These definitions can be interpreted graphically using profile likelihoods. For resid-
ual function χ2(θ), the profile likelihood of the k-th parameter defined to be

χ2
PL(θk) = min

θ j �=k

[
χ2(θ)

]
. (19)
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If θk is a structurally identifiable parameter, then χ2
PL(θk) exceeds the threshold Δα

for both increasing and decreasing values of θk forming a deep valley around θ̂k . If
θk is structurally unidentifiable, the profile likelihood is flat. Lastly, if θk is practically
unidentifiable,χ2

PL(θk)obtains a uniqueminimumbut does not exceedΔα in increasing
and/or decreasing values of θk, forming a shallow valley around θ̂k .

We further investigate unidentifiable combinations of parameters by extending
Eq. 19 to profile parameter θ j and θk simultaneously,

χ2
PL(θ j , θk) := min

θi /∈{ j,k}
χ2(θ). (20)

Structural relationships between the two profile parameters manifest as flat val-
leys extending infinitely along the functional relationship in the contour plots of
χ2
PL(θ j , θk). We note this flat valley only traces out the functional relationship θ j

and θk when the dimension of the parameter space is larger than 2.

3 Results

3.1 Data Do Not Support the Incremental Knockdown Hypothesis for a 20 s Time
Frame

3.1.1 No Evidence of Fast Switching: Ensemble Effective Diffusivities of the Free
Subpopulation are the Same Regardless of Exogenous Ab Concentration

For each donor/Ab–concentration combination, the associated sample of virions con-
tained a clear division among the tracked particles’ MSD and ACF behavior. We
used the classification scheme described in Sect. 2.3 to label each tracked virion as
Immobilized, Freely Diffusing, Subdiffusive or Outlier. The Immobilized class was
characterized by low effective diffusivity (< 10−1 µm2/s) and either anti-persistent or
uncorrelated increment processes. Meanwhile, the Freely Diffusing class had uncor-
related increment processes and effective diffusivities larger than 0.2µm2/s. The
Subdiffusive and Outlier classifications were rare and did not appear in all samples.
For this reason, we removed these categories from the analysis but give a description
of them in the SI. In Fig. 4(a)–(c), we display the results of the classification for Donor
F08 at 0, 0.1, and 1µg/mL added anti-HSV IgG in terms of Deff and the average of the
x- and y-ACF, as defined in Sects. 2.2.3 and 2.2.1, respectively. The clear separation
of groups and locations of the clusters were qualitatively similar for the other donors
(further figures included in supplementary materials).

The pathwise MSDs for Donor F08 virions are displayed in Fig. 4(d)–(f), and
we note the similarity of the Freely Diffusing category of virions across all three
panels. The Incremental Knockdown Hypothesis would predict that freely diffusing
virions would be “slower and slower” in the presence of more and more Ab. However,
we found that the diffusivities of the Freely Diffusing classes are consistent across
all exogenous Ab concentrations. In Fig. 5, we display this fact in two ways. In
the left panel, we display the ensemble MSD averaged over the Freely Diffusing
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Fig. 4 a–c The unweighted composition of the tracked virions for Ab concentration 0, 0.1, and 1.0µg/mL,
respectively, forDonorF08.Eachpoint corresponds to a trackedvirionwith the given estimateddiffusivity on
a log 10 scale and average ACF value. The character of points denotes clusters prescribed by the hierarchical
clustering algorithm, and color of the point denotes the class of the cluster. d–f The pathwise MSD for all
the tracked virions for Donor F08 at [A]exo = 0, 0.1, and 1.00µg/mL. The colors, green, red, and blue,
denote the final clusters, Freely Diffusing, Immobilized, and Subdiffusive, respectively. Reference line with
slope = 1 is denoted in black. (We note that the relative size of the different classes in this figure is not
reweighted by path length as it is in the population counts reported in Fig. 6.)

(green triangles) and Immobilized (red x’s) populations for each Ab concentration.
There is remarkable overlap within each group. Moreover, in the right panel, we
display the ensemble effective diffusivity for the Freely Diffusing class at the various
exogenous Ab concentrations for all donors. While there is variation in the effective
diffusivity, the overlapping BCa confidence intervals indicate there is insufficient
evidence to conclude the effective diffusivity decreases with antibody concentration.
(We provide 95% weighted bootstrap confidence intervals for each estimate in Fig. 13
of supplementary material )

We can express this finding in terms of a statistical test by comparing the weighted
ensemble effective diffusivity for the freely diffusing subpopulation at the two extreme
Ab concentrations. We used a one-tailed paired difference hypothesis test:

H0 : 〈Deff([A]1)〉 − 〈Deff([A]5)〉 = 0, HA : 〈Deff([A]1)〉 − 〈Deff([A]5)〉 > 0

(21)

for [A]1 = 0.0µg/mL and [A]5 = 1.0µg/mL. At an α = 0.05 level of significance,
we failed to find significant evidence that the ensemble effective diffusivity of the freely
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Fig. 5 a Ensemble MSD of the Freely Diffusing class and the immobilized class at various exogenous
antibody concentrations represented by the green and red curves, respectively, for Donor F08. The black
line refers to the ensembleMSD of Brownian particles, slope equal to 1. b The estimated ensemble effective
diffusivity of the free population versus exogenous antibody concentrationwhere the shade and point style of
the curve correspond to Donor. See Fig. 13 of supplementary materials for the ensemble effective diffusivity
with 95% BCa confidence intervals

diffusing population decreasedwhen exogenousAb concentration increased from zero
exogenousAb to the highest concentration (t6 = 0.2567, p value= 0.4030).We report
the results of paired difference tests for all other combinations of the tested exogenous
Ab concentration in Table 10 of supplementary materials.

3.1.2 Little Evidence of Switching on the Experimental Timescale

We found little evidence that virions switch between states on the experimental
timescale of 20 s. If trackedparticleswere typically experiencingmany subtle switches,
we expect that their computed effective diffusivities would be diminished by a fac-
tor determined by the time spent immobilized. Moreover, because there are distinct
behavioral regimes, the distribution of the increment processes is essentially a mixture
of two Gaussian distributions (one for the Immobilized state and one for the Freely
Diffusing state). This wouldmanifest itself as a violation of linearity in qqnorm plots,
which we do not see for the vast majority of HSV virion paths.

While the qqnorm test can identify paths that might experience switches, they do
not affirm the presence of a switch. To this end, we developed a Bayesian method
for identifying whether there is a single switch point in a given virion path, described
in Sect. 2.5. We say a path of duration Tfinal is a candidate for switching if the 95%
credible region for τ was completely contained within the interval [0.1Tfinal, 0.9Tfinal].
The method was very effective on simulated data. When we applied the method to
simulated Brownian motion (Freely Diffusing), we found a 0.0119 and 0.0080 False
Discovery Rate of [diffusion→ immobilization] switches and [immobilization→ dif-
fusion] switches, respectively. On the other hand, 96.38% of the simulated [diffusion
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Table 2 Fraction of freely diffusing virions that possibly switched states once by Donor

Model Power False discovery rate Virion switch candidates

D → I 0.9638 0.0119 0.0112

I → D 0.9437 0.0080 0.0124

→ immobilization] paths were correctly identified as [diffusion → immobilization]
switches, while 94.37% of the simulated [immobilization → diffusion] paths were
identified as [immobilization → diffusion] switches (Table 2). Under this method,
we found that 1.12% of the Freely Diffusing class (1689 total tracked virions) were
identified as [diffusion → immobilization] switch candidates and 1.24% of the free
populations were [immobilization → diffusion] switch candidates. We therefore con-
cluded that state switches occurred relatively rarely on the experimental time scale.

3.1.3 Fraction Immobilized Increases with Exogenous Antibody Concentration

While Ab concentration did not seem to affect the behavior of virions labeled Freely
Diffusing, it did have a significant effect on the fraction of virions that were placed
in this class. This is consistent with the findings reported in Wang et al. (2014). We
computed the Immobilized fraction for each Donor/Ab–concentration sample using
the method discussed in Sect. 2.3.1 and displayed the results in Fig. 6, where each
curve in the panel (b) corresponds to a different donor. While there is heterogeneity in
the fraction of Immobilized virions across donors, there is a visible overall increase in
proportion immobilized from 0 to 1 µg/mL. This qualitative assessment is supported
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by statistical evidence provided by non-overlapping BCa confidence intervals between
the extreme exogenous Ab concentrations given in Fig. 12 of supplementarymaterials.

For each donor, the fraction of Immobilized virions increasedwithAb concentration
in the 0–0.333 µg/mL range and seemed to be saturated at higher Ab concentrations.
We tested the significance of this observed trend by fitting a negative exponential
growthmodel with predictors: exogenous antibody concentration and individual effect
terms relative to Donor F08. Let χk be the indicator function that a virion in the kth
donor sample is in the immobilized state. Our negative exponential growth model
takes the form

P(χk = 1) = (β0 + βk) − e−(α0+αexo[A]exo)+αk (22)

where αk and βk are the effect terms for the k-th donor. We found the exogenous
antibody concentration (αexo = 15.920, p value< 0.001), the growth rate due to the
baseline donor (α0 = −0.8427, p value = 0.0043), and baseline saturation prob-
ability (β0 = 0.9138, p value< 0.0001) were statistically significant in predicting
the immobilization probability, whereas the constants accounting for deviations from
the baseline due to donor sample were not significant. The model was fit using the R
command nls() with the minimization algorithm set to Gauss–Newton’s method.

3.2 The Simple Linear Model Predicts Fast Switching

The results from Sect. 3.1 provide evidence against the hypothesis that switching
between the diffusing and immobilized states is fast relative to the experimental
timescale. Our next goal was to determine whether there is a parameter regime that
predicts slow switchingwhile simultaneously being consistent with the exogenousAb-
dependent Immobilization data displayed in Fig. 6. This analysis depends strongly on
two assumptions: (1) whether one virion-bound Ab is sufficient to cross-link the virion
to mucin and (2) whether Ab–mucin binding rates increase when the virion is immo-
bilized, the so-called cascade effect. We introduced two variables—T , the threshold
number, and c, the cascade factor—in our general model to account for these possible
effects. In recent works, it has been assumed either that T = c = 1 (Chen et al.
2014; Newby et al. 2017) or that T = 1 and c > 1 (Wessler et al. 2015). We refer
to T = c = 1 as the simple linear model (SLM) because all the CTMC transition
rates are linear. By computing the expected durations of the immobilized and diffusing
states (Eq. 13, derivation in Appendix B.2), we were able to show that the data are not
consistent with the SLM, or any case where T = 1.

We say a model is consistent with the observed data for a specified donor if there
exists a parameter vector θ that iswithin the 95%confidence region for the Immobilized
Fraction data (denotedΘα,d f , defined in Eq. 18) and also predicts expected state times
larger than 20s (denoted Θslow, defined in Eq. 14). In Fig. 7, we demonstrate that the
SLM is not consistent with the data for Donor F08. In the left panel, we show a
2d profile likelihood plot for the endogenous Ab concentration [A]0 and number of
virion-surface-binding sites N∗. For each ([A]0, N∗) pair, we calculated the best fit for
the remaining parameter q, the virion–Ab interaction probability, and displayed the
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Fig. 7 a,dProfile likelihood contour plots (Donor F08) forχ2
PL([A]0, N∗) andχ2

PL(c, N∗)when T = c = 1
and T = 19, respectively. Darker shades correspond to smaller profile likelihood values and the black region
corresponds to the 95% confidence regionsΘ0.05,3 andΘ0.05,5. b, e Predicted Immobilized Fraction curves
(gray lines) for θ sampled from Θ0.05,3 and Θ0.05,5. The black curve is the prediction of the best fit in
each case for Donor F08. The observed Immobilized Fraction is shown by the purple line with triangles. c,
f Expected duration of Immobilized (red curves) and Freely Diffusing (green curves) states for θ sampled
from Θ0.05,3 and Θ0.05,5. When T = c = 1, frame (c), none of predicted state times are above 20s,
horizontal black line. On the other hand, when T = 19, frame (f), there are some parameter combinations
that do yield slow switching. These are marked in light blue as appropriate in Panels (d)–(f)

residual value by the shading (darker means better fits). The black region represents
the 95% confidence region for these two parameters. We uniformly sampled this
confidence region, Θ0.05,3, and displayed the predicted Immobilized Fraction curves
for these parameter samples in panel (b) and theAb–concentration-dependent expected
state durations in panel (c). We note that all parameter combinations in Θ0.05,3 had
diffusing states that lasted less than 0.1 s for all values of [A]exo. We repeated this
analysis for all donors and in each case found that Θ0.05,3 ∩ Θslow = ∅.

3.3 Threshold and Binding Cascade Parameters Allow Slow Switching

By allowing the immobilization process to require multiple cross-linking antibodies,
T > 1, and for the Ab–mucin dynamics to be state dependent, c �= 1, we found both
that (1) the subset of parameters that lead to slow switching is non-empty (Θslow �= ∅)
and (2) there is an overlap between slow-switching parameters and parameters that
fit the Immobilized Fraction data well (Θ0.05,5 ∩ Θslow �= ∅). For example, in Fig. 7
panels (d)–(f) we demonstrate this fact assuming T = 19 for Donor F08. The 2d
profile likelihood plot in panel (d) shows an inverse relationship between N∗ and the
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cascade factor c. Again the black region corresponds to all (c, N∗) pairs that appear in
Θ0.05,5. For a uniform sample of such pairs, in panel (e) we display the Immobilized
Fraction predictions, and in panel (f) the corresponding expected immobilization and
diffusion state durations. Only a small subset of Θ0.05,5 allows for slow switches. We
mark this subset in blue in all three panels. Notably, conditioned on T = 19, we have
that N∗ ≤ 120, which is somewhat smaller than the typical estimate for N∗. In the next
section, we note that assuming higher values for T leads to higher allowable values
for N∗. This type of result holds for all donors: for sufficiently high assumed T , the
corresponding parameters sets Θ0.05,5 and Θslow overlap.

By testing over a range of θ = (T , c, N∗, [A]0), we uncovered some relationships
among the components of the parameter vectors θ that yield slow switchingΘslow. We
first investigated the relationship between T and c by fixing N∗ and [A]0. Noting that
Eθ (τ ) is independent of c and Eθ (σ ) is an increasing function in c, we calculated the
minimal c required to satisfy the slow-switching condition, labeling this value cmin.
Though we could not obtain an explicit relationship between T and cmin, we found that
virions with a large immobilization threshold T can only satisfy the slow-switching
condition if there is a corresponding large cascade effect, large cmin. To visualize this,
in Fig. 8(a) we display the parameter combinations of (T , c, N∗ = 300, [A]0 = 0.1)
that yield Eθ (τ ) > 20 (green) and Eθ (σ ) > 20 (red) for all exogenous antibody con-
centrations between 0 and 1µg/mL. The overlapping region (blue points) corresponds
to θ ∈ Θslow, and the combinations of interest (T , cmin) are shown in black.

We draw the conclusion that if N∗ = 300, then T must be at least 34 and c must be
at least 63. If we increase the assumption about N∗ while keeping [A]0 fixed, then we
found that the minimal allowable T and c for slow switching increase and decrease,
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Fig. 8 a Parameter combinations of T and c that predict expected immobilized times greater than 20s, red
points, and predict expected freely diffusing times greater than 20s, green points, assuming N∗ = 300 and
[A]0 = 0.1µg/mL. The overlapping (T , c) combinations (blue points) are those combinations that satisfy
slow-switching condition and subset (T , cmin) are denoted by black. b The minimal value of T required
for our model to predict slow switching as a function of N∗, orange curve. Given an N∗ and corresponding
minimal T pair, the minimal value of c required for our model to predict slow switching is denoted by the
brown curve. The endogenous Ab concentration is fixed at [A]0 = 0.1µg/mL
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respectively. We demonstrate this relationship in Fig. 8(b). For [A]0 = 0.1µg/mL,
the orange (circles) curve corresponds to the minimal T value (left y-axis) for the
given N∗ (x-axis) required such that θ ∈ Θslow where [A]0 = 0.1µg/mL. The brown
(triangles) curve denotes the minimal c value (right y axis) required for the given N∗,
minimal T , and [A]0 = 0.1µg/mL to result in expected state times longer than 20s.

3.4 Model with Threshold and Binding Cascade Parameter is Unidentifiable

As implied by the results in the preceding section, we found that the introduction of
T > 1 and c �= 1 resulted in issues with identifiability. That is to say, it appears that
the confidence regionΘ0.05,5 is infinite even when restricted to the subspaceΘ0.05,5 ∩
Θslow. We use the Immobilized Fraction data for Donor F08 to demonstrate this fact
but provide information for each Donor in supplementary materials. Throughout this
section, we will use the terminology defined in Sect. 2.6.

Over the full parameter space Θ , the 1d profile likelihoods revealed that all three
of the parameters T , c, and N∗ are practically unidentifiable over the range we tested.
The profile likelihoods are displayed in black in Fig. 9(a)–(c). When we profiled the
parameters T , c, and N∗ restricted to the Slow Switching Regime, Θ0.05,5 ∩ Θslow,
we found T is still practically unidentifiable over the range T ≥ 19, while c is prac-
tically unidentifiable a large range of positive values. The number of binding sites
N∗ does seem to be identifiable, with a deep valley centered around the unique mini-
mum at approximately N∗ = 120. These profile likelihoods are represented in blue in
Fig. 9(a)–(c). The dashed lines correspond to the 95% CI boundaries for each param-
eter. Since the blue curves are below the confidence interval, we can say that there
exist parameter combinations in the Slow Switching Regime that reasonably fit the
Immobilized Fraction data in Fig. 9(e).
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4 Discussion

We have developedmathematical models and statistical methods to analyze the behav-
ior of HSV virions diffusing in CVM in the presence of various concentrations of
cross-linking Ab. With a few exceptions, we found that particle paths can be parti-
tioned into two basic categories: Freely Diffusing and Immobilized.While the fraction
of Immobilized virions increases with Ab concentration, we found that the mobility
of the Freely Diffusing class is not Ab–concentration dependent.

Because we expect all the individual bonds to be reversible, virions should switch
between the Freely Diffusing and Immobilized states. Previously, it had been hypoth-
esized that such switches are rapid with respect to the experimental timescale, but our
analysis contradicts that assumption. This raises the question of whether or not it is
possible for the basic kinetic model to produce “slow-switching” paths where switches
occur on a timescale much larger than the experimental time window. We found that
this is possible if the model allows for a lower bound on the number of Ab necessary
to immobilize a virion and assuming a “cascade effect” in Ab–mucin binding that
encourages entanglement.

Introducing these extra features leads to a fundamental issue with unidentifiability
in the statistical analysis.We canmake claims like “theminimumnumber of antibodies
needed to immobilize a virion must be greater than 20 or so”, but we cannot be more
specific. In order to do so, we would need to have access to time series that are much
longer than what is currently experimentally feasible.

While we have shown that it is possible for reversible kinetics to be consistent
with the path data, it might also be possible to explain the data with a model that
assume all binding events are irreversible. Unfortunately the available data cannot
distinguish between the two models. One possible resolution is to conduct experi-
ments that explicitly control for the time between the introduction of Ab to the virion
population and the observation of virion trajectories. Based on our model, in which
we assume the immobilization process is reversible prior to the system reaching sta-
tionarity, switching should be more common when the number of antibodies bound
to surface epitopes is low. Therefore, starting the tracking immediately enhances the
probability of observing state switches before any long-lasting immobilization events
occur.

On the other hand, observing virions at different time points long after Ab introduc-
tion will help determine whether or not the system reaches a stationary distribution.
If so, there should be substantial information in analyzing how (or if) that stationary
distribution depends on the Ab concentration, and the rate at which that stationary
distribution is achieved.

From a biological point of view, this uncertainty about the true timescale of state
switching prevents conclusive answers for the type of model presented by Chen et al.
(2014). Namely, in order to characterize the percentage of virions that can pass through
a mucosal layer within two hours, we must know whether state switching takes place
on the order of minutes, days or longer. The analysis in this work simply served to
eliminate the possibility of switching on a timescale of milliseconds or seconds, which
was the standing assumption.
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The statistical methods and mathematical model introduced here apply to a broad
class of biological systems that are composed of distinct subpopulations. Our classi-
fication scheme based on path-by-path analysis detects subpopulation dynamics that
can be masked when considering only overall ensemble behavior. Clustering and then
analyzing subpopulation ensemble statistics provide insight on the way the proportion
and dynamics of these subpopulation change in response to the environmental factors.
Themodel proposed in Sect. 2.4 can bemodified to describe the general scenario when
nanoparticles work to entrap a diffusing pathogen by anchoring the pathogen to the
surrounding environment.
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ADerivation of theMLE for D

From the defining properties of Brownian motion, the likelihood function of 2d Brow-
nian motion defined by dX(t) = √

2DdW(t) has form

L(D; u, v) =
( 1

4πδD

)n
exp

(

−
n∑

k=1

(
X(kδ) − X((k − 1)δ)

)2

4Dδ

)

× exp

(

−
n∑

k=1

(
Y (kδ) − Y ((k − 1)δ)

)2

4Dδ

)

. (23)

In terms of the increment process, U (kδ) and V (kδ), the loglikelihood is

�(D) = −n(log(4πδ) + log(D)) − 1

4Dδ

n∑

k=1

(
U (kδ)2 + V (kδ)2

)
. (24)

Solving the likelihood equation d
dD �(D) = 0, the ML estimator for D is given by

D̂MLE = 1

4δn

n∑

k=1

(
U (kδ)2 + V (kδ)2

)
. (25)

BMathematical Model in Sect. 2.4

Wearrive at our approximation to the probability of immobilizationEq. 11 presented in
Sect. 2.4 by averaging over the transitions of the number of antibodies simultaneously
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bound to the virion, S(t). To do this, we consider a simplified model in which the Ab–
mucin binding rate is the same for both an immobilized virion and freely diffusing
virion. That is the function defined in Eq. 10 is constant, g(s) ≡ c. In this case, let
S(t)|n,c denote the Markov chain with transition rates:

s
(n−s)cmon[M]

�
smoff

s + 1. (26)

First, we derive the stationary distribution for the number of bound antibodies, N (t),
and the conditional number of simultaneously bound antibodies assuming g(s) ≡ c,
S(t)|n,c. Then we compute the expected duration of the Immobilized state and the
Freely Diffusing state of a virion from those quantities assuming g(s) ≡ c. Finally,
we obtain Eq. 11 using the results of the previous two steps.

B.1 Stationary Distribution of the Two Processes N(t) and S(t)|n;c
We model the two processes N (t) and S(t)|n;c as CTMC with transition rates given
by Eqs. 8 and 26, respectively. Because they are irreducible Markov chains with a
finite state space, there exists a unique stationary distribution, and convergence is
exponential. Under the assumption that the Ab binding sites on the surface of a virion
operate independently, the process N (t) follows a binomial distribution with N∗ trials
and a time-dependent success probability. Evoking a classical result from Renewal
Theory, the steady-state success probability is given by the long-run fraction of being
in the bound state, so that

lim
t→∞ N (t) ∼ Binom

(
konA

koff + konA
, N∗

)

. (27)

By assuming g(s) ≡ c, each antibody bound to the virion interacts with the mucin
fibers independently, so that S(t)|n;c is a binomial random variable with n trials and
time-dependent success probability. It follows from the same reasoning as above, that

lim
t→∞ S(t)|n;c ∼ Binom

(
cmonM

moff + cmonM
, n

)

(28)

is the unique stationary distribution.

B. 2 Expected Duration of the Freely Diffusing and Immobilized States

We derive the expected duration of the the Freely Diffusing state and Immobilized
states of a virion by considering the simplifiedmodelwhen the number of simultaneous
bound antibodies has transition rates as given in Eq. 26.

We introduce the following notations τT ;c and σT ;c to denote the time the pro-
cess Sn;c spends in the freely diffusing state and immobilized state, respectively. The
expected duration of the Freely Diffusing state is simply the expected hitting time of
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state T , given Sn;c starts with T − 1 simultaneously bound antibodies. By solving
a system of linear equations for the vector of expecting hitting times of state T , see
Norris (1998), yields

E(Sn;c(t) = T |Sn;c(0) = T − 1)

= 1

(n−T+1)mon[M]b
(
T−1;n,

monM
moff+mon[M]

)
T−1∑

s=0

b
(
s; n; mon[M]

moff+mon[M]
)
. (29)

Similarly, the expected duration of the Immobilized state is the expected hitting time
of state T − 1 given Sn;c starts in state T . By solving a system of linear equations for
the vector of expecting hitting times of state T − 1,

E(Sn;c(t) = T − 1|Sn;c(0) = T )

= 1

Tmoffb
(
T ;n,

mon[M]
moff+mon[M]

)
n∑

s=T

b
(
s; n, mon[M]

moff+mon[M]
)
. (30)

We observe that the transition rates of a Freely Diffusing virion are the same as a virion
modeled by the simplified transition rates given by Eq. 26, specifically for c = 1. The
transition rates of an immobilized virion are the same as a virion modeled by the
simplified transition rates as given in Eq. 26. Hence, the following equalities hold

E(σ ; T , c, n) = E(σT ;c; T , c, n) and E(τ ; T , c, n) = E(τT ;1; T , 1, n).

Explicitly, the duration of the Freely Diffusing state and the Immobilized state of a
virion are given by

E(τT ;c; T , c, n) = 1
(n−T+1)monM

( ∑T−1
s=0 (ns)

(
monM

moff+monM

)s( moff
moff+monM

)n−s

( n
T−1)

(
monM

moff+monM

)T−1( moff
moff+monM

)n−T+1

)

(31)

E(σT ;c; T , c, n) = 1
Tmoff

(∑n
s=T (ns)

(
cmonM

moff+cmonM

)s( moff
moff+cmonM

)n−s

(nT)
(

cmonM
moff+cmonM

)T ( moff
moff+cmonM

)n−T

)

, (32)

respectively.

B.3 Asymptotic Probability of Number of Bound Antibodies

We are now ready to derive our timescale approximation of the asymptotic proba-
bility of immobilization function (Eq. 11). By conditioning on the slow process, the
antibody–virion dynamics,

π̂(A; θ) = lim
t→∞P{q > 0 ∩ {S(t) ≥ T }}

= P{q > 0} lim
t→∞P{S(t) ≥ T |q > 0}
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= q
N∗∑

n=T

(
lim
t→∞P{S(t) ≥ T |N (t) = n, q > 0}) · (

lim
t→∞P{N (t) = n}).

(33)

An application inRenewal Theory leads to the stationary probability of immobilization
for the conditional process S(t) of the form

lim
t→∞P{S(t) ≥ T |N (t) = n, q > 0} = E(σ ; T , c, n)

E(σ ; T , c, n) + E(τ ; T , n)
. (34)

Plugging in the results from Appendix B.1 and B.2 gives Eq. 11.

C Derivation of Likelihoods

We derive the likelihood of Eqs. 15 and 16 from the exact solution of the SDEs under
the assumptions that the switch point, τ , occurs at a time measurement, and the true
2d position of the particle is X(t) = (X(t),Y (t)). We denote the time measurement
tk = kδ for k = 1, . . . n, where t0 = 0 and tn = T , and X(tk) = Xk .

For the [diffusion → immobilization] model, when t > τ the SDE is linear with
additive noise. Hence, a conditional exact solution can be expressed using Duhamel’s
formula,

Xk |xk−1 =
{
xk−1 + √

2D(Wk − Wk−1) 0 < tk ≤ τ

xk−1e−κ̃Δ + (1 − e−κ̃δ)xτ + √
2D

∫ tk
tk−1

e−κ̃(tk−s)dW(s) τ < tk ≤ T .

(35)

It follows immediately from the definition ofBrownianmotion and from an application
of Ito’s isometry,

Xn|xn−1 ∼
{
N (xk−1, 2δD) 0 < tk ≤ τ

N
(
ρxk−1 + (1 − ρ)xτ ,

D
κ̃
(1 − ρ2)

)
τ < tk ≤ T .

(36)

where ρ = e−κ̃δ . Because the solutions to SDEs satisfy the Markov property,

L((x1, . . . , xk)) =
( τ∏

k=1

P0,xτ (Xk |xk−1 = xk)
)( n∏

k=τ+1

P0,xτ (Xk |xk−1 = xk)
)

=
( 1

4πδD

)τ( κ̃

2πD(1 − ρ2)

)n−τ

× exp

( −1

4δD

τ∑

k=1

(
(Xk − Xk−1)

2 + (Yk − Yk−1)
2)

)
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× exp

( −κ̃

2D(1 − ρ2)

n∑

k=τ+1

((
Xk − ρXk−1 − (1 − ρ)xτ

)2

+(
Yk − ρYk−1 − (1 − ρ)yτ

)2
))

. (37)

The likelihood equation for the [immobilization → diffusion] switching model
derivation is similar to that [diffusion → immobilization] switching model, but now
we assume the immobilized particle is centered around the origin. Under the same
reasoning as above

L((x1, . . . , xn)) =
( τ∏

i=1

P0,xτ (Xk |xk−1 = xk)
)( n∏

i=τ+1

P0,xτ (Xk |xk−1 = xk)
)

=
( κ̃

2πD(1 − ρ2)

)τ

× exp

( −κ̃

2D(1 − ρ2)

τ∑

n=1

(
(Xk − ρXk−1)

2 + (Yk − ρYk−1)
2
))

×
( 1

4πδD

)n−τ

exp

( −1

4δD

n∑

k=τ+1

((
Xk − Xk−1

)2(
Yk − Yk−1

)2
))

.

(38)
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