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Electroencephalograph (EEG) has been increasingly studied to identify distinct mental

factors when persons perform cognitively demanding tasks. However, most of these

studies examined EEG correlates at channel domain, which suffers the limitation that

EEG signals are the mixture of multiple underlying neuronal sources due to the volume

conduction effect. Moreover, few studies have been conducted in real-world tasks.

To precisely probe EEG correlates with specific neural substrates to mental factors in

real-world tasks, the present study examined EEG correlates to three mental factors,

i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in

EEG component signals, which were obtained using an independent component analysis

(ICA) on high-density EEG data. EEG data were recorded when subjects performed

a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent

component (IC) signals that were associated with specific neural substrates (i.e., the

frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral

powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and

the alpha power of the other four ICs, were detected to be correlated to mental workload

and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis

indicated that spectral powers at five ICs significantly increased with TOT. These findings

indicated that different levels of mental factors can be sensitively reflected in EEG

signals associated with various brain functions, including visual perception, cognitive

processing, and motor outputs, in real-world tasks. These results can potentially aid in

the development of efficient operational interfaces to ensure productivity and safety in

ATC and beyond.

Keywords: cognitive factors, time-on-task effect, mental effort, mental workload, EEG, ICA

INTRODUCTION

Vigilance is indispensable in working environment where automated systems are often used, such
as air traffic control (ATC; Warm et al., 2008). Tasks of demanding cognitive workload (Van
daalen et al., 2009), along with long working period, can lead to degradation in vigilance, and
potentially errors and/or task failure (Danaher, 1980; Dinges, 1995; Warm et al., 2008). In this
regard, many studies have been conducted to identify markers that can be used to monitor the
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evolution of vigilance state and associated behaviors (Ballard,
1996; Smit et al., 2004; Berka et al., 2007; Kim et al., 2017). Such
markers can be integrated into human machine interfaces (HMI)
to optimize information flow and develop warning systems for
situations, in which operators become less vigilant (Parasuraman,
2003; Kramer and Parasuraman, 2007; Parasuraman and Jiang,
2012; Parasuraman et al., 2012).

Task demands, environmental conditions, and engagements
are all multidimensional processes that affect operator’s state
of vigilance. Among them, three mental factors (Davies and
Parasuraman, 1982), i.e., mental fatigue, mental workload, and
mental effort, have been widely studied. Specifically, mental
fatigue, also known as the time-on-task (TOT) effect (Borghini
et al., 2014), reflects the unwillingness to perform cognitively
demanding tasks (Montgomery et al., 1995). Mental workload is
defined as objective task demand imposed on human operators
(O’donnell and Eggemeier, 1994; Miyake, 2001), and usually
measured as number of successive and/or simultaneous jobs that
need to be performed (Wickens, 2015, 2002). Mental effort is a
measure of mental capacity that is actually allocated to meet task
demands (Paas et al., 2003), and can be measured by number
of actions made to accomplish the task (Stone et al., 2005; Rieh
et al., 2012). It is also noted that these three factors are interplayed
and cannot be completely separated. For example, mental fatigue
and effort have been reported to have significant influence on
workload (Hockey, 2003). Mental workload is a derivative of task
load and environmental factors (i.e., coworkers, noise, etc.), but is
also mediated by operators’ response to task load that is reflected
in operators’ mental effort (Endsley and Rodgers, 1998). Increase
of mental effort to eithermeet highmental workload requirement
or to mediate mental fatigue-related performance impairment,
has been widely reported. Besides, workload variations have been
observed to be associated with invested effort and employed
strategies (Straussberger, 1997; Veltman and Jansen, 2003).

To measure these three factors in a task, behavioral data
are commonly used, e.g., error rate or response time. However,
such data can only be recorded at discrete time instants, which
is not suitable for continuous monitoring of the evolution of
these mental factors. On the contrary, electroencephalography
(EEG) that can continuously measure brain activities has gained
increasing attention in this field (Berka et al., 2004; Fink et al.,
2005; Craig et al., 2012), and has been indicated as a reliable
technique for characterizing mental state changes of operators
at the resolution of second or sub-second level (Ray and Cole,
1985; Klimesch, 1996; Smith and Gevins, 2005). In these studies,
EEG correlates of spectral powers at channel domain have been
examined with various mental factors, such as mental workload
(Sterman et al., 1993; Sterman and Mann, 1995; Berka et al.,
2005; Helton and Russell, 2011; Galy et al., 2012; Aricò et al.,
2016b), mental effort (Ullsperger et al., 1988; Miyata et al.,
1990; Backs and Seljos, 1994; Smit et al., 2004), and mental
fatigue (Boksem et al., 2005; Smith and Gevins, 2005; Craig
et al., 2012; Borghini et al., 2014). Identified EEG correlates are
frequency and region dependent (Sterman et al., 1993; Brookings
et al., 1996; Makeig and Jung, 1996; Gevins and Smith, 1999;
Wilson, 2002). For example, theta band power changes were
usually found at the frontal midline channels to be linked to

the development of mental fatigue (Yamamoto and Matsuoka,
1990; Gevins et al., 1995; Onton et al., 2005; Chai et al., 2016),
variations of mental effort (Miyata et al., 1990), and mental
workload (Yamamoto and Matsuoka, 1990; Gundel and Wilson,
1992). Alpha band power changes sensitive to complex motor
function (Pfurtscheller et al., 1994), mental workload, andmental
effort in attentive stimulus processing and expectancy (Ray and
Cole, 1985; Keil et al., 2001; Lin et al., 2010) were identified over
the centro-parietal and parietal areas (Gevins et al., 1995; Gevins
and Smith, 1999; Borghini et al., 2016; de Vries et al., 2017). Alpha
power changes are also associated with reduction in attention
with TOT (Klimesch, 1999; Schier, 2000). Some researchers also
investigated various indices based on beta band power and/or
ratio of beta band power to either alpha or theta band power (Eoh
et al., 2005). Among these studies, the majority used a classical
cognitive paradigm with repetitive stimuli (Ullsperger et al.,
1988; Keil et al., 2001; Boksem et al., 2005; Onton et al., 2005;
Lin et al., 2010). Although such tasks can facilitate subsequent
data analysis, e.g., event related potential (ERP) analysis (Trejo
et al., 1995; Lorist et al., 2000; Smith and Gevins, 2005; Galy
et al., 2012), they are limited in the investigation of intrinsic
dynamics of mental factors in real-world tasks. In real-world
tasks, operators work in environments with a variety of visual
and auditory stimuli that continuously and dynamically change
with the inputs and/or responses. Some studies have tried to
simulate real-world task situations (e.g., driving, aircraft landing,
and takeoff, etc.) (Sterman et al., 1993; Gevins et al., 1995;
Sterman and Mann, 1995; Brookings et al., 1996; Wilson, 2002;
Kohlmorgen et al., 2007; Craig et al., 2012; Aricò et al., 2016a;
Blankertz et al., 2016) with varied levels of task difficulty and/or
load to examine EEG correlates accordingly. However, these tasks
are still a little far from real-world tasks. Furthermore, most
of previous studies examined EEG correlates of mental states
and/or behaviors on EEG signals at channels (Sterman et al.,
1993; Boksem et al., 2005; Borghini et al., 2014). However, EEG
signals at channels are believed to be mixed from multiple neural
sources due to the volume conduction effect (Wolters and de
Munck, 2007) and, therefore, less indicative to underlying neural
substrates. Among various methods (Jung et al., 2000; Tenke
and Kayser, 2005; Cavanagh et al., 2009; Ding, 2009; Liao et al.,
2012; Zhu et al., 2014) to dissociate EEG signals into component
signals that are more indicative to underlying neural substrates,
independent component analysis (ICA) (Onton et al., 2005) has
demonstrated great success (Onton et al., 2006; Shou et al.,
2012), which is promising to analyze continuous EEG data from
real-world tasks.

The present study was conducted to directly address the
challenge of complexity in real-world tasks through technique
advancement. We proposed to use the ICA method to precisely
probe EEG correlates to three major mental factors, i.e., mental
fatigue, mental workload, and mental effort, in a real-world task
i.e., a realistically simulated ATC task (Bailey et al., 1999), which
was used to train ATC officers in Federal Aviation Association
(FAA). The ATC task required operators to continuously search,
select, and integrate information from multiple sources to
make decisions for efficient air traffic flow. Furthermore, the
ICA technique was used to decompose recorded EEG data
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into different component signals, indicative of specific neural
substrates, which was novel since it enabled the investigation
of impact of three mental factors on identified neural substrate
functions. We specifically examined EEG correlates of selected
ICs’ spectral power changes at their dominant frequency bands
to different levels of mental factors.

MATERIALS AND METHODS

Participants
Ten subjects (age 25 ± 4.3, all males and right handed)
participated in this study after giving written informed
consent. Among them, two subjects were excluded since their
performance was significantly different from others (Table 1).
Experimental protocol was approved by the institutional review
board (IRB) at the University of Oklahoma.

Experimental Procedures
All the experiments were conducted in an electromagnetic
shielding room. Subjects were continuously monitored for their
engagement in the task through a one-way mirror by the
experimenter.

The ATC scenarios were simulated with CTEAM V2.0
software (Bailey et al., 1999), which provided a realistically
simulated ATC task for training ATC officers without any
modification for the present study, and shown on a 21-inch
LCD monitor at a distance of 50 inches from the subject. The
CTEAM interface consisted of an airspace area and control

panel (see Figure 1). The control panel had buttons to control
heading, speed, and altitude (level). The airspace area contained
two airports (represented as a, b), two exits (represented as

FIGURE 1 | The air traffic control task interface for C-Team. Control

panel (the gray box on the right) with controls for heading direction, speed,

and level of aircraft. The aircraft (represented by arrows), airports (represented

by lowercase letters with two half circles), exits (represented by uppercase

letters), and restricted areas (represented by red circles). White and green

colors denote aircrafts that are in active and en route respectively.

TABLE 1 | Summary of perfromacne and task related metrics from 20 sessions of 10 subjects.

Subject and

session (S#s#)

Number of

warnings

Number of

crashes

Number of clicks

per minute

Average number of

aircraft per minute

Correlation (R, p)

S1s1 0 2 21.14 ± 6.63 3.25 ± 0.57 0.18, 0.06

S1s2 0 0 24.56 ± 7.57 3.41 ± 0.63 0.56, <0.001

S2s1 6 4 22.05 ± 4.16 3.28 ± 0.64 0.37, <0.001

S2s2 9 3 23.55 ± 5.63 3.50 ±0.66 0.46, <0.001

S3s1 12 0 20.77 ± 6.62 3.71 ± 0.69 0.18, 0.06

S3s2 18 2 23.49 ± 8.32 3.80 ± 0.71 0.25, <0.01

S4s1 10 2 18.97 ± 5.13 3.63 ± 0.61 0.35, <0.001

S4s2 2 1 19.25 ± 4.67 3.52 ± 0.67 0.4, <0.001

S5s1 13 4 19.95 ± 5.64 4.41 ± 0.88 0.39, <0.001

S5s2 4 0 18.23 ± 4.98 3.61 ± 0.60 0.46, <0.001

S6s1 23 9 23.14 ± 5.85 4.01 ± 0.81 0.23, <0.05

S6s2 10 4 23.77 ± 6.13 3.67 ± 0.65 0.37, <0.001

S7s1 9 5 24.56 ± 5.17 4.06 ± 0.78 0.20, <0.05

S7s2 9 1 24.87 ± 5.45 3.74 ± 0.65 0.51, <0.001

S8s1 416 94 16.24 ± 4.74 7.56 ± 3.12 0.09, 0.34

S8s2 320 83 17.33 ± 5.39 8.38 ± 2.74 0.13, 0.18

S9s1 180 73 15.87 ± 5.39 6.12 ± 2.07 −0.04, 0.60

S9s2 94 41 17.18 ± 5.31 4.25 ± 1.27 0.08, 0.38

S10s1 23 11 24.92 ± 5.53 4.17 ± 1.10 0.38, <0.001

S10s2 2 0 20.10 ± 5.95 3.52 ± 0.63 0.51, <0.001

Here S# represents the subject number and s# represents the session number. The last column indicates correlation coefficient values and associated p-values between the number of

active aircraft and the number of clicks. The subjects with bad performance are marked in italic.
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A, B) and three restricted areas marked as red circles. Subjects
were required to activate (represented in green color) and then
navigate aircraft to their destination (i.e., either an airport or an
exit) as specified by the data block on the aircraft using control
actions. Subjects were required to perform control actions, i.e.,
changing heading, speed, and altitude of an aircraft, to regulate
and maintain efficient air traffic flow in virtual airspace using
mouse. The ATC task lasted 2 h with air traffic flow at a rate of
two aircrafts per minute. Numbers of control actions performed
and errors (i.e., proximity warnings and crashes), and scenario
status (e.g., number of active and inactive aircraft in airspace)
were automatically logged into a replay file every 5 s.

All subjects were trained in a training session, which included
watching a 5 min demo, and performing a 30 min scenario to
familiarize themselves with the task and develop strategies for
completing the task. After the training, all subjects performed
two 2 h recording sessions on different days during which EEG
data were collected using a Net Amps 300 Amplifier (Electrical
Geodesics, Inc., Eugene, OR) with 128 channels, which provided
a high spatial resolution. The data were collected at a sampling
rate of 250 Hz. Electrode impedances were ensured to be below
50 k� before each session. To ensure low impedance throughout
the session, EEG recording was paused at 1 h time mark and,
at the electrodes with impedance higher than 50 k�, electrolyte
solutions were used to reduce impedance. During this process,
subjects were instructed to continuously perform the task.

Data Analysis
Behavioral and Performance Data Analysis
Each subject’s performance was evaluated by extracting number
of errors (i.e., number of crashes and warnings) from the replay
files. In addition, average number of active aircraft in airspace per
minute and number of inputs (i.e., number of mouse clicks) per
minute were also extracted from logged data, as the behavioral
measures for mental workload and mental effort, respectively.

EEG Preprocessing
EEG data were preprocessed using the Net Station Software
(Electrical Geodesics, Inc., OR, USA). After applying a band-
pass filter of 0.5–30 Hz, noisy channels were identified if a
channel has more than 20% of data above an amplitude threshold
of 200 µV over the entire recording and then replaced with
data interpolated from neighboring channels using a spherical
spline method from the Net Station Software (Perrin et al.,
1989). EEG data were then down-sampled to 125 Hz to
reduce computational loads. Extended Infomax ICA (Lee et al.,
1999) from the EEGLAB toolbox was performed for artifacts
rejection. Artifactual ICs were identified using: (1) the ADJUST
software (Mognon et al., 2011) to automatically identify ICs
related to eye blink, vertical/horizontal eye movement, and
generic discontinuity; (2) visual inspection to identify ICs related
to electromyogram (EMG) and electrocardiogram (ECG). All
artifactual ICs identified were removed to obtain artifact-free
EEG data for subsequent analyses.

Group-Level ICA
A group-level ICA method was implemented on artifact-free
EEG data that were temporally concatenated across all subjects

and sessions (Delorme and Makeig, 2004). To reduce amount of
EEG data for the group-level ICA analysis, global field power
(GFP) data at each time point were computed as standard
deviation of the momentary potential values across all channels
(Lehmann and Skrandies, 1980). The GFP data were further
transformed into z-values and the ones larger than four were
removed (Yuan et al., 2012). In the remaining GFP data,
both local peaks and troughs were representative of stable
functional states spanning from around 50 to 100 milliseconds
(ms) (Pascual-Marqui et al., 1995). EEG data at time instants
corresponding to these local GFP peaks were selected for each
session to choose EEG data with relatively high SNRs (Skrandies,
1990) and were temporally concatenated across all sessions
for the subsequent ICA analysis. As the first step of ICA,
principle component analysis (PCA) was used to reduce the data
dimension to 64, which was determined as an optimal number to
disentangle brain related ICs from artifact ICs in a preliminary
investigation using different numbers of components (i.e., 25, 32,
64, etc.). Then an extended Infomax ICA algorithm was used to
obtain ICs (Lee et al., 1999), which has been demonstrated with
better performance than the standard Infomax algorithm (Di
Flumeri et al., 2016). From 64 ICs, ICs of interest were selected
based on two criteria (Shou and Ding, 2014): (1) spatial pattern:
scalp map of the IC that could be approximately explained by
one or two dipolar sources (Delorme et al., 2012); (2) spectral
pattern: power spectrum density (PSD) of ICs exhibiting peaks
in the theta (4–<8 Hz) and/or alpha (8–<12 Hz) bands.

Analysis of Selected ICs
For the selected ICs, two types of analyses were sequentially
performed. Firstly, to investigate plausible neural substrates for
selected ICs, dipolar source localization was performed to fit scalp
maps of ICs using DIPFIT in EEGLAB (Delorme and Makeig,
2004). Talairach coordinates of the fitted dipole sources were
identified and further associated with Brodmann areas (BAs).
Secondly, ICs’ spectral powers were calculated using short-time
Fourier transform (STFT) on each 1-s segment ranging from
1 to 30 Hz. For each IC, only spectral powers at its dominant
frequency band, i.e., the evident peak in PSD (see Figure 2), were
examined to investigate their relationship to three mental factors.

Identifying EEG Correlates to TOT Effect
Two different methods, i.e., regression and bin analyses, were
used to examine the relationship between individual IC’s spectral
powers and TOT effect. Firstly, linear regression analyses were
performed to examine power changes with TOT in both
individual session level and group levels (Shou and Ding, 2013),
at a resolution of 1 min over 100 min after excluding 20 min
period of impedance check (usually took <10 min). In the group
level, 1 min data from individual sessions was firstly averaged
across all sessions and then imported for linear regression
analysis. Then, to test whether the pattern was significantly
detected over all sessions and subjects, the number of significant
regression models with same slope types (either positive or
negative) were examined across all sessions by a binomial test
(as compared to total number of sessions, i.e., 16). Secondly,
motivated by previous studies on the TOT effect (Trejo et al.,
2007; Cheng and Hsu, 2011), a bin analysis was performed at four
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FIGURE 2 | Five brain activity related ICs identified using group-level ICA: (A) spatial scalp maps; (B) averaged PSDs; and (C) dipole source locations on the

MNI template.

5 min time windows, i.e., the beginning period from 5 to 10 min
(labeled as T1), the pre-impedance check period from 35 to 40
min (labeled as T2), the post-impedance check period from 75
to 80 min (labeled as T3), and the ending period from 95 to 100
min (labeled as T4). ICs’ spectral powers were compared using
a repeated measure ANOVA test. Additionally, independent
post-hoc paired t-tests of powers between two paired bins were
performed to determine these time periods of significant changes
due to the TOT effect.

Identifying EEG Correlates to Mental Workload and

Effort
Bin analyses were performed to identify ICs with their dynamics
that were significantly correlated to mental workload and mental
effort. A bin analysis on residual spectral power data after
subtracting regressed TOT-related power data (Shou and Ding,
2013) was performed, since significant regression models for the
TOT effect were identified in most sessions. Specifically, two bins
of IC power data were obtained at the highest 30% and the lowest
30% data from the number of clicks (indicating mental effort)
or the number of active aircraft (indicating mental workload).
Paired t-tests were performed to compare data in two bins. For
the purpose of comparison, the same analysis was also performed
on data without removing TOT-related power changes. The
p-value was set at 0.05 with Bonferroni correction.

RESULTS

Behavioral and Performance Measures
All subjects (represented as S#, where # indicates subject number)
finished two sessions of the task (i.e., s1 and s2), with two
have significant outlier performance (i.e., S8 and S9, Table 1).
All the remaining subjects had reasonable performance with
low number of proximity warnings (9.37 ± 7.26, mean ± SD)
and crashes (3.0 ± 3.20). While S8 and S9 showed significantly
worse performance (number of crashes: from 41 to 94; number
of proximity warnings: from 94 to 416), they were successful
in navigating most aircraft and dealing with most warnings.
Moreover, the numbers of active aircraft (3.70 ± 0.32) was also

consistent in the sessions across all eight subjects. It was also
observed that the number of active aircraft and clicks had a
significant positive correlation in 14 sessions out of 16 sessions
analyzed (last column in Table 1). The number of significant
positive correlation was significantly detected across all sessions
based on the binomial test (p< 0.05). Since the performance data
of S8 and S9 were significantly different from others, they were
excluded from the following EEG analysis.

Brain Activity Related ICs
Five ICs indicating prominent characteristics of brain activity
were selected (Figure 2A). They were labeled as the frontal IC,
the central medial IC, the parietal IC, the motor IC, and the
occipital IC, according to their spatial patterns and locations of
fitted dipole sources (Makeig et al., 2002; Onton et al., 2005; Shou
et al., 2012). In the spectral patterns (Figure 2B), i.e., PSD, the
frontal IC showed an evident peak in the theta band while the
other four ICs had evident peaks in the alpha band. Therefore,
these bands have been selected as the dominant frequency band
for each IC, respectively. In the source location (Figure 2C), the
frontal IC had the topography of a radial source over the frontier
area with its fitted dipole source in the frontal cortex [Talairach
coordinate: (−3, 30, 11); BA 24; residual variance: 8.24%]. The
central medial IC had the topography of a radial source with its
fitted dipole over the supplementary motor area (SMA) [(−6,
−10, 43); BA 6; 5.15%]. The parietal IC had the topography of
a radial source over the parietal area with its fitted dipole into
the dorsal posterior parietal cortex (PCC) [(4, −47, 28); BA 23;
1.24%]. The motor IC showed a tangential dipolar pattern over
bilateral primary motor cortices [(−23, −21.61) and (23, −21,
61), BA 4; 4.92%]. The occipital IC had a tangential dipolar
pattern over bilateral occipital cortices [(−32, −78, 5) and (32,
−78, 5), BA 18, 3.88%].

IC Power Changes with TOT
Figure 3 illustrates the group-level regression models of spectral
powers at five selected ICs. It is noted that all five ICs’ spectral
powers significantly increased as TOT (p < 0.05). In the
individual-level regression models, 13 sessions were observed to
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have significant regression models with positive slopes in the
frontal IC (p < 0.05, Table 2). Similar pattern of significant
regression models with positive slopes were detected in the other
four ICs (Table 2), i.e., 12 sessions in the central medial IC, 12
sessions in the motor IC, 14 sessions in the parietal IC, and
13 sessions in the occipital IC. The number of positive slopes

was detected of significance (p < 0.05) by the binomial tests in
all ICs. Figure 4 illustrates IC powers at four different time
periods.

The ANOVA analysis on four bins’ data revealed consistent
increasing patterns with the regression analysis in all ICs, i.e.,
the frontal IC (F = 5.28, p < 0.001), the central medial IC (F =

FIGURE 3 | IC spectral powers across 100 min (thick black curve: mean) across all sessions with the linearly regressed lines (red line).

TABLE 2 | Summary of linear regression analysis of IC power dynamics at corresponding dominant frequency bands of each session at each subject.

Subject and session (S#s#) Frontal Theta Central Medial Alpha Parietal Alpha Motor Alpha Occipital Alpha

Slope p Slope p Slope P Slope p Slope p

S1s1 + <0.001 + <0.001 + <0.001 + <0.001 + <0.01

S1s2 + <0.001 + <0.001 + <0.001 + <0.05 + <0.001

S2s1 + <0.001 + <0.001 + <0.01 + <0.01 − 0.31

S2s2 + 0.43 + <0.001 + <0.01 + <0.05 + 0.22

S3s1 + <0.001 + 0.19 + <0.001 + <0.05 + <0.001

S3s2 + <0.05 + <0.001 + <0.001 + 0.23 + <0.001

S4s1 + <0.001 + <0.001 + <0.001 + <0.001 + <0.001

S4s2 + <0.05 + 0.64 + <0.01 + <0.05 + <0.001

S5s1 + 0.5 + <0.001 + <0.001 + <0.001 + <0.001

S5s2 + <0.01 + <0.05 + <0.001 + <0.001 + <0.01

S6s1 + <0.001 + <0.001 + <0.001 + <0.001 + <0.01

S6s2 + <0.001 + <0.01 + <0.001 + <0.001 + <0.001

S7s1 − <0.01 − <0.001 − 0.6 − 0.96 − 0.47

S7s2 + <0.001 + <0.001 + <0.001 + <0.001 + <0.001

S10s1 + <0.001 + <0.01 − 0.94 + 0.64 + <0.001

S10s2 + <0.001 − 0.31 + <0.001 + 0.14 + <0.001

“+”: positive slope and “−”: negative slope.
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FIGURE 4 | Whisker plots of averaged IC powers at corresponding dominant freqency bands in four time periods. Median: red central mark; 25th and 75th

percentiles: lower and upper edges of the box, respectively; maximum whisker length: 1.5, and the outliers: red cross. *p < 0.05, **p < 0.01, and ***p < 0.001.

13.15, p< 0.001), the parietal IC (F = 18.12, p< 0.01), the motor
IC (F = 10.52, p < 0.001), and the occipital IC (F = 15.03, p <

0.001). In the paired t-tests, compared to T1, significant increases
of powers were detected in T3 (p < 0.05, t =−2.56) and T4 (p <

0.05, t =−2.60) in the frontal IC, as well as in the central medial,
parietal, motor, and occipital ICs [the central medial IC: T2 (p
< 0.001, t = −4.22), T3 (p < 0.001, t = −4.09), T4 (p < 0.05,
t = –4.61), the parietal IC: T2 (p < 0.001, t = −4.71), T3 (p <

0.001, t = −5.10), T4 (p < 0.001, t = −4.40); the motor IC: T2
(p < 0.01, t = −3.42), T3 (p < 0.001, t = −4.26), T4 (p < 0.001,
t = −4.10); the occipital IC: T2 (p < 0.001, t = −4.41), T3 (p
< 0.001, t = −4.50), T4 (p < 0.001, t = −5.10)]. In addition,
significant increases of powers were detected between T2 and T3
in the parietal IC (p < 0.01, t = −3.22) and in the occipital IC (p
< 0.05, t =−2.14) and between T2 and T4 in the frontal IC (p <

0.05, t =−2.61).

IC Power Changes with Mental Effort
Figure 5 illustrates five ICs’ spectral powers for two bins
corresponding to low and high levels of mental effort asmeasured
by the number of clicks per minute (low bin: 15.47 ± 2.11
and high bin: 29.08 ± 3.03; p < 0.001, t = −21.53). Statistical
analysis on spectral powers of the ICs after removing the
TOT-related effect (Figure 5A) with the Bonferroni correction
revealed significant decrease in three ICs (the central medial IC: p
< 0.01, t = 3.65; the parietal IC: p < 0.01, t = 3.85; the motor IC:
p< 0.01, t= 3.60). A significant increase in the frontal IC spectral
power (p < 0.05, t = −2.29) was also observed when the mental
effort increased, however, it did not survive after the Bonferroni
correction. As a comparison, the bin analysis results on data
without removing TOT effect were also displayed in Figure 5B,
i.e., a significant decrease only in the motor IC (p < 0.01, t =

2.97) in the contrast of high level and low level mental effort after
Bonferroni correction.

IC Power Changes with Mental Workload
Figure 6A illustrates five IC’s spectral power for two bins
corresponding to low and high levels of mental workload as
measured by the number of active aircraft (low bin: 37.56 ±

2.94 and high bin: 58.01 ± 6.10; p < 0.001, t = −21.42).
Statistical analysis on spectral powers of the ICs after removing
TOT effect (Figure 6A) revealed a significant increase from the
low level to the high level in the frontal IC (p < 0.01, t =

−3.31) and significant decreases in the other three ICs (the
central medial IC: p < 0.001, t = 4.34; the parietal IC: p <

0.001, t = 4.95; the occipital IC: p < 0.01, t = 3.01), after
Bonferroni correction. As a comparison, the bin analysis results
on data without removing the TOT effect were also displayed
in Figure 6B, i.e., significant increase in the frontal IC (p <

0.01, t = −2.95), and significant decrease in other three ICs
(the central medial IC: p < 0.001, t = 4.89; the parietal IC: p <

0.001, t = 4.65; the motor IC: p < 0.01, t = 2.96) in contrast
of high level and low level mental workload, after Bonferroni
correction.

DISCUSSION

In the present study, EEG component signals that coded
information about three mental factors, i.e., TOT (or mental
fatigue), mental workload, and mental effort, were examined in
a realistically simulated ATC task. In the task, complex visual
and auditory information were continuously streamed to subjects
(Dittmann et al., 2000), forming a largely different task protocol

Frontiers in Neuroscience | www.frontiersin.org 7 May 2017 | Volume 11 | Article 297

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Dasari et al. EEG Correlates to Mental Factors

FIGURE 5 | Whisker plots of averaged IC PSDs at corresponding dominant freqency bands from all the sessions of all subjects in low and high mental

effort conditions with (A) or without (B) removing TOT-related PSD changes. **p < 0.01, corrected.

FIGURE 6 | Whisker plots of averaged IC PSDs at corresponding dominant freqency bands from all the sessions of all subjects in low and high mental

workload conditions with (A) or without (B) removing TOT-related PSD changes. **p < 0.01, and ***p < 0.001, corrected.

in studying mental factors as compared to classical cognitive
tasks, in which simple and repeated stimuli are generally used
(Boksem et al., 2005; Berka et al., 2007; Helton and Russell,
2011). Such a task protocol also enforces strict requirements
on data analysis when probing underlying neural sources and
their dynamics over time. A data-driven ICA method was used
to disentangle EEG signals into different component signals at
group level. Significant relationships between spectral powers of

identified component signals at dominant frequency bands and
mental factors were successfully elucidated.

Neuronal Processes Underlying ICs
EEG spectral power correlates to different mental factors were
examined in the IC domain rather than the channel domain, with
two purposes: (1) to reduce volume conduction effect (Shou and
Ding, 2014); (2) to examine relationship between spectral power
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dynamics from specific neural substrates related to different
mental factors. Among five identified ICs (Figure 2), the frontal
IC with the dominant theta band power revealed a probable
neural generator in the anterior cingulate cortex (ACC) area,
which has been extensively reported in many cognitive tasks
that require concentration, attention, performance monitoring,
and short-term memory (Ishii et al., 1999; Jensen and Tesche,
2002; Onton et al., 2005; Klimesch et al., 2007; Scheeringa et al.,
2009). Such neurocognitive resources are largely demanded in
the ATC task, since operators need to continuously respond to
appearance of aircraft, design optimal flight routines, monitor
aircraft, and avoid potential warnings and/or crashes. The central
medial and motor ICs with dominant alpha band activity were
localized to motor related areas, i.e., primary and supplementary
motor areas, that have been associated with motor planning
and execution (Pfurtscheller et al., 1994; Pfurtscheller and Da
Silva, 1999), which can be associated with actions performed
by operators using input devices (i.e., mouse) during the task
(Grinband et al., 2011). The parietal IC with its neural generator
within the PCC represents sensory information evaluation and
integration for planned movements (Polich, 2007). The occipital
IC with its neural generator in bilateral visual cortices represents
visual perception and processes in the task (Stewart et al., 2014).

Neural Mechanisms Related to TOT
TOT is revealed in the dynamics of all five ICs with similar
increasing pattern (Figure 3 and Table 2), suggesting that TOT
is a top-down process and generates progressive effects on most
brain functions. Consistent with previous findings (Makeig and
Jung, 1996; Lorist et al., 2000; Boksem et al., 2005; Craig et al.,
2012), enhanced alpha powers indicate insufficient suppression
of alpha rhythms during sensory integration (the parietal IC
and the occipital IC) and motor outputs (the motor and central
medial ICs), which causes reduced effectiveness in these neural
processes with the development of mental fatigue (Lorist et al.,
2000; Boksem et al., 2005). Enhanced theta power in the frontal
IC may indicate a counterbalance mechanism by recruiting more
cognitive resources to combat performance degradation induced
by TOT (Klimesch et al., 1997).

Neural Mechanisms Related to Mental
Workload and Mental Effort
Mental effort and mental workload derived from the behavioral
metrics also depict significant variations in spectral powers
of most ICs. Enhanced theta power from the frontal IC was
observed in the bin of high-level mental workload (tendency
also identified in the bin of high-level mental effort while
not significant after correction), whereas in general reduced
alpha powers from the other four ICs in the bin of high-
level mental effort/workload were observed. Increase in the
frontal theta power reflects more cognitive resource allocations
to produce response actions, i.e., mouse clicks (or mental effort;
Gundel and Wilson, 1992). Reduced alpha powers is observed
with statistical significance in other ICs in both bins of high-
level mental effort and workload. It is indicative of increased
engagements of the motor cortices in motor planning and
execution (Sterman et al., 1993; Gevins and Smith, 1999) and

parietal and occipital cortices in sensory information integration
(Pfurtscheller et al., 1994; Keil et al., 2001; Stewart et al.,
2014). The fact that similar patterns are identified between these
two mental factors and EEG ICs dynamics is consistent with
the observation of significant correlations between these two
measures from behavioral/performance data (Table 1). While
similarity in general, it is noted that the significant alpha power
change in the motor IC is only observed in the analysis of
mental effort (Figure 5A) and the significant alpha power change
in the visual IC is only observed in the analysis of mental
workload (Figure 6A). This might be explained by the fact the
behavioral measure for mental effort (i.e., number of clicks) is
more related to the motor function while the behavioral measure
for mental workload potentially requires more visual scanning
due to increased number of active aircraft. Together with this
evidence, more detections of significant changes of IC spectral
powers in the analysis of mental effort suggest IC power spectral
dynamics after removing the TOT effect might reflect realistic
dynamics in two used behavioral measures. In the analysis of
mental workload, significant changes that are observed in general
both before and after removing the TOT effect, might suggest its
stronger influences on IC power spectral dynamics, which are less
smeared by the TOT effect. The only detection of tendency of
significant changes on the frontal IC theta power in the analysis of
mental effort also support the notion that the influences ofmental
effort (measured by number of clicks) are less strong than those
of mental workload (measured by number of active aircraft).

Limitations
Several limitations of the present study must be noted as
precautions in the interpretation of our data. Firstly, given the
low number subjects, the results reported are only exploratory
and can be useful in elaborating the working hypothesis in
further studies with real-world ATC scenarios performed by
experienced ATC operators. Secondly, an interruption of the task
at 1 h to monitor the impedance of channels could have resulted
in artifacts such as EMG in the present study. While a pre-
processing step to remove artifacts based on ADJUST and visual
inspection was implemented, such factors might still complicated
data-driven ICA outcomes. It is also noted only five valuable ICs
were identified in the present study while the number of ICs was
selected at 64 in the ICA analysis. Other ICs were identified as
artifactual ones. One of factors might be because beta-band EEG
signals were included in the ICA analysis, which have higher
probability to be related to motion artifacts. Since phenomena
identified in the present study are only reported in lower
frequency bands. An alternative way of performing ICA analysis
might only use data from lower frequency bands (e.g., theta and
alpha bands). Thirdly, the large variation in the performance of
subjects, this could be controlled with longer training durations
and/or subject dependent workload assessment and assignment.

Future Work
To improve data quality, EEG systems capable of long duration
recordings can be used without the need of impedance
check (Steriade and Amzica, 2003) and using advanced signal
processing techniques for better artifact rejection can aid in
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reliable identification of neural components. The properties of
fast convergence and low computational complexity of online
recursive ICA (ORICA) can potentially enable the realization
of real-time online ICA process, which further coupled with
adaptive ORICA (Hsu et al., 2015) can learn and re-learn task
related components. Evaluation of encoded data from these
components can assist in the development of real-time adaptive
HMI applications to mitigate any lapses in mental capabilities. It
is also noted that the factors of mental workload andmental effort
cannot be completely alienated and need to be further studied
together to understand mental efficiency in operators using a
unified metric (Camp et al., 2001). Regarding beta band signal,
we will exclude the beta band signal in ICA calculation if we only
examine neural markers at theta and alpha bands in the future.

CONCLUSION

In conclusion, EEG spectral power correlates to three factors,
i.e., mental fatigue, mental effort, and mental workload, are
successfully elucidated at the IC domain in a realistic ATC
task. Five ICs were successfully disentangled from scalp
EEG data with characteristic spectral and spatial patterns.
Identified ICs reflected performance monitoring/short-term

memory (the frontal IC), motor preparation (the central medial
IC), motor execution (the motor IC), sensory information
integration/decision making (the parietal IC), and visual
perception and process (the occipital IC). The present results
indicate that spectral power changes in EEG component signals,
especially those having established links to specific neural
processes, encode information about various mental factors.
The present results further indicate that the ICA method is a
promising technique in revealing dynamics of these component
signals in continuous EEG data and, therefore, indicating the
evolution of mental states during real-world tasks.
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