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Abstract: What is the value of just a few bits to a guesser? We study this problem in a setup where
Alice wishes to guess an independent and identically distributed (i.i.d.) random vector and can
procure a fixed number of k information bits from Bob, who has observed this vector through a
memoryless channel. We are interested in the guessing ratio, which we define as the ratio of Alice’s
guessing-moments with and without observing Bob’s bits. For the case of a uniform binary vector
observed through a binary symmetric channel, we provide two upper bounds on the guessing ratio
by analyzing the performance of the dictator (for general k > 1) and majority functions (for k = 1).
We further provide a lower bound via maximum entropy (for general k > 1) and a lower bound
based on Fourier-analytic/hypercontractivity arguments (for k = 1). We then extend our maximum
entropy argument to give a lower bound on the guessing ratio for a general channel with a binary
uniform input that is expressed using the strong data-processing inequality constant of the reverse
channel. We compute this bound for the binary erasure channel and conjecture that greedy dictator
functions achieve the optimal guessing ratio.

Keywords: boolean functions; fourier analysis; guessing moments; guessing with a helper;
hypercontractivity; maximum entropy; strong data-processing inequalities

1. Introduction

In the classical guessing problem, Alice wishes to learn the value of a discrete random variable
(r.v.) X as quickly as possible by sequentially asking yes/no questions of the form “Is X = x?”, until she
makes a correct guess. A guessing strategy corresponds to an ordering of the alphabet of X according
to which the guesses are made and induces a random guessing time. It is well known and simple
to verify that the guessing strategy which simultaneously minimizes all the positive moments of the
guessing time is to order the alphabet according to a decreasing order of probability. Formally, for any
s > 0, the minimal sth-order guessing-time moment of X is

Go(X) = E (ORD¥ (X)), M

where ORDx(x) returns the index of the symbol x relative to the order induced by sorting the
probabilities in a descending order, with ties broken arbitrarily. For brevity, we refer to Gs(X) as
the guessing-moment of X.

Several motivating problems for studying guesswork are fairness in betting games, computational
complexity of sequential decoding [1], computational complexity of lossy source coding and database
search algorithms (see the introduction of Reference [2] for a discussion), secrecy systems [3-5], and
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crypt-analysis (password cracking) [6,7]. The guessing problem was first introduced and studied in an
information-theoretic framework by Massey [8], who drew a relation between the average guessing
time of an r.v. to its entropy. It was later explored more systematically by Arikan [1], who also
introduced the problem of guessing with side information. In this problem, Alice is in possession of
another r.v. Y that is jointly distributed with X, and then, the optimal conditional guessing strategy is
to guess by decreasing order of conditional probabilities. Hence, the associated minimal conditional
sth-order guessing-time moment of X given Y is

Gs(X|Y) :=E (ORD;W(X | Y)) , )

where ORDy/y (x | y) returns the index of x relative to the order induced by sorting the conditional
probabilities of X given that Y = y in a descending order. Arikan showed that, as intuition suggests,
side information reduces the guessing-moments ([1], Corollary 1)

Gs(X[Y) < Gs(X). ®)

Furthermore, he showed that, if {(X;, Y;)}"; is an i.i.d. sequence, then ([1], Proposition 5)

lim ~log G (X"Y") = Hy (X, | 1), @
where H, (X | Y) is the Arimoto-Rényi conditional entropy of order a. As was noted by Arikan a
few years later [9], the guessing moments are related to the large deviations behavior of the random
variable 1 log ORDyxu |y (X" | Y"). However, in Reference [9], he was only able to obtain right-tail
large deviation bounds since asymptotically tight bounds on Gs(X" | Y") were only known for positive
moments (s > 0). Large deviation principle for the normalized logarithm of the guessing time was later
established in Reference [10] using substantial results from References [11,12]. Throughout the years,
information-theoretic analysis of the guessing problem was extended in multiple directions, such as
guessing until the distortion between the guess and the true value is below a certain threshold [2],
guessing under source uncertainty [13], and improved bounds at finite blocklength [14-16], to name
a few.

In the conditional setting described above, one may think of Y" as side information observed by a
“helper”, say Bob, who sends his observations to Alice. Nonetheless, as other problems employing a
helper (e.g., source coding [17,18]), it is more realistic to impose communication constraints and to
assume that Bob can only send a compressed description of Y” to Alice. This setting was recently
addressed by Graczyk and Lapidoth [19,20], who considered the case where Bob encodes Y" at a
positive rate using 1R bits before sending this description to Alice. They then characterized the best
possible guessing-moments attained by Alice for general distributions as a function of the rate R. In
this paper, we take this setting to its extreme and attempt to quantify the value of k bits in terms of
reducing the guessing-moments by allowing Bob to use only a k-bit description of Y”. The major
difference from previous work is that, here, k is finite and does not increase with 7, and for some of our
results, we further concentrate on the extreme case of k = 1—a single bit of help. To that end, we define
(Section 2) the guessing ratio, which is the (asymptotically) best possible ratio of the guessing-moments
of X" obtained with and without observing a function f(Y") € {0,1}%, i.e., the minimal possible ratio
Gs(X™ | f(Y™"))/Gs(X") as a function of s > 0, in the limit of large n.

Sharply characterizing the guessing ratio appears to be a difficult problem in general. Here, we
mostly focus on the special case where X" is uniformly distributed over the Boolean cube {0,1}" and
Y" is obtained by passing X" through a memoryless binary symmetric channel (BSC) with crossover
probability é (Section 3). We derive two upper bounds and two lower bounds on the guessing ratio
in this case. The upper bounds are derived by analyzing the ratio attained by two specific functions,
k-Dictator, to wit f(Y") = Y*, and Majority, to wit f(Y") = 1(L/; Y; > %), where 1(-) is the indicator
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function, and for simplicity, we henceforth assume that 7 is odd when discussing majority functions.
For k = 1, we demonstrate that neither of these functions is better than the other for all values of
the moment order s. The first lower bound is based on relating the guessing-moment to entropy
using maximume-entropy arguments (generalizing a result of Reference [8]), and the second one on
Fourier-analytic techniques combined with a hypercontractivity argument [21]. Furthermore, for the
restricted class of functions for which the constituent k-bit functions operate on disjoint sets of bits, a
general method is proposed for transforming a lower bound valid for k = 1 to a lower bound valid
for any k > 1. Nonetheless, we remark that our bounds are valid for s > 0 and obtaining similar
bounds for s < 0 in order to obtain large deviation principle for the normalized logarithm of the
guessing time remains an open problem. In Section 4, we briefly discuss the more general case where
X" is still uniform over the Boolean cube, but Y” is obtained from X" via a general binary-input,
arbitrary-output channel. We generalize our entropy lower bound to this case using the strong
data-processing inequality (SDPI) applied to the reverse channel (from Y to X). We then discuss the
case of the binary erasure channel (BEC), for which we also provide an upper bound by analyzing the
greedy dictator function, namely where Bob sends the first bit that has not been erased. We conjecture
that this function minimizes the guessing-moments simultaneously at all erasure parameters and all
moments s.

Related Work. As mentioned above, Graczyk and Lapidoth [19,20] considered the same guessing
question if Bob can communicate with Alice at some positive rate R, i.e., can use k = nR bits to describe
Y". This setup facilitates the use of large-deviation-based information-theoretic techniques, which
allowed the authors to characterize the optimal reduction in the guessing-moments as a function of R
to the first order in the exponent. This type of argument cannot be applied in our setup of finite number
of bits. Furthermore, as we shall see, in our setup, the exponential order of the guessing moment
with help is equal to the one without it and the performance is therefore more finely characterized by
bounding the ratio of the guessing-moments. For a single bit of help k = 1, characterizing the guessing
ratio in the case of the BSC with a uniform input can also be thought of as a guessing variant of the
most informative Boolean function problem introduced by Kumar and Courtade [22]. There, the maximal
reduction in the entropy of X" obtainable by observing a Boolean function f(Y”) is sought after. It
was conjectured in Reference [22] that a dictator function, e.g., f(y") = y1, is optimal simultaneously
at all noise levels; see References [23-26] for some recent progress. As in the guessing case, allowing
Bob to describe Y" using nR bits renders the problem amenable to an exact information-theoretic
characterization [27]. In another related work [28], we have asked about the Boolean function Y”
that maximizes the reduction in the sequential mean-squared prediction error of X" and showed
that the majority function is optimal in the noiseless case. There is, however, no single function that
is simultaneously optimal at all noise levels. Finally, in a recent line of works [29,30], the average
guessing time using the help of a noisy version of f(X") has been considered. The model in this paper
is different since the noise is applied to the inputs of the function rather than to its output.

2. Problem Statement

Let X" be an i.i.d. vector from a distribution Px, which is transmitted over a memoryless channel
of conditional distribution Py x. A helper observes Y" € V" at the output of the channel and can
send k bits f(Y"), f: V" — {0,1}* to a guesser of X". Our goal is to characterize the best possible
multiplicative reduction in guessing-moments offered by a function f, in the limit of large n. Precisely,
we wish to characterize the guessing ratio, defined as

n n
Ysk(Px, Py\x) :=limsup min M

5
n—oo fym—{01}k  Gs(XM) ©)

for an arbitrary s > 0. In this paper, we are mostly interested in the case where Px = (1/2,1/2), i.e.,
X" is uniformly distributed over {0,1}", and where the channel is a BSC with crossover probability
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d € [0,1/2]. With a slight abuse of notation, we denote the guessing ratio in this case by ;x(4).
Furthermore, some of the results will be restricted to the case of a single bit of help (k = 1), and in this
case, we will further abbreviate the notation from -y 1 () to s(J). We note the following basic facts.

Proposition 1. The following properties hold:

1. The minimum in Equation (5) is achieved by a sequence of deterministic functions.

2. ysx(6) is a non-decreasing function of & € [0,1/2] which satisfies y5x(0) = 27K and y,4(1/2) = 1.
In addition, vy, 1(0) is attained by any sequence of functions f, such that f,,(Y") is a uniform Bernoulli
vector, i.e., Pr(f,(Y") = b*) = 27 % for all b* € {0,1}*.

3. ForaBSC Pyx, the limit-supremum in Equation (5) defining «ys x(6) is a regular limit.

Ifk = 1 and X" is a uniformly distributed vector, then the optimal guessing order given that f(Y") =0
is reversed to the optimal guessing order when f(Y") = 1.

Proof. See Appendix A. [

3. Guessing Ratio for a Binary Symmetric Channel

3.1. Main Results

We begin by presenting the bound on the guessing ratio <y, x(4) obtained by k-dictator functions
and then proceed to the bound obtained by majority functions for a single bit of help, k = 1. The proofs
are given in the next two subsections.

Theorem 1. Let Ly, := Y 0 (f}) forw € {0,1,...,k}. The guessing ratio is upper bounded as

k—1
Yok(6) < (1=26)- 27 Y (1 =) 176 L1 + (26)F, 6)

w=0

and this upper bound is achieved by k-dictator functions, f(y") = y*.

Specifically, for k = 1, Theorem 1 implies
¥s(9) < (1—26)-27° 4 20. (7)

Theorem 2. Let p := % and Z ~ N(0,1), and denote by Q(-) the tail distribution function of the

standard normal distribution. Then, the guessing ratio is upper bounded as

15(8) <2-(s+1)-E[Q(BZ) - (1 - Q(2))°], ®)
and this upper bound is achieved by majority functions, f(y") = L(L/yi > 5).

We remark that, if k = 1, the guessing ratio of functions similar to the dictator and majority
functions, such as single-bit dictator on j > 1 inputs (f(y") = 1 if and only if 1/ = 1/) or unbalanced
majority (f(y") = 1(X' ,y; > t) for some t), may also be analyzed in a similar way. However,
numerical computations indicate that they do not improve the bounds of Theorems 1 and 2, and thus,
their analysis is omitted.

We next present two lower bounds on the guessing ratio ,;(4). The first is based on
maximum-entropy arguments, and the second is based on Fourier-analytic arguments.
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Theorem 3. The Quessing ratio satisfies the following lower bound:

R Chat ) T
Ysi(0) > e 1~%,2 sk(1-26)2 o
()

where T'(z) := [;° *~Ye~'dt is Euler’s Gamma function (defined for R{z} > 0).

Remark 1. When restricted to k = 1, the proof of Theorem 3 utilizes the bound H(X"|f(Y")) > n — (1 —25)?
(see Equation (63)). For balanced functions, this bound was improved in Reference [23] for 1/2(1 —1/+/3) <
0 < 1/2. Using this improved bound here leads to an immediate improvement in the bound of Theorem 3.
Furthermore, it is known [24] that there exists &y such that the most informative Boolean function conjecture
holds for all 59 < 6 < 1/2. For such crossover probabilities,

H(X"|F(Y")) = n— 1+ h(o) (10)

holds, and then, Theorem 3 may be improved to

s—1,
o (8) > el S ED Hosaone)), 1)

Our Fourier-based bound for k = 1 is as follows:

Theorem 4. Let T:= 1+ (1 —26)2(1=Y). The guessing ratio is lower bounded as

1e(8) > max |1— (s+1)-(1—-25)"
T o< (ts +1)V/7

(12)

This bound can be weakened by the possibly suboptimal choice A = 1, which leads to a simpler
yet explicit bound:

Corollary 1.
(s+1)-(1-20)

V1-+2s

The bound in Theorem 4 is only valid for the case k = 1. An interesting problem is to find a general
way of “transforming” a lower bound which assumes k = 1 to a bound useful for k > 1. In principle,
such a result could stem from the observation that a k bit function provides k different conditional
optimal guessing orders for each of its output bits. For a general function, however, distilling a useful

¥s(6) > 1— (13)

bound from this observation seems challenging since the relation between the optimal guessing order
induced by each of the bits and the optimal guessing order induced by all k bits might be involved.
Nonetheless, such a result is possible to obtain if each of the k single-bit functions operate on a different
set of input bits. For this restricted set of functions, there is a simple bound which relates the optimal
ordering given each of the bits and all the k bits together. It is reasonable to conjecture that this
restricted sub-class is optimal or at least close to optimal, since it seems that more information is
transferred to the guesser when the k functions operate on different sets of bits, which make the k
functions statistically independent.

Specifically, let us specify a k-bit function f: " — {0,1}* by its k constituent one-bit functions
fi: V" — {0,1}, j € [k]. Let Fi be the set of sequences of functions {0y, flm o yn s £0,1}K,
such that each specific sequence of functions { f (M} satisfies the following property: There exists a

sequence of partitions {{I j(") }iek tnz of [n], such that, foralln > 1and j € [k], fj(n) (Y™) only depends

on {Yi}ieﬂ”) and limy, e |Ij(n)\ = oo for all j € [k]. In particular, this implies that {fj(”) (Y") }ep is
j
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mutually independent for all n > 1. For example, when k = 2, f1(x") = x1, and f(x") = x», we can
choose I ](") to be the odd/even indices. For f; = Maj(y}/?) and fo = Maj(y ,_ ), the sets are the first
and second halves of [n]. As in Equation (5), we may define the guessing ratio of this constrained set

of functions as
Gs(X™ | f(W(Ym))

Ysk(6) := min  limsu , 14
')/s,k( ) (Fye e, n%oop G§(xn) (14)
where, in general, ¥ (6) > v5 ().
Proposition 2.
sk
~ Vs (5)
0) > —r——. 15
,Ys,k( )— (S_i_l)k,l ( )

We demonstrate our results for k = 1 in Figure 1 (resp. Figure 2) which display the bounds on
vs(0) for fixed values of s (resp. ¢). The numerical results show that, for the upper bounds, when
s S 3.5, dictator dominates majority (for all values of J), whereas for s 2> 4.25, majority dominates
dictator. For 3.5 < s < 4.25, there exists 6, such that majority is better for 6 € (0,6,) and dictator
is better for 6 € (6],1/2). Figure 2 demonstrates the switch from dictator to majority as s increases
(depending on J). As for lower bounds, we first remark that the conjectured maximum-entropy bound
(Equation (11)) is also plotted (see Remark 1). The numerical results show that the maximum-entropy
bound is better for low values of § whereas the Fourier-analysis bound is better for high values of é.
As a function of s, the maximum-entropy bound (resp. Fourier-analysis bound) is better for high (resp.
low) values of s. We also mention that, in these figures, the maximizing parameter in the Fourier-based
bound (Theorem 4) is A = 1 and the resulting bound is as in Equation (13). However, for values of
s as low as 10, the maximizing A may be far from 1, and in fact, it continuously and monotonically
increases from 0 to 1 as J increases from 0 to 1/2. Finally, Figure 3 demonstrates the behavior of the
k-dictator and maximum-entropy bounds on 1y, x(4) as a function of k.

1r

——Th. 1 (Dictator)

09 |- —= Th. 2 (Majority)

........ Th. 3 (Max entropy)

0.8 |-+ Remark 1 (Max entropy conj.)
—-—-Th. 4 (Fourier)

——Th. 1 (Dictator)

.9F|= = Th. 2 (Majority)

........ Th. 3 (Max entropy)

8 |-+ Remark 1 (Max entropy conj.)
—-—-Th. 4 (Fourier)

0.4

0.3

0.2

0.1

- F il #
0 I I I I I I I I I 0 I I I I I I I I ]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
g 0

Figure 1. Bounds on 75(J) for s = 1 (left) and s = 5 (right) as a function of § € [0,1/2].
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——Th. 1 (Dictator) ——Th. 1 (Dictator)
06 - — Th. 2 (Majority) 0.95 1 - — Th. 2 (Majority)
‘\ -------- Th. 3 (Max entropy) | [ e Th. 3 (Max entropy)
\ -+--Remark 1 (Max entropy conj.) 09 -+--Remark 1 (Max entropy conj.)
05t —-—-Th. 4 (Fourier) 0851 J —-—-Th. 4 (Fourier)

Figure 2. Bounds on y5(J) for § = 0.1 (left) and § = 0.4 (right) as a function of s € [1,10].

0.6

——Th. 1 (Dictator)
-------- Th. 3 (Max entropy)

05
04

0.3

0.1

Figure 3. Bounds on 7, ;(d) for § = 0.1 and s = 1 as a function of k.

3.2. Proofs of the Upper Bounds on vy ;(9)

Leta,b € N, a < b be given. The following sum will be useful for the proofs in the rest of the
paper:

1 &
Ks(a,b) := — '72 i, (16)
i=a+1
where we will abbreviate K(b) := K(0,b). For a pair of sequences {a,}5 (b} ;, we will let

a, = b, mean that lim,, s« Z—: =1.

Lemma 1. Let {a, }3° | and {b,};>_, be non-decreasing integer sequences such that a, < by for all n and
limy—e0(ay +1) /b, = 0. Then,

s+1 s+1
1 by —ay

Ks(an,bn) = s+1  by—ay

(17)

Specifically, Gs(X") = K;(2") = 521”1‘

Proof. See Appendix A. [
We next prove Theorem 1.

Proof of Theorem 1. Consider a k-dictator function which directly outputs k of the bits of ", say,
without loss of generality (w.l.0.g.) f(y") = y*. Let dy(x", y") be the Hamming distance of x" and y",
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and recall the assumption 0 < § < 1/2. Itis easily verified that the optimal guessing order of X" given
yk has k + 1 parts, such that the wth part, w € {0,1,...,k}, is comprised of an arbitrary ordering of the
(w) 2"k vectors for which d (x¥, y*) = w. From symmetry, Gs(X" | f(Y")) = Gs(X" | f(Y") = bF)
for any b* € {0,1}*. Then, from Lemma 1

(X" | f(Yn) = ( ) k 5. Ks(zn_k . Lk,wflrzn_k : Lk,w) (18)
w=0
<k> k v K (znik . Lk,w—lr znik : Lk,w) (19)
w=| 0 w
sin—k) 3Tl _ st
(k) gy 200 Do ~ L (20)
s+ ()

25(71*’() k K 1_ s+l
Y @
_ 2 (1—20) ki (1 — o)k—1-wgw . [s+1 4 skok(s+1) (22)

s+1 w=0 o

where in the first equality, Ly _; := 0, and the last equality is obtained by telescoping the sum. The
result then follows from Equation (5) and Lemma 1. O

We next prove Theorem 2.

Proof of Theorem 2. Recall that we assume for simplicity that # is odd. The analysis for an even n
is not fundamentally different. To evaluate the guessing-moment, we first need to find the optimal
guessing strategy. To this end, we let Wy (x™) be the Hamming weight of x and note that the posterior
probability is given by

Pr(Maj(Y") =1 | X" = x") - Pr(X" = x")

Pr(X" = x" | Maj(Y") = 1) = Pr(Maj(Y") = 1) (23)
=2l=".pr (fyi >n/2| X" :x"> (24)
i=1
=2l . pr (iyi >n/2 | Wy (X") = WH(x”)> (25)
i=1
=27 (Wh(x™)), (26)

where Equation (25) follows from symmetry. Evidently, r,(w) is an increasing function of w €
{0,1,...,n}. Indeed, let Bin(n, §) be a binomial r.v. of n trials and success probability é. Then, for any
w<n-—1,a6<1/2,

tn(w+1)
:Pr(Bm(w+1 1-96)+Bin(n—w—1,5) >n/2) (27)
= Pr (Bin(w,1 — ) +Bin(1,1 —4) + Bin(n —w—1,6) >n/2) (28)
> Pr (Bin(w,1—6) + Bin(1,4) + Bin(n —w — 1,6) > n/2) (29)
= Pr (Bin(w, 1 — ¢) + Bin(n — w, ) > n/2) (30)
= ru(w), (31)

where, in each of the above probabilities, the summation is over an independent binomial r.v. Hence,
we deduce that, whenever Maj(Y") = 1 (resp. Maj(Y") = 0), the optimal guessing strategy is by
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decreasing (resp. increasing) Hamming weight (with arbitrary order for inputs of equal Hamming

weight).
We can now turn to evaluate the guessing-moment for the optimal strategy given the majority of
Y". Let My := Yo (}) forw € {0,1,...,n}. From symmetry,
Gs(X" [ Maj(Y")) = Gs(X" | Maj(Y") = 1) (32)
n Mn,w
=Y ( >zl "ra(w) Y. (33)
w=0 izl\/f;z,w—l""1
where M,, _1 := 0. Thus,
n
Gs(X™ | Maj(Y")) > ¥ (Z,)Zlnrn(m s (34)
w=0
M _ S
=2 [rn(W) ( o 1) } (35)
= 2L [, (W) Pr (W < W —1)°], (36)

where W, W' ~ Bin(n,1/2) and is independent. For evaluating the asymptotic behavior (for large n)
of this expression, we note that the Berry—Esseen central-limit theorem ([31], Chapter XVL5, Theorem
2) leads to (see, e.g., Reference [28], proof of Lemma 15)

rn(w):Q<ﬁ-jﬁ[§—w}>+j%, (37)

for some universal constant a;. Using the Berry-Esseen central-limit theorem again, we have that

Z(2-W) 4 Z,where Z ~ N(0,1) and 2, denote convergence in distribution. Thus for a given w,

v
Pr(W/gw—l)—l—Pr(\zr(Z w’)z\iﬁ(g—wq)) (38)
—1-0( = (5-w-1)) -2 (39)

—1—Q(\5E(Z—w)>—0(\}ﬁ), (40)

where the last equality follows from the fact that |Q'(¢)| < for all t € R. Using the Berry—Esseen

1
Var
theorem once again, we have that % (% —w) i> Z. Hence, Portmanteau’s lemma (e.g., Reference [31],
Chapter VIIL1, Theorem 1) and the fact the Q(#) is continuous and bounded result in the following:

Ga(x" | Maj(¥") 2 271 E[Q(BN) - (1~ Q)] + 0 (15 ). (1)
Similarly to Equation (34), the upper bound
(X" | Maj(Y™)) f ( >21 T (w) MS,, (42)

holds, and a similar analysis leads to an expression which asymptotically coincides with the right-hand
side (r.h.s.) of Equation (41). The result then follows from Equation (5) and Lemma 1. O
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3.3. Proofs of the Lower Bounds on y; x(6)

To prove Theorem 3, we first prove the following maximum entropy result. With a standard abuse
of notation, we will write the guessing-moment and the entropy of a random variable as functions of
its distribution.

Lemma 2. The maximal entropy under guessing-moment constraint satisfies

1
— 1/s,(1-s)/s . ~1/s . -
pmax H(P) = log (e s GYs(P)-T (S)> +0(1), (43)

where o(1) vanishes as g — oo.

Proof. To solve the maximum entropy problem ([32], Chapter 12) in Equation (43) (note that the
support of P is only restricted to be countable), we first relax the constraint Gs(P) = g to

hgk

Pi)-# =g, (44)
1

i.e.,, we omit the requirement that { P(7) } is a decreasing sequence. Assuming momentarily that the
entropy is measured in nats, it is easily verified (e.g., using the theory of exponential families ([33],
Chapter 3) or by Lagrange duality ([34], Chapter 5)) that the entropy maximizing distribution is

_ exp(=AF)

PA(i) = Z(/\) (45)

fori € Ny, where Z(A) := Y72, exp(—Ai®) is the partition function and A > 0 is chosen such that
Y.ioq PA(i) - i° = g. Evidently, P, (i) is in decreasing order (and so is Gs(P,) = g) and is therefore the
solution to Equation (43). The resulting maximum entropy is then given in a parametric form as

H(Py) = AGs(Py) +InZ(A). (46)

Evidently, if g = Gs(Py) — oo, then A — 0. In this case, we may approximate the limit of the partition
function as A — 0 by a Riemann integral. Specifically, by the monotonicity of e ** ini € N,

e M (47)

N
=
I
e

Il
-

3 Zee (- () ) @
(o)
_ %Afl/s T (1) _ % (50)

where the last equality follows from the definition of the Gamma function (see Theorem 3) or from the
identification of the integral as an unnormalized generalized Gaussian distribution of zero mean, scale
parameter AL/s “AMint e R, Jensen’s

inequality implies that

, and shape parameter s [35]. Further, by the convexity of e

- i+1/2
e g/ e () i (51)
i—1/2

—i—
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for every i > 1 (the r.h.s. can be considered as averaging over a uniform random variable [i —1/2,i+
1/2]) and so, similarly to Equation (50),

2 < 2" o (- () ) ar). o

ZA)=(1+ay)- %)ﬁl/s T (1) (53)

Therefore,

where ay — 0as A — 0. In the same spirit,

Gs(Py) = iis‘expz((/\))\is) (54)

i=1
B Jo texp (— /\fl‘/s)s) dt + b,

(1+a)ia-vs.r (1) )

_ Sor(s)eh (56)
(1+ay)iats.r (1)

_ () &7)
(14ay)ir-1/s ()

- Lasa, (58)

SA

where in Equation (56), by — 0 as A — 0; in Equation (57), the identity I'(t + 1) = tI'(t) for t € R, was
used; and in Equation (58), cy — 0as A — 0.
Returning to measure entropy in bits, we thus obtain that, for any distribution P,

el/s 1
H(P) < log Tsl/s -GYs(p)-T (S) +0(1), (59)
or, equivalently,
Gs(P) > ¥s - 2°H(P) . (14 0(1)), (60)
where ¥ :=e7!- (1 7 a and o(1) is a vanishing term as Gs(P) — oo. In the same spirit, Equation (60)
holds whenever H (P; — o0, O
Remark 2. In Reference [8], the maximum-entropy problem was studied for s = 1. In this case, the

maximum-entropy distribution is readily identified as the geometric distribution. The proof above generalizes
that result to any s > 0.

Proof of Theorem 3. Assume that f is taken from a sequence of functions which achieves the
minimum in Equation (5). Using Lemma 2 when conditioning on f(Y") = b¥ for each of possible b,
we get (see a rigorous justification to Equation (61) in Appendix A)

Go(X" | fF(Y") > 6y -¥s- Y Pr(f(Y") =1b5) L psH(X"[f(x")=bF) 61)
bke{0,1}k
> 0, - ¥, - 2sHXF(Y") (62)

> gn Y - 25[7’!77{(1725)2] (63)
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where in Equation (61), ¢, = 1 and Equation (62) follows from Jensen’s inequality. For k = 1, the
bound in Equation (63) is directly related to the Boolean function conjecture [22] and may be proved in
several ways, e.g., using Mrs. Gerber’s Lemma ([36], Theorem 1); see ([23], Section 1V), References
[27,37]. For general k > 1, the bound H(X"|f(Y")) > n — k(1 — 25)? was established in Reference
([27], Corollary 1). O

Before presenting the proof of the Fourier-based bound, we briefly remind the reader of the basic
definitions and results of Fourier analysis of Boolean functions [21], and to that end, it is convenient to
replace the binary alphabet {0,1} by {—1,1}. An inner product between two real-valued functions on
the Boolean cube f, g : {—1,1}" — Ris defined as

(f,8) =E(f(X")g(X")), (64)

where X" € {—1,1}" is a uniform Bernoulli vector. A character associated with a set of coordinates
S C [n]:={1,2,...,n} is the Boolean function x° := [J;cg x;, where by convention, 12 :=1. It can be
shown ([21], Chapter 1) that the set of all characters forms an orthonormal basis with respect to the
inner product (Equation (64)). Furthermore,

fxm) =Y fs-x°, (65)

5C[n]

where {fs}sc|, are the Fourier coefficients of f, given by fs = (x5, f) = E(XS - f(X")). Plancherel’s
identity then states that (f,g) = E(f(X")g(X")) = Lse[y fsgs- The p norm of a function f is defined

as ||fll = [EIf(X™)|P]/.
The noise operator operating on a Boolean function f is defined as

Tof(x") = E(f(Y") | X" =x") (66)

where p := 1 — 20 is the correlation parameter. The noise operator has a smoothing effect on the function
which is captured by the so-called hypercontractivity theorems. Specifically, we shall use the following
version.

Theorem 5 ([21], p. 248). Let f : {—1,1}" — Rand 0 < p < 1. Then, ||Tof]l2 < || flo241-
With the above, we can prove Theorem 4.
Proof of Theorem 4. From Bayes law (recall that f(x") € {—1,1})

1+0bT,f(x")

Pr(X" = x" | f(Y") =b) =2~ ("1 Pr(f(Y") =b)’

(67)

and from the law of total expectation
Gs(X" [ f(Y") = Pr(f(Y") = 1) - Gs(X" | f(Y") = 1) + Pr(f(Y") = =1) - Gs(X" [ f(¥Y") = =1).  (68)

Let us denote fp = Ef(X") and g := f — f, and abbreviate ORDy (x") := ORDyun|(yny (x" | 1).
Then, the first addend on the r.h.s. of Equation (68) is given by

Pr(f(Y") = 1) Go(X" | f(Y") = 1) =270V Y (14 fy + Tyg(x") ) - ORDy (") (69)

1+ fy)
2

1
E (ORDSTpg(X”)) + 5 (Tpg,ORDY ;) (70)

1+ f, 1
= ( 2f¢) -Ks(2") + §<T98/ORDST¢)8> 1)
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(1+ fp) 0 25"

1
5" b oy 5(Thg ORDY ), (72)

where, in the last equality, £, = 1 (Lemma 1). Let A € [0,1], and denote p; := p" and p, = p'~*. Then,
the inner-product term in Equation (72) is upper bounded as

Ty, ORDS, )| = |(Tp,8, Ty, ORDY, )| 73)
< | T8z 1Ty, ORDY, |1 74)

< p1-y/1—f3 | To, ORDT ¢ 12 (75)
<p1-y/1-f5 - |ORDY ¢ 1,2 (76)

p a0\ 1/ (1403)
=p1-\/1-f5- (K(l+p%)s(2 )) ’ (77)
1 1/(1+03)
=p1-4/1—f2 |ky —s—— 25, 78
p1 ﬁ’[ (1+p)s+1 (78)

where Equation (73) holds since T, is a self-adjoint operator and Equation (74) follows from the
Cauchy-Schwarz inequality. To justify Equation (75), we note that

||Tpg|\% = (Tp8, Tp8) (79)
= Zupz's'g% (80)
Seln
= Y f (81)
sefn\¢
<p*-(1-13), (82)

where Equation (80) follows from Plancherel’s identity, Equation (81) is since s = fs for all S # ¢
and ¢y = 0, and Equation (82) follows from Y gc f2 =|f|13 = Ef? = 1. Equation (76) follows from
Theorem 5, and in Equation (78), k;, = 1. The second addend on the r.h.s. of Equation (68) can be
bounded in the same manner. Hence,

2(1-A)
Go(X" | F(Y™)) > max 27 - €y —— —ph e ST— P2 [ky - 1 YO )
’ T 0<A<1 T4l L (1+ p20-N)s 41

> max 2. | ¢ . 1 k. 1 1/ (14214 &

T 0<A<1 ner1 P (14 p21-M)s +1

1 pA

2511 . _ 85
— 0?/@(1 s+1 [(1 + pz(l_/\)>s + 1] 1/(1+p2(1/\))] ( )

asn —oco. [
We close this section with the following proof of Proposition 2:

Proof of Proposition 2. Let I = (i1,...,i;) be a vector of indices in [n] such that 1 < i} < i <
<o < ip < n,and let x*(I) = (xil, .. .,xl-L) be the components of x” in those indices. Further, let
{f(m} | € Fi. Then, it holds that

Pr {Xn _ X”,f(n)(Yn)] _ HPr [X”(I]) _ xn(I]),f]('rl)(ynﬂ , (86)
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as well as .
ORDyu () (yn) >11 ORD,, L o )(x”(lj)\bj)—l : (87)
j=1
Hence,
k
Go(X" | f(y")) > T]IG! DAY ) 1) (88)

j=1

and the stated bound is deduced after taking limits and normalizing by Gs(X") = szinl‘ O

4. Guessing Ratio for a General Binary Input Channel

In this section, we consider the guessing ratio for general channels with a uniform binary input.
The lower bound of Theorem 3 can be easily generalized to this case. To that end, consider the SDPI
constant [38,39] of the reverse channel (Py, Pxy), given by

D(Qx|[Px)
Py, P; = su — (89)
1(Pr: Prix) Qyzgfﬁy D(Qy||Py)
where Qx is the X-marginal of Qy o PX‘Y . As was shown in Reference ([40], Theorem 2), the SDPI
constant of (Py, Px|y) is also given by

I(W; X
1(Py, Pyjx) = sup IEW_ Y;- (90)
Pyjy: W=Y=X, I[(W;Y)>0 ’
Theorem 6. We have )
s .
Yox(Px, PY\X) > e ﬂ . 9—s:kn(Py,Px)y) 91)

rs(3)
Proof. See Appendix A. [

Remark 3. The bound for the BSC case (Theorem 3) is indeed a special case of Theorem 6 as the reverse BSC
channel is also a BSC with uniform input and the same crossover probability. For BSCs, it is well known that
the SDPI constant is (1 — 25)? ([381, Theorem 9).

Next, we consider in more detail the case where the observation channel is a BEC. We restrict the
discussion to the case of a single bit of help, k = 1.

4.1. Binary Erasure Channel

Suppose that Y € {0,1,e}" is obtained from X" by erasing each bit independently with
probability e € [0,1]. As before, Bob observes the channel output Y” and can send one bit
f:{0,1,e}* — {0,1} to Alice, who wishes to guess X". With a slight abuse of notation, the guessing
ratio in Equation (5) will be denoted by s(€).

To compute the lower bound of Theorem 6, we need to find the SDPI constant associated with the
reverse channel, which is easily verified to be

I(x=y), y=0ory=1
Pxy— = 92
X\Y—y(x) {Ber(l/Z), y=e, (92)
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l1—e

with an input distribution Py = (15, ¢, 15¢). Letting Qy(y) = g, fory € {0,1,e} yields Qx(x) =
qx + & for x € {0,1}. The computation of 1 (Py, Px|y) is now a simple three-dimensional constrained
optimization problem. We plotted the resulting lower bound for s = 1 in Figure 4.

1r

——Th. 7 (Greedy Dictator)
0.9 |-eeeene Th. 6 (Max entropy)

0.8

0.7

0.6

0.5

0.4

031

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
€

Figure 4. Bounds on y5(J) for s = 1 as a function of € € [0, 1].

Let us now turn to upper bounds and focus for simplicity on the average guessing time, i.e., the
guessing-moment for s = 1. To begin, let S represent the set of indices of the symbols that were not
erased, i.e., i € Sif and only if Y; # e. Any function f : {0,1,e}" — {0,1} is then uniquely associated
with a set of Boolean functions {fs }sc[,), where fs : {0,1} ISl — {0,1} designates the operation of the
function when § is the set of non-erased symbols. We also let Pr(S) = (1 — €)!! - €5l be the probability
that the non-erased symbols have index set S. Then, the joint probability distribution is given by

Pr(X" = x", f(Y") = 1) = Pr(X" = x") - Pr(f(Y") = 1| X" = x") (93)
=27"- ) Pr(S)-Pr(f(Y")=1] X" =x",5) (94)

SC[n]
=27". Y Pr(S)- fs(x"), (95)

SC[n]

and, similarly,

Pr(X" = 2", f(Y") =0) =27"- }_ Pr($)- (1 - fs(x")) (96)
SC[n]
=27"=27". Y Pr(S)- fs(x"). (97)
SCln]

In accordance with Proposition 1, the optimal guessing order given that f(Y") = 0 is reversed to the
optimal guessing order when f(Y") = 1. Itis also apparent that the posterior probability is determined
by a mixture of 2" different Boolean functions { fs}s¢ (n]- This may be contrasted with the BSC case, in
which the posterior is determined by a single Boolean function (though with noisy input).
A seemingly natural choice is a greedy dictator function, for which f(Y") sends the first non-erased
bit. Concretely, letting
n _ ,;n
(") = {” o o 98)

min {i: y; # e}, otherwise

the greedy dictator function is defined by

Ber(1/2), y"=¢e"

. (99)
Yy, otherwise

G-Dict(y") := {
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where Ber(«) is a Bernoulli r.v. of success probability «. From an analysis of the posterior probability, it
is evident that, conditioned on f(Y") = 0, an optimal guessing order must satisfy that x" is guessed
before z"* whenever

M-

l
—

n
ey < Z ez, (100)
i i=1
(see Appendix A for a proof of Equation (100)). This rule can be loosely thought of as comparing the
“base 1/€ expansion” of x" and z". Furthermore, when € is close to 1, then the optimal guessing order
tends toward a minimum Hamming weight rule (or maximum Hamming weight in case f = 1).
The greedy dictator function is “locally optimal” when € € [0,1/2], in the following sense:

Proposition 3. If € € [0,1/2], then an optimal guessing order conditioning on G-Dict(Y") = 0 (resp.
G-Dict(Y") = 1) is lexicographic (reverse lexicographic). Also, given lexicographic (resp. reverse lexicographic)
order when the received bit is O (resp. 1), the optimal function f is a greedy dictator.

Proof. See Appendix A. [

The guessing ratio of the greedy dictator function can be evaluated for s = 1, and the analysis
leads to the following upper bound:

Theorem 7. For s = 1, the guessing ratio is upper bounded as

1

mle) < 5— (101)

and the r.h.s. is achieved with equality by the greedy dictator function in Equation (99) for e € [0,1/2].

Proof. See Appendix A. [

The upper bound of Theorem 7 is plotted in Figure 4. Based on Proposition 3 and numerical
computations for moderate values of 1, we conjecture:

Conjecture 1. Greedy dictator functions attain -ys(e) for the BEC.

Supporting evidence for this conjecture include the local optimality property stated in
Proposition 3 (although there are other locally optimal choices) as well as the following heuristic
argument: Intuitively, Bob should reveal as much as possible regarding the bits he has seen and as
little as possible regarding the erasure pattern. So, it seems reasonable to find a smallest possible
set of balanced functions from which to choose all the functions fs, so that they coincide as much as
possible. Greedy dictator is a greedy solution to this problem: it uses the function x; for half of the
erasure patterns, which is the maximum possible. Then, it uses the function x; for half of the remaining
patterns, and so on. Indeed, we were not able to find a better function than G-Dict for small values
of n.

However, applying standard techniques in attempt to prove Conjecture 1 has not been fruitful.
One possible technique is induction. For example, assume that the optimal functions for dimension
n—1 are fs(nfl)

functions for dimension # satisfy fs(n) = fs(n_l) if x1 is erased; in that case, it remains only to determine

. Then, it might be perceived that there exists a bit, say x;, such that the optimal

fs(n) when x; is not erased. However, observing Equation (95), it is apparent that the optimal choice of

fs(") should satisfy two contradicting goals—on the one hand, to match the order induced by

Y. Pr(S)- fs(x") (102)

SCln]: 1¢S
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and, on the other hand, to minimize the average guessing time of

Y, Pr(S)- fs(x"). (103)

SC[n]: 1S

It is easy to see that taking a greedy approach toward satisfying the second goal would result in
fs(n) (x") = x7if 1 € S and performing the recursion steps would indeed lead to a greedy dictator
function. Interestingly, taking a greedy approach toward satisfying the first goal would also lead to a
greedy dictator function, but one which operates on a cyclic permutation of the inputs (specifically,
Equation (99) applied to (15, y1)). Nonetheless, it is not clear that choosing { fs(") }s. 1e5 with some loss
in the average guessing time induced by Equation (103) could not lead to a gain in the second goal
(matching the order of Equation (102)), which outweighs that loss.

Another possible technique is majorization. It is known that, if one probability distribution
majorizes another, then all the nonnegative guessing-moments of the first are no greater than the
corresponding moments of the second ([29], Proposition 1). (The proof in Reference [29] is only for
s = 1, but it is easily extended to the general s > 0 case.) Hence, one approach toward identifying the
optimal function could be to try and find a function in which induced posterior distributions majorize
the corresponding posteriors that induces by any other functions with the same bias (it is of course
not clear that such a function even exists). This approach unfortunately fails for the greedy dictator.
For example, the posterior distributions induced by setting fs to be majority functions are not always
majorized by those induces by the greedy dictator (although they seem to be “almost” majorized) even
though the average guessing time of greedy dictator is lower (this happens, e.g., for n = 5 and € = 0.4).
In fact, the guessing moments for greedy dictator seem to be better than these of majority irrespective
of the value of s.

Author Contributions: Conceptualization, N.W. and O.S.; Investigation, N.W. and O.S.; Methodology, N.W. and
O.S.; Writing—original draft, N.W. and O.S.; Writing—review and editing, N.W. and O.S. Both authors contributed

equally to the research work and to the writing process of the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by an ERC grant no. 639573. The research of N. Weinberger was partially
supported by the MIT-Technion fellowship and the Viterbi scholarship, Technion.

Acknowledgments: We are very grateful to Amos Lapidoth and Robert Graczyk for discussing their recent work
on guessing with a helper [19,20] during the second author’s visit to ETH, which provided the impetus for this
work. We also thank the anonymous reviewer for helping us clarify the connection between the guessing moments
and large deviation principle of the normalized logarithm of the guessing time.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BEC binary erasure channel

BSC binary symmetric channel

iid. independent and identically distributed
rhs. right-hand side

V. random variable

SDPI strong data-processing inequality
w.lo.g. without loss of generality

Appendix A. Miscellaneous Proofs

Proof of Proposition 1. The claim that random functions do not improve beyond deterministic ones
follows directly from that property that conditioning reduces guessing-moment ([1], Corollary 1).
Monotonicity follows from the fact that Bob can always simulate a noisier channel. Now, if § = 1/2,
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then X" and Y” are independent and Gs(X" | f(Y")) = Gs(X") = 52% for any f (Lemma 1). For § =0,
let

'ys(n)(é) = min G f(Y") fn(Y”)), (A1)

’ flop o1y Gs(X")

and let {f;, };_; be a sequence of functions such that f,;, achieves ’ys(;{) (6). We show that f; must
satisfy Pr[f(Y") = b*] = 27 for all b* € {0,1}*. If we denote BX = fik(Y™), then this is equivalent
to showing that PI[BZ =1 | Bl = blr-"/Blfl = bl*l’Bl = bl/"-Bk = bk} = 1/2 foralll € [k]
and (by,...,b_1,b;,...,b) € {0, 1}k_1. Assume towards contradiction that the optimal function
does not satisfy this property for, say, I = k. Let us denote Pr(f;, (Y") = b*) := g(b*) and assume
w.lo.g. that g(b¥=1,0) > q(b¥=1,1) for all b*~1 € {0,1}*~! (for notational simplicity). Further, let
G0T) = gt 0) + (¥, 1)]. Then,

Gs (X" | f(Y"))
= X L0 GuX" | frr(Y") = (0571,0) + 90 1) - Go (X | fr(Y") = (571,1))
bk—le{oll}k—l

= X a0 0K (a0 -2) + g0t 1) K (08 1) - 27)
bk—le{o’l}k—l

=2 ) )R DD
pk=1e{0,1}k-1

i=1 i=1

q(bk—lro)‘zn q(bk’1,1)~2" )
S
1

q(bk—l),zn q(bk—llo),zn ﬁ(bk—l),zn ﬁ(bk—l),zn
—n z Z i 4 2 is + Z s — Z i
bk—1e{0,1}k-1 i=1 )

i=1 i=g(bk1)+1 i=q(bk-1,1
ﬁ(bk—l)_zn
> (- Yy R
b-le{o1}k-1 =1

As equality can be achieved if we modify f, to satisfy q(b"1,0) = q(v*=1,1) for all ¥ € {0,1}+1,
this contradicts the assumed optimality of ;. The minimal Gs(X" | f(Y")) is thus obtained by any

function for which f(Y") € {0,1}* is a uniform Bernoulli vector and equals to K, (2" %) = 25;:’;1’0
(Lemma 1).
To prove that the limit in Equation (5) exists, we note that
on+l
GS(XH+1> — 2*(H+1) Z i (AZ)
i=1
27’!
=27 D Y (24 — 1) + (2i)° (A3)
i=1
21’!
>2°.27" Y (i—1)° (Ad)
i=1
27!
=0,-2°-27"Y 7 (A5)
i=1
=0, -2°-Gs(X"), (A6)
where o
2" (i —1)8
by = M (A7)

211 .
Z,‘:1 N
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As before, let {f¥ }7>_; be a sequence of functions such that f;', achieves 'ygrl? (6). Denote the order
induced by the posterior Pr(X" = x" | f# (Y") = b*) as ORDy ,, ., b* € {0,1}* and the order induced
by Pr(X" ™1 = x"1 | fx(Y") = b*) as ORDy ,, 1. As before (when breaking ties arbitrarily)

ORth’n,n 11 (x",0) = ZORDbk,n,n(x”) (A8)
and
ORDbk,n,n +1(x”, 1) = ZORDbk’n’n(x”) —-1< ZORth’n’n(x”). (A9)
Thus,
Gs (X" | (Y™
< Gs(XM | frk(Y™) (A10)
= Y Pr(f (YT =) (X £ (Y = ) (A11)
bke{0,1}k
< Z Z Pr(XnJrl — xn+1/f:’k(yn> _ ) ORDbknn+1( n+1)
bkE{O,l}k xn+1
<20 Y Y Pr(X" =", fr (YT = b)) ORDy . (x") (A12)
bke{0,1}k x"
=20 Gu(X" | f(Y"). (A13)
Hence,
1 _
%(,T OR "rs(fi) (6)- (A14)

To continue, we further analyze ¢,. The summation in the numerator of Equation (A7) may be started
from from i = 2, and so Equations (A31) and (A33) (proof of Lemma 1 below) imply that

1>, (A15)
1. on(s+1) _q
s+1 2n—1
25 @ (A16)
s+1 2n
on(s+1) _q
> W (A17)
on s+1 1
- (2" + 1) o on(s+1) (Al8)
(s+1) 1
(1 + 2;1) ~ onr1) (A19)
B (s+1) 1 1
=1- on +0 221 ) on(s+1) (A20)
B (s+1) 1
=1- o +0 Snmin{it52] ) (A21)

Thus, there exists ¢, C > 0 such that
log[] 0t = Z log ¢, ! (A22)
n=
<- z log [1- o] (A23)

<c+zzn+o<21n> (A24)
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< 0o, (A25)
and consequently,
do=[167" =1 (A26)
j=n

as n — oo. Hence, Equation (A14) implies that
en = dy - 7" (6) (A27)

is a non-increasing sequence which is bounded below by 0 and, thus, has a limit. Since d, — 1 as
n — 0o, 7"
We finally show the reverse ordering property for k = 1. The guessing order given that f(Y") =1

is determined by ordering

(6) also has a limit.

Pr(X" =x")-Pr(f(Y")=1]| X" =x")
Pr(X" = x" Y")=1)= A2
H(X =" | £ = 1) i , (A28
or equivalently, by ordering Pr(f(Y") = 1 | X" = x"). It then follows that the order, given that
f(Y™") =0, is reversed compared to the order given that f(Y") = 1 since

Pr(f(Y") =0 | X" =x") +Pr(f(Y") =1| X" =x") = 1. (A29)
O

Proof of Lemma 1. The monotonicity of i* and standard bounds on sums using integrals lead to the
bounds

b+1 45

Ke(a,b) < / dt (A30)
at1 b—a
1 (b4t — (a4 1)5H!
Ts41 b—a (A31)
and
b s
Ks(a,b) > / dt (A32)
a b—a
1 bs+1 _ as+1
T s+1  b—a (A33)

The ratio between the upper and lower bound is

(b+1) — (a+1)"1

Ks(a’b) = ps+1 — gs+1

(A34)

which satisfies xs(ay, b,) — 1 given the premise of the lemma. [

Proof of Equation (61). Denote by f; a function which achieves the minimal guessing ratio in
Equation (5). Then, it holds that Gs(X" | f*(Y") = b¥) is a monotonic non-increasing function
of n. To see this, suppose that f ; is an optimal function for n + 1. This function f, ; can be used
for guessing X" on the basis of k bit of help computed from Y" as follows: Given Y”, the helper
randomly generates Y, 1 ~ Py|x(:|0), computes b= fr . 1(Y"™1), and send these bits to the guesser.
The guesser of X" then uses the bits b* to guess X", and the resulting conditional guessing moment
is Gs(X"*1 | fr  (Y"*1) = b5, X, 1 = 0), which is less than G¢(X" ™ | fr ,(Y"™) = bF) since
conditioning reduces guessing moments. Thus, the optimal function f;; can only achieve lower
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guessing moments, which implies the desired monotonicity property. For brevity, we henceforth
simply write the optimal function as f (with dimension and optimality being implicit).
Define the set
By := {b* € {0,1}F: sup Gs(X" | f(Y") = bF) = o0}, (A35)
n

to wit, the set of k-tuples such that the conditional guessing moment grows without bound when
conditioned on that k-tuple. By the law of total expectation

Gs(X" | F(Y") = ) Pr(f(Y") =b")- Gs(X" | F(Y") = bF)

kaBk
+ Y Pr(f(Y") =05 Go(X" | f(Y") = 1) (A36)
bke{0,1}k\ By
=GV + 6. (A37)

So, since Gs(X" | f(Y")) grows without bound as a function of 7, it must hold that By is not empty
and that there exists ¢, such that G(X" | f(Y")) = KHG,(}), where ¢, — 1asn — oo. Letyy > 0 be
given. The monotonicity property previously established and Equation (60) imply that there exists
1no(1) such that for all n > ny(#) both

G5<Xn | f(Yn> — bk) 2 (1 _ 77) . 1115 . 25H(Xn|f(yn):bk) (A38)

and
¥, - 2 HOUOM=0) > (1 — ). Go(X™ | F(Y") = bY) (A39)

hold for any bk e Bg. Thus, also

Gs(X" | F(Y")) > £u(1=1) Y Pr(f(¥") = bF) - ¥, - 2 XM =1 (A40)

and

Y Pr(F(Y") = bF) s 22HOM= > F7 pr(£(Y") = B (1) - Go(X" | F(Y") = 1)
bkEBk bkEBk
(A41)
hold, and the last equation implies that the term on its left-hand side is unbounded. Moreover,
Equation (60) and the sentence that follows it both imply that, if Gs(X" | f(Y") = b¥) is bounded, then
H(X" | f(Y") = b) is bounded too. Thus, there exists k, which satisfies k,, — 1 as n — oo such that

Z Pr(f(Y") = bk) Y, CpsH(X|f(Y")=bF) _ ky - Z Pr(f(Y") = bk) ¥, psH(X"|f(Y")=bF) (A42)
bkeBy bke{0,1}"

Combining Equation (A40) with the last equation and noting that # > 0 is arbitrary completes the
proof. O

Proof of Theorem 6. The proof follows the same lines as the proof of Theorem 3 up to Equation (62),
yielding
Gs(X" | F(Y")) = ke + ¥ - 20 IO, (A43)

Now, let W) be such that X" — Y" — W) forms a Markov chain. Then,

(X" f(Y")) 1(X"; W)

sup sup I(Y”, W(n))

LA
f: {01} LY f(Y") ~ p

w(n) [yn

(A44)

= ﬂ(Pyn,Pxn‘yn) (A45)
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= 1(Py, Pxy), (A46)

where Equation (A46) follows since the SDPI constant tensorizes (see Reference [40] for an argument
obtained by relating the SDPI constant to the hypercontractivity parameter or its extended version,
Reference ([40], p. 5), for a direct proof). Thus, for all f,

I(X"; f(Y")) < n(Py, Pxpy) - I(Y"; f(Y")) (A47)
< n(Py, Pxyy) - H(f(Y")) (A48)
<n(Py, Pxy) - k. (A49)

Inserting Equation (A49) into Equation (A43) yields
GS(Xn | f(Yn)) > kn - ¥s ‘zs[n_kbﬂ(PY'PX‘Y)], (A50)

and substituting this in the definition of the guessing ratio of Equation (5) completes the proof. [

Proof of Equation (100). Let us evaluate the posterior probability conditioned on G-Dict(Y") = 0.
Since G-Dict is balanced, Bayes law implies that

Pr(X" = x" | G-Dict(Y") = 0)
0

=2~ =) . Pr(G-Dict(Y") = 0 | X" = x") (A51)
n+1
=270 Y Pr(k(y") =i | X" = x") - Pr(G-Dict(Y") = 0 | X" = x", k(y") = i) (A52)
i=1
n .
=2-(=1). {Z(l —e)e 1 {x; =0} + %e”} . (A53)
i=1

This immediately leads to the guessing rule in Equation (100). From Proposition 1, the guessing rule
for G-Dict(Y") = 1 is on reverse order. [

Proof of Proposition 3. We denote the lexicographic order by ORDj,. Assume that G-Dict(Y") =0
and that ORDy., (x") < ORDjey(z"). Then, there exists j € [n] such that ¥/ =1 = z/~! (where x° is the
empty string) and x; = 0 < z; = 1. Then,

Pr(X" = x" | G-Dict(Y") = 0) — Pr(X" = z" | G-Dict(Y") = 0)

. n .

=14 Z el (zi —xj) (A54)
i=j+1

) (A55)
i=j+1

_ (1 et e”*f“) (A56)

T 1-—¢

> 0. (A57)

This proves the first statement of the proposition. Now, let ORDy (ORD;) be the guessing order given
that the received bit is 0 (resp. 1), and let { fs} be the Boolean functions (which are not necessarily
optimal). Then, from Equations (97) and (95)

G (X" | £(Y"))
=Y Pr(X" = x", f(Y") = 0) - ORDy (x") + Pr(X" = x", f(Y") = 1) - ORD; (x") (A58)
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Z Pr(S) Y [(1 — fs(x")) - ORDo(x") + fs(x") - ORDy (x")] (A59)
2 Pr(S) Y [(1 = fs(x")) - PORDy(x][S) + fs(x") - PORD; (x°]|) (A60)
. 2 Pr(S) Zmin{PORDO(xSHS),PORDl(xS\yS)}, (A61)

where for b € {0,1}, the projected orders are defined as

PORD,(x°|[S) := ) ORDy(x"). (A62)

x(59)

It is easy to verify that, if ORDy (ORD; ) is the lexicographic (resp. revered lexicographic) order, then
the greedy dictator achieves Equation (A61) with equality due to the following simple property: If
ORDjey (x") < ORDjex (2"), then

Z ORDlex 2 ORDlex( ) (A63)

x(59) x(59)

forall S € [n]. This can be proved by induction over n. For n = 1, the claim is easily asserted. Suppose
it holds for n — 1, let us verify it for n. If 1 € S, then whenever ORDje, (x") < ORDje, (z")

Y ORDyey (x") = ), ORDyey (1, %3) (A64)
x(59) x(5%)
=x1-2"" 1+ } ORDjex(x5) (A65)
x(59)
<z 2n Z ORDlex(Zg) (A66)
2(59)
= Z ORDyex (") (A67)
z(8)

where the inequality follows from the induction assumption and since x; < zq. If 1 ¢ S then, similarly,

Y ORDp (x") = Y. [2"—1 2. ORDleX(xg)] (A68)
x(59) x(5\{1})
< [2"*1 2. ORDlex(zg)} (A69)
Z(SE\{1})
= ) ORDyey(z"). (A70)
2(5€)

O

Proof of Theorem 7. We denote the lexicographic order by ORD)¢y. Then,

G1(X" | G-Dict(Y")) = Gy (X" | G-Dict(Y") = 0) (A71)
<Y Pr(X" = x" | G-Dict(Y") = 0) - ORDjex (x") (A72)

=2-(=D.y" i(l —e)e’ 11 {x; = 0} - ORDjey (x") + €"K1(2")  (A73)

g, (1—e>f 1Y 1 {x = 0} - ORDiey(x") + €Ky (2")  (A74)
i=1 x"

=(1—¢€)Jn+€"Ky(2"), (A75)
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where |1 := % and forn > 2
n .
Juoi=2""0 Y 1Y 1 {x; = 0} - ORDye, (1) (A76)
i=1 X"
n .
1{x; =0} - ORDje, (x") +27 """V Y " =1. Y71 {x; = 0} - ORDj, (") (A77)
x" =2 x"
— Kl(zn—l)
n .
+27 Uy e Y 1 {xy = 0,x; = 0} - ORDyey (0,x5) + 1 {x1 = 1, %; = 0} - ORDyey (1, 25)]
i=2 xy
(A78)
=K (2" ) 427 (- 16261 oY 1{x; = 0} ORDjex (x" 1)
= xn—1
n—1
+27 e Ve Y 1 {x; = 0} {2”*1 +ORDlex(x”’1)} (A79)
i=1 xn—l
=Ki(2" Y +ef, 1+Ze Y 1{x;=0} (A80)
i=1 xn—1
n—1 n—2 €—¢"
So,
1 2 5 oe—e! _p €—¢€"
Jn=Ki(2" ") +€ |Ki(2" %)+ €Jy0 + 2" g +2" <. 7o (A82)
2 _an
= Ky (2771 4 ek (2772) 4 2y + 273 % yon2, 61 _ee (A83)
i 211 1 + i izi—2 . (en—i—l-l _ en) (A84)
i=1 I-e i=1 .
Hence,
n .
G1 (X" | G-Dict(Y")) < (1—e€) Y& 1Ky (2") 22' -2, (e”*l“—e") +E"Ki(2").  (A8D)
i=1
Noting that K1 (M) = X we get
G (X" | G—Dict(Y”))
" i (1—e)1—e") 1& (2) 1 _ e"
2n1 - < .n+1_72n_1 n 2n1n c
12() 2 fakle) T @ e
(A86)
1 w1  €" (1—e)(1—¢€")

_ € 7
2_€<2 roa e)>+ ! (AS7)
2n—1

=5 (A88)
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