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Abstract

The rate of amino acid substitution has been shown to be correlated to a number of factors including the rate of recombination, the
age of the gene, the length of the protein, mean expression level, and gene function. However, the extent to which these correlations
are due to adaptive and nonadaptive evolution has not been studied in detail, at least not in hominids. We find that the rate of
adaptive evolution is significantly positively correlated to the rate of recombination, protein length and gene expression level, and
negatively correlated to gene age. These correlations remain significant when each factor is controlled for in turn, except when
controlling for expression in an analysis of protein length; and they also generally remain significant when biased gene conversion is
takeninto account. However, the positive correlations could be an artifact of population size contraction. We also find that the rate of
nonadaptive evolution is negatively correlated to each factor, and all these correlations survive controlling for each other and biased
gene conversion. Finally, we examine the effect of gene function on rates of adaptive and nonadaptive evolution; we confirm that
virus-interacting proteins (VIPs) have higher rates of adaptive and lower rates of nonadaptive evolution, but we also demonstrate that
there is significant variation in the rate of adaptive and nonadaptive evolution between GO categories when removing VIPs. We
estimate that the VIP/non-VIP axis explains about 5-8 fold more of the variance in evolutionary rate than GO categories.
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Significance

The rate at which a protein evolves depends on a number of factors including its age, length, and expression level, as
well as its function and recombination rate. However, these patterns might be due to either adaptive or nonadaptive
evolution. We analyze the rate at which proteins evolve between humans and chimpanzees and show that rates of
both adaptive and nonadaptive evolution are affected by multiple factors, suggesting that the rate at which a protein
evolves is due to a complex set of interacting variables.

Introduction

There is substantial variation in the rate of evolution between
different genes within a genome; some genes, such as those
coding for histones, evolve very slowly, whereas many genes
involved in immunity evolve rapidly (Clark et al. 2003;
Chimpanzee Sequencing and Analysis Consortium 2005;
Nielsen et al. 2005; Sackton et al. 2007; Obbard et al.
2009). The reasons for this variation have been extensively

studied and a number of factors appear to influence or be
correlated to the rate of protein evolution including function
(Proschel et al. 2006; Haerty et al. 2007; Obbard et al. 2009),
mutation rate (Taddei et al. 1997; Tenaillon et al. 1999;
Giraud et al. 2001; Denamur and Matic 2006; Lynch et al.
2016), recombination rate (RR) (Hill and Robertson 1966;
Marais and Charlesworth 2003), gene expression (Pal et al.
2001; Subramanian and Kumar 2004; Wright et al. 2004,
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Lemos et al. 2005), and protein length (Zhang 2000; Lipman
et al. 2002; Liao et al. 2006). Correlations with other factors,
such as essentiality, appear to be less clear (Hurst and Smith
1999). Any one of these patterns could be due to adaptive or
nonadaptive evolution, but the relative roles of these two
different evolutionary processes have rarely been studied.
Note, that we define advantageous mutations as those that
on average increase in frequency and are subject to either
natural and sexual selection.

At the functional level, genes involved in immunity, tumor
suppression, apoptosis, and spermatogenesis have been
shown to have higher rates of adaptive evolution in hominids
(Clark et al. 2003; Chimpanzee Sequencing and Analysis
Consortium 2005; Nielsen et al. 2005). Particularly striking is
the amount of adaptive evolution that appears to occur in
virus-interacting genes, which appear to account for 30%
of all adaptive substitutions in hominids, whereas these genes
only constitute 13% of the proteome by length (Enard et al.
2016). In Drosophila, it has been shown that male-biased
genes, such as testes specific genes, have higher rates of
adaptive evolution (Proschel et al. 2006; Haerty et al. 2007),
as do genes involved in immunity (Sackton et al. 2007;
Obbard et al. 2009). The dominant role of viral interacting
proteins (VIPs) in hominid adaptive evolution begs the ques-
tion of whether there is variation between other categories of
genes, and how much of the variation in the rate of adaptive
evolution is partitioned between the VIP and non-VIP catego-
ries. The role of gene function in determining nonadaptive
evolution has not been addressed in detail.

The rate of protein sequence evolution has been shown to
be correlated to gene expression, with highly expressed genes
having lower rates of protein evolution in both eukaryotes (Pal
et al. 2001; Subramanian and Kumar 2004; Wright et al.
2004; Lemos et al. 2005) and prokaryotes (Rocha and
Danchin 2004). Moutinho et al. (2019) has shown that this
correlation is due to both adaptive and nonadaptive evolution
in Drosophila suggesting that gene expression constrains the
rate of adaptive substitution as well as the effect of purifying
selection. In Arabidopsis the correlation with expression seems
to be largely associated with nonadaptive evolution
(Moutinho et al. 2019). The role of gene length has also
been studied, with several studies showing that smaller genes
evolve more rapidly (Zhang 2000; Lipman et al. 2002; Liao
et al. 2006). Again, this appears to be due to both adaptive
and nonadaptive evolution, in Drosophila species, but possibly
only due to nonadaptive evolution in Arabidopsis (Moutinho
et al. 2019).

Genes differ not only in function, expression, and length,
but also in age (Lynch 2002; Daubin and Ochman 2004; Tautz
and Domazet-Loso 2011; Neme and Tautz 2013). Multiple
studies have shown that young genes (i.e., those genes
whose recognized homologs are only present in closely re-
lated species; Domazet-Loso et al. 2007) evolve faster than
old genes (Thornton and Long 2002; Domazet-Loso and

Tautz 2003; Krylov et al. 2003; Daubin and Ochman 2004;
Alba and Castresena 2005; Wang et al. 2005; Cai et al. 2006;
Wolf et al. 2009; Cai and Petrov 2010; Vishnoi et al. 2010;
Zhang et al. 2010; Tautz and Domazet-Loso 2011; Cui et al.
2015). Cai and Petrov (2010) found clear evidence for the role
of nonadaptive evolution in this relationship but no evidence
for adaptive evolution. However, there is an expectation that
young genes will be further from their evolutionary optimum
than old genes, and hence that they should undergo rapid
adaptive evolution when they are born. There is some limited
evidence for this; the jingwer gene, which appeared very re-
cently in the Drosophila phylogeny is evolving very rapidly,
with 80% of the amino acid substitutions estimated to have
been due to adaptive evolution (Long and Langley 1993).

Recombination is expected to affect the probability that
both advantageous and deleterious mutations are fixed,
due to its ability to reduce Hill-Robertson interference be-
tween selected mutations (Hill and Robertson 1966; Marais
and Charlesworth 2003). Rates of adaptation have been
shown to be strongly positively correlated to RR in
Drosophila (Presgraves 2005; Betancourt et al. 2009;
Arguello et al. 2010; Mackay et al. 2012; Campos et al.
2014; Castellano et al. 2016; Moutinho et al. 2019) and
Arabidopsis (Moutinho et al. 2019), and rates of nonadaptive
evolution to be negatively correlated in both Drosophila and
Arabidopsis species (Moutinho et al. 2019).

In summary, a number of factors have been shown to
correlate to rates of protein evolution, and in some of these
cases the relative roles of adaptive and nonadaptive evolution
have been disentangled. However, relatively little work has
been done on these questions in hominids. We addressed
these questions by considering the role of gene age, RR,
gene expression, protein length, and gene function in deter-
mining rates of both adaptive and nonadaptive evolution. To
disentangle the effects of adaptive and nonadaptive evolu-
tion, we use an extension of the McDonald—Kreitman test
which estimates these quantities taking into account the dis-
tribution fitness effects of new mutations.

Results

We set out to investigate whether a number of gene-level
factors affect the rate of adaptive and nonadaptive evolution
in hominids—the RR, gene age, the level of gene expression,
gene length, and gene function. We measure the rates of
adaptive and nonadaptive evolution using the statistics w,
and wn,, Which are estimates of the rate of evolution relative
to the mutation rate. We estimated both statistics using an
extension of the McDonald—Kreitman method, in which the
pattern of substitution and polymorphism at neutral and se-
lected sites is used to infer the rates of substitution, taking into
account the influence of slightly deleterious mutations. We
use the method implemented in Grapes (Galtier 2016), which
is @ maximum likelihood implementation of the second
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method proposed by Eyre-Walker and Keightley (2009).
Estimating rates of adaptive and nonadaptive evolution in in-
dividual genes is impractical, as most genes have relatively
little polymorphism data. We therefore group genes together,
according to the factors analyzed.

We estimated w, and @y, using 16,344 genes for the diver-
gence between humans and chimpanzees using African SNPs
from the 1000 genomes data (1000 Genomes Project
Consortium 2015). We find that the average rate of adaptive
evolution is approximately 5-fold lower than the rate of nonadap-
tive evolution (,=0.037 [95% Cls estimates using bootstrapping
0.035 and 0.039] vs. ,3=0.19 [0.19,0.19]). The proportion of
substitutions that are adaptive, «, is estimated to be 0.16, which is
close to previous recent estimates (Boyko et al. 2008; Eyre-Walker
and Keightley 2009; Messer and Petrov 2013).

Adaptive Evolution

The rate of adaptation is expected to be retarded in regions of
low recombination because of Hill-Robertson interference,
and we do indeed find that the rate of adaptive evolution is
significantly positively correlated to the rate of recombination
in hominids (fig. 1a; r=0.74, P<0.001); this correlation is
also significant if we use pedigree, rather than population
genetic estimates of the RR (r=—0.48, P=0.033). A similar
positive correlation has previously been observed in
Drosophila (Presgraves 2005; Betancourt et al. 2009;
Arguello et al. 2010; Mackay et al. 2012; Campos et al.
2014; Castellano et al. 2016). In the most detailed study of
this relationship in Drosophila, Castellano et al. (2016) found
that the rate of adaptive evolution increases with RR, but that
it asymptotes, suggesting that above a certain level of recom-
bination, Hill-Robertson interference has little effect. It is not
clear whether there is an asymptote in humans (fig. 1a); the
rate of increase in the rate of adaptive evolution with RR does
appear to decrease, but not sufficiently to declare that there is
an asymptote. The same pattern is evident if we divide the
data up into 50 instead of 20 bins (r=0.58, P< 0.001) (sup-
plementary fig. S1, Supplementary Material online).
Unfortunately, we have relatively few genes with high RRs.

Young genes have been shown to evolve faster than old
genes (Thornton and Long 2002; Domazet-Loso and Tautz
2003; Krylov et al. 2003; Daubin and Ochman 2004; Alba and
Castresena 2005; Wang et al. 2005; Cai et al. 2006; Wolf
et al. 2009; Cai and Petrov 2010; Vishnoi et al. 2010; Zhang
et al. 2010; Tautz and Domazet-LoSo 2011; Cui et al. 2015).
There is an expectation that young genes will undergo faster
rates of adaptive evolution because they are further from their
adaptive optima (Wright 1931, 1932), and we do indeed find
a significant negative correlation between w, and gene age in
hominids (r=—0.40, P=0.012) (fig. 1b).

Highly expressed genes have been shown to exhibit lower
rates of protein evolution in both eukaryotes (Pal et al. 2001;
Subramanian and Kumar 2004; Wright et al. 2004; Lemos et

al. 2005) and prokaryotes (Rocha and Danchin 2004).
Moutinho et al. (2019) found significant negative correlations
in Drosophila species between w, and both gene expression
and protein length. Intriguingly, the correlations are reversed
in hominids, with both correlations being significantly positive
(gene expression: r=0.642, P=0.002; protein length:
r=0.597, P=0.005) (fig. 1c and d).

Independent Effects

Our measure of adaptive evolution, w,, is significantly posi-
tively correlated to RR, expression, and protein length, and
negatively to gene age. However, the rate of recombination,
gene age, gene expression, and protein length are all signif-
icantly, or nearly significantly, correlated to each other (table 1)
so it is important to determine whether each factor has an
independent effect on the rate of adaptive evolution; that is,
the correlation between Y and X, might be due to the fact
that each is correlated to a third factor Z, and with no variation
in Z there is no correlation between Y and X. To investigate
this, we conducted two analyses. In the first instance, we
repeated our analyses controlling for each factor in turn by
taking the values of the co-correlate around the modal
value—we took the modal value and 0.5 standard deviations
(SDs) either side. This significantly reduced the coefficient of
variation (CV) of the co-correlate within each analysis, largely
controlling for this factor (table 1). However, controlling for
each factor this way reduces the data set considerably, so we
also ran an analysis in which we calculated the expected cor-
relation between two variables under the assumption that
they are correlated solely because of their correlation to a
third variable. It can be shown (see Materials and Methods)
that if the correlation between Y and Z is r,z and that between
XandZis ryz, then expected correlation between Y and X due
to the covariation with Z is ryx = Sign +/r&, rZ,, where Sign
is positive if both ry; and ryz are positive or negative, and
negative otherwise. In both analyses, we only investigate fac-
tors that could generate an artifactual correlation of the cor-
rect sign.

Our two analyses suggest that there is a direct association
between w, and RR; when we control for age and length, we
find that although the correlation is no longer significant
when we control for either variable, the correlation does re-
main positive, and the observed correlations are significantly
greater than the predicted correlation (table 2). The analysis
also suggests that there is a direct association between w, and
age, because the correlation remains significantly negative
when we control for RR, and the predicted correlation is sig-
nificantly smaller in magnitude than the observed correlation.
However, the results with gene expression and length are less
clear; when each variable is controlled for in the analysis of the
other, the correlation becomes nonsignificant (table 2). The
observed correlation between w, and expression is signifi-
cantly greater than the predicted correlation, using length
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Fic. 1.—Estimates of w, and wn, plotted against the (a) mean RR, (b) gene age, (c) mean gene expression, and (d) mean protein length. The respective
significance of each correlation is shown in the plot legend, (*P < 0.05; **P< 0.01; ***P< 0.001; “.” 0.05 < P< 0.10 for w, and wy). Also shown is the
line of best fit through the data. An unweighted regression is fitted to the estimates of w, and wpa.

as the covariate, whereas the opposite is not true; this would
seem to suggest that there is a direct correlation between w,
and expression, and that the correlation between w, and
length may be due to the fact that both are correlated to
expression. However, the evidence is not strong in support
of this hypothesis.

Controlling for Rate in Age Analysis

There is another factor that needs to be controlled for in any
analysis of age—fast evolving genes are harder to identify in

more distant species (WWeisman et al. 2020), and this can lead to
an artifactual correlation between the age of a gene and the
rate of evolution because gene age is underestimated in fast
evolving genes. To try and control for this effect, we reduced
our data set to those genes around the modal value of dN. The
distribution of nonsynonymous substitution rates is bimodal,
with many genes having dN=0. We took genes around the
second mode, those with rates between 0.002 and 0.007. This
reduces our data set from 15,439 to 4,961 genes, and as a
consequence, we had to combine multiple age categories to-
gether. We find no significant correlation between w, and age
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Table 1

The Correlation between Gene Age, Gene Expression, Protein Length, and RR

Gene Expression Protein Length RR v CV of Near Modal Values
Gene age 0.87*** 0.86*** —0.62** 14 0.38
Gene expression 0.44*** —0.035%** 1.5 0.41
Protein length 0.10%** 1.7 0.50
RR 1.1 0.33

Note.—Logs were taken of all variables. The CV column is the coefficient of variation of the factor for all the data. The final column is the CV of the restricted data (i.e., when
we control for the factor in question by restricting the analysis to genes with the modal value +0.5 SDs).

*P<0.05, **P<0.01, ***P<0.001.

Table 2

The Observed Correlation between Y and X Controlling for a Covariate, Z, and the Observed and Predicted Correlation between Y and X Assuming the
Relationship Is Solely due to the Correlation between Each Variable and a Third Factor Z

Y Variate X Variate Observed r Z Variate Observed r—Controlling for Z Predicted r Predicted/Observed>1
[oN RR 0.74%** Age 0.25 0.15 0
Wa RR 0.74%** Length 043 0.086 0
[N Age —0.40* RR —0.58* —0.093 0.02
W, Expression 0.64** Length 0.00 0.38 0.03
[oN Length 0.60** RR 0.64** 0.091 0
[oN Length 0.60** Expression 0.25 0.37 0.13
Wna RR —0.73%** Length —0.54* —0.34 0
Wna Age —0.971%** Expression —0.76%* -0.76 0
Wna Age —0.91%** Length —0.87*** —0.75 0
Wna Expression —0.98*** Age —0.74%** —0.90 0
Wna Expression —0.98*** Length —0.61** -0.95 0.01
Wna Length —0.94%** RR —0.91%** -0.42 0
Wna Length —0.94%** Age —0.49* —0.88 0
Wna Length —0.94%** Expression —0.71%** —0.89 0

Note.—The final column gives the proportion of 100 bootstrap replicates in which the predicted correlation divided by the observed correlation is greater than 1—that is, the

predicted correlation is larger in magnitude.
*P<0.05, **P<0.01, ***P<0.001.

when we do this (r=0.41, P=0.27), suggesting that the cor-
relation between w, and age might be an artifact of the prob-
lems in identifying fast evolving genes in older taxa.

Controlling for Biased Gene Conversion

Biased gene conversion (BGC) can potentially impact estimates
of the rate of adaptive evolution, either by increasing the fixa-
tion probability of S over W neutral alleles (Galtier and Duret
2007; Berglund et al. 2009; Ratnakumar et al. 2010; Rousselle
et al. 2020), or by promoting the fixation of slightly deleterious S
alleles (Duret and Galtier 2009; Glémin 2010; Necsulea et al.
2011; Lachance and Tishkoff 2014; Rousselle et al. 2020). To
investigate whether BGC affects our results, we can leverage
some of the results above. The correlation between w, and
either age and protein length remains significant if we control
for RR (table 2) (supplementary figs. S3a and S6a,
Supplementary Material online, respectively), suggesting that
BGC is unlikely to be responsible for these correlations. If we
control for RR in the regression between w, and expression, we
find that the correlation remains, suggesting that this

correlation is also not due to BGC (r=0.78, P< 0.001) (supple-
mentary fig. S5a, Supplementary Material online).

To investigate whether the correlation between w, and RR
is due to BGC, we performed a different analysis restricting
the analysis to those polymorphisms and substitutions that are
unaffected by BGC—that is, A<>T and G<>C changes. This
reduces our data set to about 20% of its previous size. We
find that there is still a positive correlation, although it is no
longer significant (r=0.10, P=0.093) (supplementary fig. S2,
Supplementary Material online).

In conclusion, w, is positively correlated to RR, protein
length, and gene expression level, and to a large extent these
correlations survive controlling for each other and BGC; the
exceptions are protein length when expression is controlled
for, and the positive relationship between w, and RR when
BGC is controlled for.

Nonadaptive Evolution

We repeated the analysis above for the rate of nonadaptive
evolution. We find that wp, is highly significantly negatively
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correlated to RR (whether we use population genetic or ped-
igree estimates), gene age, length, and expression (fig. 1). All
of these correlations remain significant when controlling for
potentially confounding factors, and the observed correlation
is significantly greater in magnitude than the predicted corre-
lation (table 2). Hence, we can conclude that all four factors
have significant independent effects on wp,. As with the anal-
ysis of wj it is possible that these correlations are due to BGC.
However, if we control for RR in our analyses, we find that all
the negative correlations persist (gene age: r=-0.89,
P<0.001; gene length: r=—0.91, P< 0.001; gene expres-
sion: r=0.99, P<0.001). In the case of the correlation be-
tween wp, and RR, if we restrict the analysis to G<>C and
A<>T mutations we find that w,,, remains significantly neg-
atively correlated to RR (r=—0.65, P< 0.001). If we control for
the rate of evolution in the analysis of age by using genes with
dN values around the modal value, as we did for w,, we find
the correlation between w,,, and gene age remains significant
(r=-0.72, P=0.027).

Gene Function

In the second part of our analysis, we consider the effect of
gene function on the rate of adaptive and nonadaptive evo-
lution. It has previously been demonstrated that genes whose
products interact with viruses—VIPs—have higher rates of
adaptive evolution than other genes in primates (Enard
et al. 2016). We confirm this pattern. In our analysis, in which
we have used a different method and statistic to estimate the
rate of adaptive evolution, we find that the rate of adaptive
evolution among VIPs is approximately 40% greater than in
non-VIPs (w,=0.052 vs. 0.032), a difference that is highly
significant (P < 0.001). This pattern is consistent across almost
all GO categories that have at least 100 genes, supporting the
results of Enard et al. (2016) (fig. 2).

It is evident however, that there is substantial variation
between GO categories for non-VIP genes, and this variation
is significant, taking into account that individual genes can
contribute to multiple GO categories (P=0.0012). This pat-
tern is replicated if we include GO categories which do not
include VIP proteins (P=0.0010). The GO categories which
have the highest rate of adaptive evolution are ubiquitin pro-
tein ligase binding, and protein kinase binding (table 3).

What are the relative contributions of GO category and VIP
status to the variation in the rate of adaptive evolution—that
is, is most of the variation in the rate of adaptive evolution due
to whether the gene encodes a VIP or not, or is most of the
variation due to other functional considerations? To investi-
gate this, we performed a two-way analysis of variance on w,
and estimated the variance components. We find that the
distinction between VIP and non-VIP contributes approxi-
mately 5x the variance in @, as the variation between GO
categories, suggesting that whether a gene encodes a VIP has

a major effect on its rate of adaptation (supplementary table
S1, Supplementary Material online).

But what of nonadaptive evolution? If we divide our data
into genes that interact with viruses and those that do not, we
find that rates of nonadaptive evolution are substantially
higher in non-VIP genes (wn,=0.198 vs. 0.101). As Enard
et al. (2016) found, this pattern is replicated across GO cate-
gories (fig. 2). There is substantial and significant variation in
wna across GO categories excluding VIP genes, taking into
account that individual genes can contribute to multiple GO
categories (P< 0.001). This pattern is replicated if we include
GO categories which do not include VIP proteins (P < 0.001).
The GO categories that have the highest non-VIP rates of
nonadaptive evolution are both related to immune system
response (table 4). If we partition the variance between VIP/
non-VIP and GO categories, we find that the distinction be-
tween VIP and non-VIP contributes over 8x the variance in
mns as the variation between GO categories, suggesting that
whether a gene encodes a VIP has a major effect on its rate of
nonadaptive  evolution  (supplementary  table  S2,
Supplementary Material online) as well as its rate of
adaptation.

Discussion

It has been previously shown that the rate of evolution corre-
lates to a number of factors including RR (Presgraves 2005;
Betancourt et al. 2009; Arguello et al. 2010; Mackay et al.
2012; Campos et al. 2014; Castellano et al. 2016; Moutinho
et al. 2019), gene age (Thornton and Long 2002; Domazet-
Loso and Tautz 2003; Krylov et al. 2003; Daubin and Ochman
2004; Alba and Castresena 2005; Wang et al. 2005; Cai et al.
2006; Wolf et al. 2009; Cai and Petrov 2010; Vishnoi et al.
2010; Zhang et al. 2010; Tautz and Domazet-Loso 2011; Cui
et al. 2015), expression level (Pal et al. 2001; Rocha and
Danchin 2004; Subramanian and Kumar 2004; Wright et al.
2004; Lemos et al. 2005; Moutinho et al. 2019), and protein
length (Zhang 2000; Lipman et al. 2002; Liao et al. 2006;
Moutinho et al. 2019). In addition, the rate of evolution has
been shown to vary with gene function (Clark et al. 2003;
Chimpanzee Sequencing and Analysis Consortium 2005;
Nielsen et al. 2005). In this study, we have correlated each
of these factors to w, and wp, in hominids, allowing us to
disentangle the effects of adaptive and nonadaptive evolu-
tion. We find that w, is correlated to all four factors, and that
when we control for each factor in turn, there is evidence for
an independent influence of RR, gene age, and gene expres-
sion. These correlations generally remain when controlling for
the effects of BGC, although the relationship with RR is not
significant. However, the correlation with gene age could be
an artifact of fast evolving genes having higher rates of adap-
tive evolution and being more difficult to identify in older taxa;
when we control for the rate at which a protein evolves, the
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Table 3

Top Ten GO Categories, Ranked by Rate of Adaptive Substitution

GO Category w, ;3 95% Cls
Ubiquitin protein ligase binding 0.0843  0.0702-0.0995
Protein kinase binding 0.0804 0.0698-0.0914
Sequence-specific DNA binding 0.0735  0.0633-0.0842
DNA-binding transcription factor activity 0.0719  0.0628-0.0812
Transcription factor complex 0.0682  0.0496-0.0883
Transcription by RNA polymerase I 0.0673  0.0518-0.0836
Negative regulation of apoptotic process 0.0671  0.0552-0.0796
Chromatin organization 0.0669  0.0567-0.0775
DNA-binding transcription activator activity = 0.0649  0.0524-0.078
Transcription coactivator activity 0.0648  0.0519-0.0786

Table 4
Top Ten GO Categories, Ranked by Rate of Nonadaptive Substitution

GO Category Ona Wna 95% Cls
Immune system process 0.297 0.283-0.310
Innate immune response 0.264 0.248-0.279
Chromosome 0.262 0.249-0.274
Protein C-terminus binding 0.246 0.228-0.264
Centrosome 0.243 0.232-0.253
DNA repair 0.236 0.223-0.249
Signal transduction 0.225 0.219-0.231
Neutrophil degranulation 0.218 0.206-0.229
Extracellular region 0.217 0.211-0.223
Proteolysis 0.204 0.195-0.214

negative correlation between w, and gene age becomes non-
significant consistent with this possibility.

In contrast, we find that all four factors have significant
independent effects on w,,, and that all of these remain sig-
nificant when we control for each in turn, and control for
BGC. Several studies on both eukaryotes (Pal et al. 2001;
Subramanian and Kumar 2004; Wright et al. 2004; Lemos

et al. 2005; Moutinho et al. 2019) and prokaryotes (Rocha
and Danchin 2004) have demonstrated that more highly
expressed genes have lower rates of protein sequence evolu-
tion. Our results support these previous findings, with the
negative correlation between w,,; and gene expression sug-
gesting that more highly expressed genes are under greater
constraint in hominids. Drummond et al. (2005) suggest a
general hypothesis that more highly expressed genes evolve
slowly (i.e., are under higher selective constraint) because of
the selection against the expression level cost of protein mis-
folding, wherein selection acts by favoring protein sequences
that accumulate less translational missense errors. We also
find a significant negative correlation between w,, and
gene length. This supports former studies that have shown
that smaller genes evolve more rapidly (Zhang 2000; Lipman
et al. 2002; Liao et al. 2006; Moutinho et al. 2019), suggest-
ing that smaller protein-coding regions are under more re-
laxed purifying selection.

Methodological Concerns

The method we have used to infer w, and w,,, makes a num-
ber of simplifying assumptions. We assume that the DFE is
well described by a gamma distribution, which does appear to
fit the SFS spectra well in analyses comparing different func-
tional forms of the DFE in hominids (Boyko et al. 2008; Galtier
and Rousselle 2020). We have also assumed that new non-
synonymous mutations are either deleterious or strongly ad-
vantageous. However, there are likely to be slightly
advantageous mutations and these can lead to an overesti-
mate of the rate of adaptive evolution (Tataru et al. 2017). Itis
therefore possible that the correlations we have observed are
not necessarily due to variations in the rate of adaptive evo-
lution, but the strength of selection acting on them. For ex-
ample, we observe that w, is positively correlated to RR; we
have interpreted this as evidence that the rate of adaptive
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evolution increases with increasing levels of recombination,
but an alternative explanation is that the rate is the same,
or that it decreases with RR, with the rate being more sub-
stantially overestimated in high RR genes because there are
more slightly advantageous mutations; this hypothesis
requires that the advantageous mutation rate is higher in
high RR genes, that the mean strength of selection on advan-
tageous mutations is lower, and that the combination of
these two factors is such that the rate of adaptive substitution
is lower in the high RR genes, but that the rate is sufficiently
overestimated that the estimated rate of adaptive evolution is
higher in high RR genes.

Gene Function Analyses

Our analyses of VIP and non-VIP genes show that a high pro-
portion of the variance in protein evolution in hominids is
accounted for by whether or not a gene interacts with viruses,
a result that corroborates Enard et al.’s (2016) findings. By
disentangling the rates of adaptive and nonadaptive evolu-
tion, we find that VIP genes are under less constraint than
non-VIPs, and that VIPs exhibit a higher rate of adaptive evo-
lution. We also estimate the variance components using two-
way analyses of variance, finding that the distinction between
VIP and non-VIP contributes about 5x the variance in w,, and
8x the variance in w, as the variation between GO catego-
ries, suggesting that whether a gene encodes a VIP has a
major effect on its rate of adaptation and nonadaptation (sup-
plementary table S1, Supplementary Material online). These
results could explain why there appears to be little variation in
the rate of adaptive evolution across biological functions cat-
egorized using Gene Ontology (Bierne and Eyre-Walker
2004), with viruses acting across a range of biological func-
tions likely to be a key factor in these estimates.

Our study is likely to underestimate the amount of adaptive
evolution attributable to viruses, for reasons outlined by Enard
et al. (2016). Briefly, we used the categorization of VIPs and
non-VIPs provided by Enard et al. (2016). However new VIPs
are being discovered regularly, suggesting there are some VIPs
that were not included in our analysis. Secondly, the catego-
rization of VIP and non-VIP necessarily cannot account for
proteins that adapt to viruses but do not physically interact
with them (e.g., in proteins that are upstream or downstream
of VIPs in signaling cascades).

No Asymptote in the Correlation between w, and RR

Both Campos et al. (2014) and Castellano et al. (2016) found
that there is a positive relationship between the rate of adap-
tive evolution and RR in Drosophila. Furthermore, Castellano
et al. (2016) showed using a larger data set that the positive
correlation between RR and w, asymptotes in Drosophila,
suggesting that above a certain level of recombination Hill-
Robertson interference has little effect. In this study, we do
not find clear evidence for this asymptote in hominids for

either the rate of adaptive or nonadaptive evolution (fig. 1a
and supplementary fig. S1, Supplementary Material online).
The lack of an apparent asymptote might be because we have
few genes with high rates of recombination and so it is diffi-
cult to detect the asymptote. It might also be because the RR
estimates we are using do not reflect the RR over the diver-
gence of humans and chimpanzees. Rates of recombination
evolve rapidly in hominids; humans and neanderthals share
few recombination hotspots (Lesecque et al. 2014) and rates
of recombination in 100-kb windows are only mildly corre-
lated between humans and chimpanzees (Stevison et al.
2016). Hence, we may not be correlating w, against a rele-
vant measure of the RR. The correlation in RR between
humans and chimpanzees is substantially higher at the
1 Mb than the 100-kb scales (Stevison et al. 2016), so the
average RR in 1-Mb windows might represent a more appro-
priate measure. However, we find that the w, is not signifi-
cantly correlated to RR at this scale (r=0.17, P=0.48),
whereas the correlation with m,, remains significantly nega-
tively (r=—0.55, P=0.011). The final possibility for the lack
of an apparent asymptote is that most genes are affected by
HRi in hominids; that the RR in hominds is not sufficient to
prevent HRi. This is perhaps not unexpected. The level of HRi
will depend on several factors—the effectiveness of recombi-
nation in breaking down associations, the density of selected
sites, and the mutation rate to alleles that are subject to se-
lection; if weakly selected mutations are responsible for HRi
then the effective population size and the level of nearly neu-
tral genetic diversity will also be important. Recombination is a
considerably more effective force in Drosophila; linkage dis-
equilibrium decays over a scale of 10s of base pairs (Mackay
et al. 2012) rather than the 10,000s that we observe in
humans (1000 Genomes Project Consortium 2015). This
1,000-fold difference in the effectiveness of recombination
is likely to more than compensate for the fact that humans
have approximately 20-fold greater genome size, and a
higher rate of deleterious mutation (2.1 in humans
[Lesecque et al. 2012] to 1.2 in Drosophila [Haag-Liautard
et al. 2007], respectively).

Gene Age

Cai and Petrov (2010) found that older genes exhibit a lower
rate of protein evolution (as measured by the Ka/Ks ratio) than
younger genes. The authors demonstrated that this was at
least in part due to stronger purifying selection acting on older
genes than on younger ones, by showing that levels of non-
synonymous to synonymous polymorphism were lower in
older genes. Our findings corroborate these results, with the
strong negative correlation between w,, and gene age show-
ing that older genes are under a lower rate of protein evolu-
tion than younger genes. However, we also find a significant
negative correlation between gene age and the rate of adap-
tive evolution, w,, whereas Cai and Petrov found no such
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correlation. There are two potential causes of this discrepancy.
Firstly, for this analysis Cai and Petrov group genes by their
age based on lineage specificity (LS), that is, how specifically a
gene and orthologs of a gene are distributed on a given phy-
logeny (Cai et al. 2006), whereas we group our genes by
phylostratigraphic category (PL), that is, where genes are
ranked by PL based on their earliest ortholog (Domazet-
Loso et al. 2007). Each method has its limitations. Because
the LS method relies on the phylogenetic profiles of individual
genes, Cai and Petrov removed genes with patchy distribu-
tions (Cai et al. 2006), resulting in 10,032 of 20,150 genes
being removed from the data set for having irregular phylo-
genetic profiles. The PL method relies on parsimony and
assumes that a gene family can be lost, but cannot re-
evolve in different lineages (Domazet-Loso et al. 2007), mean-
ing that those genes that would be removed using the LS
method are maintained in the PL method. By using the PL
method, our data set contained 15,439 grouped into 19 phy-
lostratigraphic bins. Secondly, Cai and Petrov obtained diver-
gence and polymorphism data from the compiled Applera
data set (Bustamante et al. 2005; Lohmueller et al. 2008) of
39 humans (19 African Americans and 20 European
Americans), whereas we have used data from the 661
African samples within the 1000 genomes data set (1000
Genomes Project Consortium 2015). Notably, the African
population has undergone a more stable demographic history
than Europeans, who carry proportionally more deleterious
genetic variation, which Lohmueller et al. (2008) ascribe to
the bottleneck encountered by the Eurasian population at the
time of the migration out of Africa. This higher proportion of
segregating deleterious alleles will inevitably affect estimates
of the rate of adaptive evolution, but not the ratio of non-
synonymous and synonymous substitution rates (the latter of
which yields a strong correlation with gene age using both the
PL and LS methods in Cai and Petrov’s study).

The Effect of Population Contraction

It has been shown previously that the MK test can generate
artifactual evidence of adaptive evolution if some nonsynon-
ymous mutations are slightly deleterious and the population
in question has undergone recent expansion, because selec-
tion is more effective during the polymorphism phase than
during the divergence phase (McDonald and Kreitman 1991,
Eyre-Walker 2002). Although, the effective population size in
humans has increased recently, the effective population size is
considerably reduced from that in the human—chimpanzee
ancestor (Hobolth et al. 2007; Burgess and Yang 2008;
Prado-Martinez et al. 2013; Schrago 2014). This population
contraction can depress the signal of adaptive evolution in
humans. Furthermore, we have shown elsewhere that if a
factor, for example gene age, is correlated to the mean
strength of selection against deleterious mutations, popula-
tion size change will generate an artifactual correlation

between that factor and the rate of adaptive evolution (Soni
et al. 2021). The direction of this correlation depends on the
direction of the correlation between the mean strength of
selection acting against deleterious mutations and the factor
in question and whether the population has expanded or
contracted; for example, if factor X is positively correlated to
the absolute mean strength of selection (i.e., selection is stron-
ger against genes with larger values of X), then population
contraction will induce an artifactual positive correlation be-
tween w, and X.

Al four factors are positively correlated to the log absolute
mean strength of selection against deleterious mutations, es-
timated from the site frequency spectrum (gene age:
r=0.916, P<0.001; RR: r=0.828, P< 0.001; gene length:
r=0.818, P<0.001; gene expression: r=0.948, P< 0.001)
(fig. 3). Population contraction undergone by hominids should
therefore tend to induce an artifactual positive correlation
between w, and each factor in our analysis. This artifactual
positive correlation is contrary to the negative correlation that
we observe between w, and age (fig. 1). This may be one
reason why we observe a weaker correlation between gene
age and the rate of adaptive evolution in hominids compared
with Drosophila and Arabidopsis species (Moutinho AF, Eyre-
Walker A and Dutheil J, unpublished data). However, popu-
lation contraction might be responsible for the positive corre-
lation between w, RR, protein length, and expression.
Because mp, is estimated exclusively from polymorphism
phase data, we do not expect the correlations between wp,
and our four factors to be affected by the population
contraction.

In summary, we observe a significant correlation between
the rate of adaptive evolution, RR, protein length, and gene
expression, and a negative correlation between the rate of
adaptive evolution and gene age. However, we cannot be
very confident that any of these correlations are genuine;
the positive correlation between w,, RR, protein length, and
gene expression might be due to an artifact of population size
contraction, and the correlation between w, and age might
be due to the problems of identifying rapidly evolving genes,
with high values of w,, in more distant taxa. In contrast, the
rate of nonadaptive evolution is independently negatively cor-
related to all factors. We have confirmed that whether a pro-
tein interacts with viruses is an important factor in
determining whether a gene undergoes high rates of adaptive
and nonadaptive evolution, however, we also demonstrate
that there is significant variation between GO categories,
even when this factor is controlled for.

Materials and Methods

Data

We obtained orthologous human and chimpanzee gene
sequences from the Ensembl biomart (Yates et al. 2019) for
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Fic. 3.—Correlation between the log of the mean strength of selection against deleterious mutations and (a) gene age, (b) RR, (c) gene length, and (d)

gene expression. A linear regression has been fitted to each data set.

the human GRCh38 and Pan_tro_3.0 genome builds. We
aligned these orthologs using MUSCLE (Edgar 2004). After fil-
tering out genes with gaps that were not a multiple of 3, we
were left with 16,344 pairwise alignments. Proportions of syn-
onymous and nonsynonymous substitutions were estimated us-
ing codeml from the PAML package (Yang 2007) program. We
used polymorphism data from the African superpopulation of
the 1000 genomes data set (1000 Genomes Project Consortium
2015) to construct our site frequency spectra, with rates of
adaptive (w,) and nonadaptive (wn,) evolution estimated using
Grapes (Galtier 2016), under the “GammaZero” model. We
used African SNPs because the African population has been
subject to relatively simple demographic processes (Gravel
etal. 2011). Cls on our estimates of w, and w,,, were generated
by bootstrapping the data set by gene.

Gene ages were obtained from Litman and Stein (2019). In
this data set, genes are ranked by phylostratigraphic category
(PL) based on their earliest ortholog. Gene lengths were
obtained by taking the total coding sequence length of the
longest transcript of each protein, whereas gene expression
data were obtained from the Expression Atlas database
(Papatheodorou et al. 2019), wherein the baseline experiment
E-MTAB-5214 was used. These data are from the GTEX
genotype-tissue expression analysis of 53 tissue samples
(GTEx Consortium 2015). We estimated the arithmetic
mean expression value across tissues for each gene, and
binned gene by mean gene expression of 20 roughly equally
sized bins (each containing 808-811 genes). RR maps were
obtained from Spence and Song (2019) and Kong et al.
(2010); these maps are based on population genetic and
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pedigree data, respectively. The mean RR was calculated be-
tween the start and end of the largest transcript for each
gene, or the average RR across the MB in which the gene
was centered. GO category information was obtained from
Ensembl’s Biomart (Ashburner et al. 2000; Yates et al. 2019;
Gene Ontology Consortium 2021).

Correlating Factors with Rates of Adaptive and
Nonadaptive Evolution

To correlate the rates of adaptive and nonadaptive evolution
with each of RR, protein length, and gene expression, we
binned our genes into 20 roughly equal sized bins. For gene
age, we binned data by PL, of which there were 19. To control
for BGC in our RR analysis, we restricted the analysis to those
polymorphisms and substitutions that are unaffected by
BGC—that is, A<>T and G<>C changes. This reduced our
data set to about 20% of its previous size.

To investigate whether factors were independently corre-
lated to w, and wps, We ran the analysis controlling for each of
the other three factors in turn. We controlled for each factor
by taking the values of the co-correlate close to the modal
value. We took the modal value and 0.5 standard deviations
(SDs) either side which reduces the SD of the co-correlate
within each analysis. Because this reduces the data set con-
siderably, we also ran an analysis in which we predicted the
correlation coefficient between Y and X under the assump-
tion that they are only correlated to each other because they
are both correlated to Z. If r; is the correlation between Y and
Z, then ry;% is the proportion of variance in Y explained by Z,
and vice versa. Hence, the proportion of variance explained in
Y by X, because of their mutual correlation to Z is ryz* r’.
Hence the expected correlation coefficient between Y and X
is rvx = Sign /r, rg,, where Sign is positive if both rz and
Iz are positive or negative, and negative otherwise. To assess
significance, we grouped genes according to X variable, and
then within each group, we generated a bootstrap data set.
We estimated w,, mwn,, the mean value of X and Z for each
group and the observed and predicted correlations between
W,, Wna, Mean X, and mean Z. We tabulated the number of
bootstrap replicates in which predicted ryx>observed rx. We
performed 100 bootstrap replicates for each analysis.

Gene Function Analysis

Genes were divided by GO category and rates of adaptive and
nonadaptive evolution were estimated for each category
(note genes can contribute to multiple categories). For the
VIP analysis, we split each GO category into two groups—
VIP and non-VIP genes, as per (Enard et al. 2016). To test
whether there was significant variation in w, and ., across
GO categories, we shuffled data between gene labels; that is,
for each gene, we have its synonymous and nonsynonymous
site frequency spectra and numbers of synonymous and non-
synonymous substitutions. These data were randomly

assigned to gene labels, hence preserving the covariance
structure of the data—that is, the fact that a gene can con-
tribute to multiple GO categories. This shuffling was per-
formed 100 times, each time recalculating w, and wy;.

We are interested in the extent to which the rate of adap-
tive and nonadaptive evolution is determined by whether it is
a VIP gene versus other GO categorizations. We can quantify
this by partitioning the variance in a two-way analysis of var-
iance where the dimensions are VIP/non-VIP, and GO cate-
gory. However, to estimate the variances, we need to balance
the data so that the error variance is the same for all cells in
the two-way ANOVA. We did this by downsampling the data
using a hypergeometric distribution, such that each cell had
200,000 combined nonsynonymous and synonymous sites.
To estimate the error variance, we split the SFS and substitu-
tion data into two halves using a hypergeometric distribution
and estimated w, and w,, for each set; hence we have for
each combination of VIP/non-VIP and GO category two esti-
mates of the rate of adaptive and nonadaptive evolution,
where the error variances for these estimates should be ap-
proximately equal.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.

Data Availability

The analysis used publicly available data. Scripts used to pro-
cess and analyze the data are available at https:/github.com/
vivaksoni/gene_level_factors_affecting_rates_of_evolution_
in_hominids.
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