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Abstract

The rate of amino acid substitution has been shown to be correlated to a number of factors including the rate of recombination, the

ageof thegene, the lengthof theprotein,meanexpression level, andgenefunction.However, theextent towhich thesecorrelations

are due to adaptive and nonadaptive evolution has not been studied in detail, at least not in hominids. We find that the rate of

adaptive evolution is significantly positively correlated to the rate of recombination, protein length and gene expression level, and

negatively correlated to gene age. These correlations remain significant when each factor is controlled for in turn, except when

controlling for expression in an analysis of protein length; and they also generally remain significant when biased gene conversion is

taken intoaccount.However, thepositivecorrelationscouldbeanartifactofpopulationsizecontraction.Wealsofindthat the rateof

nonadaptive evolution is negatively correlated to each factor, and all these correlations survive controlling for each other and biased

gene conversion. Finally, we examine the effect of gene function on rates of adaptive and nonadaptive evolution; we confirm that

virus-interactingproteins (VIPs)havehigher ratesofadaptiveand lower ratesofnonadaptiveevolution,butwealsodemonstrate that

there is significant variation in the rate of adaptive and nonadaptive evolution between GO categories when removing VIPs. We

estimate that the VIP/non-VIP axis explains about 5–8 fold more of the variance in evolutionary rate than GO categories.

Key words: adaptive evolution, humans, chimpanzees, recombination rate, gene age.

Introduction

There is substantial variation in the rate of evolution between

different genes within a genome; some genes, such as those

coding for histones, evolve very slowly, whereas many genes

involved in immunity evolve rapidly (Clark et al. 2003;

Chimpanzee Sequencing and Analysis Consortium 2005;

Nielsen et al. 2005; Sackton et al. 2007; Obbard et al.

2009). The reasons for this variation have been extensively

studied and a number of factors appear to influence or be

correlated to the rate of protein evolution including function

(Pröschel et al. 2006; Haerty et al. 2007; Obbard et al. 2009),

mutation rate (Taddei et al. 1997; Tenaillon et al. 1999;

Giraud et al. 2001; Denamur and Matic 2006; Lynch et al.

2016), recombination rate (RR) (Hill and Robertson 1966;

Marais and Charlesworth 2003), gene expression (P�al et al.

2001; Subramanian and Kumar 2004; Wright et al. 2004;
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Lemos et al. 2005), and protein length (Zhang 2000; Lipman

et al. 2002; Liao et al. 2006). Correlations with other factors,

such as essentiality, appear to be less clear (Hurst and Smith

1999). Any one of these patterns could be due to adaptive or

nonadaptive evolution, but the relative roles of these two

different evolutionary processes have rarely been studied.

Note, that we define advantageous mutations as those that

on average increase in frequency and are subject to either

natural and sexual selection.

At the functional level, genes involved in immunity, tumor

suppression, apoptosis, and spermatogenesis have been

shown to have higher rates of adaptive evolution in hominids

(Clark et al. 2003; Chimpanzee Sequencing and Analysis

Consortium 2005; Nielsen et al. 2005). Particularly striking is

the amount of adaptive evolution that appears to occur in

virus-interacting genes, which appear to account for 30%

of all adaptive substitutions in hominids, whereas these genes

only constitute 13% of the proteome by length (Enard et al.

2016). In Drosophila, it has been shown that male-biased

genes, such as testes specific genes, have higher rates of

adaptive evolution (Pröschel et al. 2006; Haerty et al. 2007),

as do genes involved in immunity (Sackton et al. 2007;

Obbard et al. 2009). The dominant role of viral interacting

proteins (VIPs) in hominid adaptive evolution begs the ques-

tion of whether there is variation between other categories of

genes, and how much of the variation in the rate of adaptive

evolution is partitioned between the VIP and non-VIP catego-

ries. The role of gene function in determining nonadaptive

evolution has not been addressed in detail.

The rate of protein sequence evolution has been shown to

be correlated to gene expression, with highly expressed genes

having lower rates of protein evolution in both eukaryotes (P�al

et al. 2001; Subramanian and Kumar 2004; Wright et al.

2004; Lemos et al. 2005) and prokaryotes (Rocha and

Danchin 2004). Moutinho et al. (2019) has shown that this

correlation is due to both adaptive and nonadaptive evolution

in Drosophila suggesting that gene expression constrains the

rate of adaptive substitution as well as the effect of purifying

selection. In Arabidopsis the correlation with expression seems

to be largely associated with nonadaptive evolution

(Moutinho et al. 2019). The role of gene length has also

been studied, with several studies showing that smaller genes

evolve more rapidly (Zhang 2000; Lipman et al. 2002; Liao

et al. 2006). Again, this appears to be due to both adaptive

and nonadaptive evolution, in Drosophila species, but possibly

only due to nonadaptive evolution in Arabidopsis (Moutinho

et al. 2019).

Genes differ not only in function, expression, and length,

but also in age (Lynch 2002; Daubin and Ochman 2004; Tautz

and Domazet-Lo�so 2011; Neme and Tautz 2013). Multiple

studies have shown that young genes (i.e., those genes

whose recognized homologs are only present in closely re-

lated species; Domazet-Loso et al. 2007) evolve faster than

old genes (Thornton and Long 2002; Domazet-Loso and

Tautz 2003; Krylov et al. 2003; Daubin and Ochman 2004;

Alb�a and Castresena 2005; Wang et al. 2005; Cai et al. 2006;

Wolf et al. 2009; Cai and Petrov 2010; Vishnoi et al. 2010;

Zhang et al. 2010; Tautz and Domazet-Lo�so 2011; Cui et al.

2015). Cai and Petrov (2010) found clear evidence for the role

of nonadaptive evolution in this relationship but no evidence

for adaptive evolution. However, there is an expectation that

young genes will be further from their evolutionary optimum

than old genes, and hence that they should undergo rapid

adaptive evolution when they are born. There is some limited

evidence for this; the jingwei gene, which appeared very re-

cently in the Drosophila phylogeny is evolving very rapidly,

with 80% of the amino acid substitutions estimated to have

been due to adaptive evolution (Long and Langley 1993).

Recombination is expected to affect the probability that

both advantageous and deleterious mutations are fixed,

due to its ability to reduce Hill–Robertson interference be-

tween selected mutations (Hill and Robertson 1966; Marais

and Charlesworth 2003). Rates of adaptation have been

shown to be strongly positively correlated to RR in

Drosophila (Presgraves 2005; Betancourt et al. 2009;

Arguello et al. 2010; Mackay et al. 2012; Campos et al.

2014; Castellano et al. 2016; Moutinho et al. 2019) and

Arabidopsis (Moutinho et al. 2019), and rates of nonadaptive

evolution to be negatively correlated in both Drosophila and

Arabidopsis species (Moutinho et al. 2019).

In summary, a number of factors have been shown to

correlate to rates of protein evolution, and in some of these

cases the relative roles of adaptive and nonadaptive evolution

have been disentangled. However, relatively little work has

been done on these questions in hominids. We addressed

these questions by considering the role of gene age, RR,

gene expression, protein length, and gene function in deter-

mining rates of both adaptive and nonadaptive evolution. To

disentangle the effects of adaptive and nonadaptive evolu-

tion, we use an extension of the McDonald–Kreitman test

which estimates these quantities taking into account the dis-

tribution fitness effects of new mutations.

Results

We set out to investigate whether a number of gene-level

factors affect the rate of adaptive and nonadaptive evolution

in hominids—the RR, gene age, the level of gene expression,

gene length, and gene function. We measure the rates of

adaptive and nonadaptive evolution using the statistics xa

and xna, which are estimates of the rate of evolution relative

to the mutation rate. We estimated both statistics using an

extension of the McDonald–Kreitman method, in which the

pattern of substitution and polymorphism at neutral and se-

lected sites is used to infer the rates of substitution, taking into

account the influence of slightly deleterious mutations. We

use the method implemented in Grapes (Galtier 2016), which

is a maximum likelihood implementation of the second

Soni and Eyre-Walker GBE

2 Genome Biol. Evol. 14(2) https://doi.org/10.1093/gbe/evac028 Advance Access publication 15 February 2022



method proposed by Eyre-Walker and Keightley (2009).

Estimating rates of adaptive and nonadaptive evolution in in-

dividual genes is impractical, as most genes have relatively

little polymorphism data. We therefore group genes together,

according to the factors analyzed.

We estimated xa and xna using 16,344 genes for the diver-

gence between humans and chimpanzees using African SNPs

from the 1000 genomes data (1000 Genomes Project

Consortium 2015). We find that the average rate of adaptive

evolution is approximately 5-fold lower than the rate of nonadap-

tive evolution (xa¼0.037 [95% CIs estimates using bootstrapping

0.035 and 0.039] vs. xna¼0.19 [0.19,0.19]). The proportion of

substitutions that are adaptive, a, is estimated to be 0.16, which is

close to previous recent estimates (Boyko et al. 2008; Eyre-Walker

and Keightley 2009; Messer and Petrov 2013).

Adaptive Evolution

The rate of adaptation is expected to be retarded in regions of

low recombination because of Hill–Robertson interference,

and we do indeed find that the rate of adaptive evolution is

significantly positively correlated to the rate of recombination

in hominids (fig. 1a; r¼ 0.74, P< 0.001); this correlation is

also significant if we use pedigree, rather than population

genetic estimates of the RR (r¼�0.48, P¼ 0.033). A similar

positive correlation has previously been observed in

Drosophila (Presgraves 2005; Betancourt et al. 2009;

Arguello et al. 2010; Mackay et al. 2012; Campos et al.

2014; Castellano et al. 2016). In the most detailed study of

this relationship in Drosophila, Castellano et al. (2016) found

that the rate of adaptive evolution increases with RR, but that

it asymptotes, suggesting that above a certain level of recom-

bination, Hill–Robertson interference has little effect. It is not

clear whether there is an asymptote in humans (fig. 1a); the

rate of increase in the rate of adaptive evolution with RR does

appear to decrease, but not sufficiently to declare that there is

an asymptote. The same pattern is evident if we divide the

data up into 50 instead of 20 bins (r¼ 0.58, P< 0.001) (sup-

plementary fig. S1, Supplementary Material online).

Unfortunately, we have relatively few genes with high RRs.

Young genes have been shown to evolve faster than old

genes (Thornton and Long 2002; Domazet-Loso and Tautz

2003; Krylov et al. 2003; Daubin and Ochman 2004; Alb�a and

Castresena 2005; Wang et al. 2005; Cai et al. 2006; Wolf

et al. 2009; Cai and Petrov 2010; Vishnoi et al. 2010; Zhang

et al. 2010; Tautz and Domazet-Lo�so 2011; Cui et al. 2015).

There is an expectation that young genes will undergo faster

rates of adaptive evolution because they are further from their

adaptive optima (Wright 1931, 1932), and we do indeed find

a significant negative correlation between xa and gene age in

hominids (r¼�0.40, P¼ 0.012) (fig. 1b).

Highly expressed genes have been shown to exhibit lower

rates of protein evolution in both eukaryotes (P�al et al. 2001;

Subramanian and Kumar 2004; Wright et al. 2004; Lemos et

al. 2005) and prokaryotes (Rocha and Danchin 2004).

Moutinho et al. (2019) found significant negative correlations

in Drosophila species between xa and both gene expression

and protein length. Intriguingly, the correlations are reversed

in hominids, with both correlations being significantly positive

(gene expression: r¼ 0.642, P¼ 0.002; protein length:

r¼ 0.597, P¼ 0.005) (fig. 1c and d).

Independent Effects

Our measure of adaptive evolution, xa, is significantly posi-

tively correlated to RR, expression, and protein length, and

negatively to gene age. However, the rate of recombination,

gene age, gene expression, and protein length are all signif-

icantly, or nearly significantly, correlated to each other (table 1)

so it is important to determine whether each factor has an

independent effect on the rate of adaptive evolution; that is,

the correlation between Y and X, might be due to the fact

that each is correlated to a third factor Z, and with no variation

in Z there is no correlation between Y and X. To investigate

this, we conducted two analyses. In the first instance, we

repeated our analyses controlling for each factor in turn by

taking the values of the co-correlate around the modal

value—we took the modal value and 0.5 standard deviations

(SDs) either side. This significantly reduced the coefficient of

variation (CV) of the co-correlate within each analysis, largely

controlling for this factor (table 1). However, controlling for

each factor this way reduces the data set considerably, so we

also ran an analysis in which we calculated the expected cor-

relation between two variables under the assumption that

they are correlated solely because of their correlation to a

third variable. It can be shown (see Materials and Methods)

that if the correlation between Y and Z is rYZ and that between

X and Z is rXZ, then expected correlation between Y and X due

to the covariation with Z is rYX ¼ Sign
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
YZ r2

XZ

q
, where Sign

is positive if both rYZ and rXZ are positive or negative, and

negative otherwise. In both analyses, we only investigate fac-

tors that could generate an artifactual correlation of the cor-

rect sign.

Our two analyses suggest that there is a direct association

between xa and RR; when we control for age and length, we

find that although the correlation is no longer significant

when we control for either variable, the correlation does re-

main positive, and the observed correlations are significantly

greater than the predicted correlation (table 2). The analysis

also suggests that there is a direct association between xa and

age, because the correlation remains significantly negative

when we control for RR, and the predicted correlation is sig-

nificantly smaller in magnitude than the observed correlation.

However, the results with gene expression and length are less

clear; when each variable is controlled for in the analysis of the

other, the correlation becomes nonsignificant (table 2). The

observed correlation between xa and expression is signifi-

cantly greater than the predicted correlation, using length
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as the covariate, whereas the opposite is not true; this would

seem to suggest that there is a direct correlation between xa

and expression, and that the correlation between xa and

length may be due to the fact that both are correlated to

expression. However, the evidence is not strong in support

of this hypothesis.

Controlling for Rate in Age Analysis

There is another factor that needs to be controlled for in any

analysis of age—fast evolving genes are harder to identify in

more distant species (Weisman et al. 2020), and this can lead to

an artifactual correlation between the age of a gene and the

rate of evolution because gene age is underestimated in fast

evolving genes. To try and control for this effect, we reduced

our data set to those genes around the modal value of dN. The

distribution of nonsynonymous substitution rates is bimodal,

with many genes having dN¼0. We took genes around the

second mode, those with rates between 0.002 and 0.007. This

reduces our data set from 15,439 to 4,961 genes, and as a

consequence, we had to combine multiple age categories to-

gether. We find no significant correlation between xa and age

FIG. 1.—Estimates of xa and xna plotted against the (a) mean RR, (b) gene age, (c) mean gene expression, and (d) mean protein length. The respective

significance of each correlation is shown in the plot legend, (*P<0.05; **P<0.01; ***P<0.001; “.” 0.05� P<0.10 for xa and xna). Also shown is the

line of best fit through the data. An unweighted regression is fitted to the estimates of xa and xna.
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when we do this (r¼ 0.41, P¼ 0.27), suggesting that the cor-

relation between xa and age might be an artifact of the prob-

lems in identifying fast evolving genes in older taxa.

Controlling for Biased Gene Conversion

Biased gene conversion (BGC) can potentially impact estimates

of the rate of adaptive evolution, either by increasing the fixa-

tion probability of S over W neutral alleles (Galtier and Duret

2007; Berglund et al. 2009; Ratnakumar et al. 2010; Rousselle

et al. 2020), or by promoting the fixation of slightly deleterious S

alleles (Duret and Galtier 2009; Gl�emin 2010; Necşulea et al.

2011; Lachance and Tishkoff 2014; Rousselle et al. 2020). To

investigate whether BGC affects our results, we can leverage

some of the results above. The correlation between xa and

either age and protein length remains significant if we control

for RR (table 2) (supplementary figs. S3a and S6a,

Supplementary Material online, respectively), suggesting that

BGC is unlikely to be responsible for these correlations. If we

control for RR in the regression between xa and expression, we

find that the correlation remains, suggesting that this

correlation is also not due to BGC (r¼ 0.78, P< 0.001) (supple-

mentary fig. S5a, Supplementary Material online).

To investigate whether the correlation between xa and RR

is due to BGC, we performed a different analysis restricting

the analysis to those polymorphisms and substitutions that are

unaffected by BGC—that is, A<>T and G<>C changes. This

reduces our data set to about 20% of its previous size. We

find that there is still a positive correlation, although it is no

longer significant (r¼ 0.10, P¼ 0.093) (supplementary fig. S2,

Supplementary Material online).

In conclusion, xa is positively correlated to RR, protein

length, and gene expression level, and to a large extent these

correlations survive controlling for each other and BGC; the

exceptions are protein length when expression is controlled

for, and the positive relationship between xa and RR when

BGC is controlled for.

Nonadaptive Evolution

We repeated the analysis above for the rate of nonadaptive

evolution. We find that xna is highly significantly negatively

Table 1

The Correlation between Gene Age, Gene Expression, Protein Length, and RR

Gene Expression Protein Length RR CV CV of Near Modal Values

Gene age 0.87*** 0.86*** �0.62** 1.4 0.38

Gene expression 0.44*** �0.035*** 1.5 0.41

Protein length 0.10*** 1.7 0.50

RR 1.1 0.33

Note.—Logs were taken of all variables. The CV column is the coefficient of variation of the factor for all the data. The final column is the CV of the restricted data (i.e., when
we control for the factor in question by restricting the analysis to genes with the modal value 60.5 SDs).

*P< 0.05, **P<0.01, ***P< 0.001.

Table 2

The Observed Correlation between Y and X Controlling for a Covariate, Z, and the Observed and Predicted Correlation between Y and X Assuming the

Relationship Is Solely due to the Correlation between Each Variable and a Third Factor Z

Y Variate X Variate Observed r Z Variate Observed r—Controlling for Z Predicted r Predicted/Observed>1

xa RR 0.74*** Age 0.25 0.15 0

xa RR 0.74*** Length 0.43 0.086 0

xa Age �0.40* RR �0.58* �0.093 0.02

xa Expression 0.64** Length 0.00 0.38 0.03

xa Length 0.60** RR 0.64** 0.091 0

xa Length 0.60** Expression 0.25 0.37 0.13

xna RR �0.73*** Length �0.54* �0.34 0

xna Age �0.91*** Expression �0.76** �0.76 0

xna Age �0.91*** Length �0.87*** �0.75 0

xna Expression �0.98*** Age �0.74*** �0.90 0

xna Expression �0.98*** Length �0.61** �0.95 0.01

xna Length �0.94*** RR �0.91*** �0.42 0

xna Length �0.94*** Age �0.49* �0.88 0

xna Length �0.94*** Expression �0.71*** �0.89 0

Note.—The final column gives the proportion of 100 bootstrap replicates in which the predicted correlation divided by the observed correlation is greater than 1—that is, the
predicted correlation is larger in magnitude.

*P< 0.05, **P<0.01, ***P< 0.001.
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correlated to RR (whether we use population genetic or ped-

igree estimates), gene age, length, and expression (fig. 1). All

of these correlations remain significant when controlling for

potentially confounding factors, and the observed correlation

is significantly greater in magnitude than the predicted corre-

lation (table 2). Hence, we can conclude that all four factors

have significant independent effects on xna. As with the anal-

ysis of xa it is possible that these correlations are due to BGC.

However, if we control for RR in our analyses, we find that all

the negative correlations persist (gene age: r¼�0.89,

P< 0.001; gene length: r¼�0.91, P< 0.001; gene expres-

sion: r¼ 0.99, P< 0.001). In the case of the correlation be-

tween xna and RR, if we restrict the analysis to G<>C and

A<>T mutations we find that xna remains significantly neg-

atively correlated to RR (r¼�0.65, P< 0.001). If we control for

the rate of evolution in the analysis of age by using genes with

dN values around the modal value, as we did for xa, we find

the correlation between xna and gene age remains significant

(r¼�0.72, P¼ 0.027).

Gene Function

In the second part of our analysis, we consider the effect of

gene function on the rate of adaptive and nonadaptive evo-

lution. It has previously been demonstrated that genes whose

products interact with viruses—VIPs—have higher rates of

adaptive evolution than other genes in primates (Enard

et al. 2016). We confirm this pattern. In our analysis, in which

we have used a different method and statistic to estimate the

rate of adaptive evolution, we find that the rate of adaptive

evolution among VIPs is approximately 40% greater than in

non-VIPs (xa¼0.052 vs. 0.032), a difference that is highly

significant (P< 0.001). This pattern is consistent across almost

all GO categories that have at least 100 genes, supporting the

results of Enard et al. (2016) (fig. 2).

It is evident however, that there is substantial variation

between GO categories for non-VIP genes, and this variation

is significant, taking into account that individual genes can

contribute to multiple GO categories (P¼ 0.0012). This pat-

tern is replicated if we include GO categories which do not

include VIP proteins (P¼ 0.0010). The GO categories which

have the highest rate of adaptive evolution are ubiquitin pro-

tein ligase binding, and protein kinase binding (table 3).

What are the relative contributions of GO category and VIP

status to the variation in the rate of adaptive evolution—that

is, is most of the variation in the rate of adaptive evolution due

to whether the gene encodes a VIP or not, or is most of the

variation due to other functional considerations? To investi-

gate this, we performed a two-way analysis of variance on xa

and estimated the variance components. We find that the

distinction between VIP and non-VIP contributes approxi-

mately 5� the variance in xa as the variation between GO

categories, suggesting that whether a gene encodes a VIP has

a major effect on its rate of adaptation (supplementary table

S1, Supplementary Material online).

But what of nonadaptive evolution? If we divide our data

into genes that interact with viruses and those that do not, we

find that rates of nonadaptive evolution are substantially

higher in non-VIP genes (xna¼0.198 vs. 0.101). As Enard

et al. (2016) found, this pattern is replicated across GO cate-

gories (fig. 2). There is substantial and significant variation in

xna across GO categories excluding VIP genes, taking into

account that individual genes can contribute to multiple GO

categories (P< 0.001). This pattern is replicated if we include

GO categories which do not include VIP proteins (P< 0.001).

The GO categories that have the highest non-VIP rates of

nonadaptive evolution are both related to immune system

response (table 4). If we partition the variance between VIP/

non-VIP and GO categories, we find that the distinction be-

tween VIP and non-VIP contributes over 8� the variance in

xna as the variation between GO categories, suggesting that

whether a gene encodes a VIP has a major effect on its rate of

nonadaptive evolution (supplementary table S2,

Supplementary Material online) as well as its rate of

adaptation.

Discussion

It has been previously shown that the rate of evolution corre-

lates to a number of factors including RR (Presgraves 2005;

Betancourt et al. 2009; Arguello et al. 2010; Mackay et al.

2012; Campos et al. 2014; Castellano et al. 2016; Moutinho

et al. 2019), gene age (Thornton and Long 2002; Domazet-

Loso and Tautz 2003; Krylov et al. 2003; Daubin and Ochman

2004; Alb�a and Castresena 2005; Wang et al. 2005; Cai et al.

2006; Wolf et al. 2009; Cai and Petrov 2010; Vishnoi et al.

2010; Zhang et al. 2010; Tautz and Domazet-Lo�so 2011; Cui

et al. 2015), expression level (P�al et al. 2001; Rocha and

Danchin 2004; Subramanian and Kumar 2004; Wright et al.

2004; Lemos et al. 2005; Moutinho et al. 2019), and protein

length (Zhang 2000; Lipman et al. 2002; Liao et al. 2006;

Moutinho et al. 2019). In addition, the rate of evolution has

been shown to vary with gene function (Clark et al. 2003;

Chimpanzee Sequencing and Analysis Consortium 2005;

Nielsen et al. 2005). In this study, we have correlated each

of these factors to xa and xna in hominids, allowing us to

disentangle the effects of adaptive and nonadaptive evolu-

tion. We find that xa is correlated to all four factors, and that

when we control for each factor in turn, there is evidence for

an independent influence of RR, gene age, and gene expres-

sion. These correlations generally remain when controlling for

the effects of BGC, although the relationship with RR is not

significant. However, the correlation with gene age could be

an artifact of fast evolving genes having higher rates of adap-

tive evolution and being more difficult to identify in older taxa;

when we control for the rate at which a protein evolves, the
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negative correlation between xa and gene age becomes non-

significant consistent with this possibility.

In contrast, we find that all four factors have significant

independent effects on xna, and that all of these remain sig-

nificant when we control for each in turn, and control for

BGC. Several studies on both eukaryotes (P�al et al. 2001;

Subramanian and Kumar 2004; Wright et al. 2004; Lemos

et al. 2005; Moutinho et al. 2019) and prokaryotes (Rocha

and Danchin 2004) have demonstrated that more highly

expressed genes have lower rates of protein sequence evolu-

tion. Our results support these previous findings, with the

negative correlation between xna and gene expression sug-

gesting that more highly expressed genes are under greater

constraint in hominids. Drummond et al. (2005) suggest a

general hypothesis that more highly expressed genes evolve

slowly (i.e., are under higher selective constraint) because of

the selection against the expression level cost of protein mis-

folding, wherein selection acts by favoring protein sequences

that accumulate less translational missense errors. We also

find a significant negative correlation between xna and

gene length. This supports former studies that have shown

that smaller genes evolve more rapidly (Zhang 2000; Lipman

et al. 2002; Liao et al. 2006; Moutinho et al. 2019), suggest-

ing that smaller protein-coding regions are under more re-

laxed purifying selection.

Methodological Concerns

The method we have used to infer xa and xna makes a num-

ber of simplifying assumptions. We assume that the DFE is

well described by a gamma distribution, which does appear to

fit the SFS spectra well in analyses comparing different func-

tional forms of the DFE in hominids (Boyko et al. 2008; Galtier

and Rousselle 2020). We have also assumed that new non-

synonymous mutations are either deleterious or strongly ad-

vantageous. However, there are likely to be slightly

advantageous mutations and these can lead to an overesti-

mate of the rate of adaptive evolution (Tataru et al. 2017). It is

therefore possible that the correlations we have observed are

not necessarily due to variations in the rate of adaptive evo-

lution, but the strength of selection acting on them. For ex-

ample, we observe that xa is positively correlated to RR; we

have interpreted this as evidence that the rate of adaptive

FIG. 2.—Estimates of xa (top) and xna (bottom) for GO categories that contain >100 VIP and non-VIP genes.

Table 3

Top Ten GO Categories, Ranked by Rate of Adaptive Substitution

GO Category xa xa 95% CIs

Ubiquitin protein ligase binding 0.0843 0.0702–0.0995

Protein kinase binding 0.0804 0.0698–0.0914

Sequence-specific DNA binding 0.0735 0.0633–0.0842

DNA-binding transcription factor activity 0.0719 0.0628–0.0812

Transcription factor complex 0.0682 0.0496–0.0883

Transcription by RNA polymerase II 0.0673 0.0518–0.0836

Negative regulation of apoptotic process 0.0671 0.0552–0.0796

Chromatin organization 0.0669 0.0567–0.0775

DNA-binding transcription activator activity 0.0649 0.0524–0.078

Transcription coactivator activity 0.0648 0.0519–0.0786

Table 4

Top Ten GO Categories, Ranked by Rate of Nonadaptive Substitution

GO Category xna xna 95% CIs

Immune system process 0.297 0.283–0.310

Innate immune response 0.264 0.248–0.279

Chromosome 0.262 0.249–0.274

Protein C-terminus binding 0.246 0.228–0.264

Centrosome 0.243 0.232–0.253

DNA repair 0.236 0.223–0.249

Signal transduction 0.225 0.219–0.231

Neutrophil degranulation 0.218 0.206–0.229

Extracellular region 0.217 0.211–0.223

Proteolysis 0.204 0.195–0.214
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evolution increases with increasing levels of recombination,

but an alternative explanation is that the rate is the same,

or that it decreases with RR, with the rate being more sub-

stantially overestimated in high RR genes because there are

more slightly advantageous mutations; this hypothesis

requires that the advantageous mutation rate is higher in

high RR genes, that the mean strength of selection on advan-

tageous mutations is lower, and that the combination of

these two factors is such that the rate of adaptive substitution

is lower in the high RR genes, but that the rate is sufficiently

overestimated that the estimated rate of adaptive evolution is

higher in high RR genes.

Gene Function Analyses

Our analyses of VIP and non-VIP genes show that a high pro-

portion of the variance in protein evolution in hominids is

accounted for by whether or not a gene interacts with viruses,

a result that corroborates Enard et al.’s (2016) findings. By

disentangling the rates of adaptive and nonadaptive evolu-

tion, we find that VIP genes are under less constraint than

non-VIPs, and that VIPs exhibit a higher rate of adaptive evo-

lution. We also estimate the variance components using two-

way analyses of variance, finding that the distinction between

VIP and non-VIP contributes about 5� the variance in xa, and

8� the variance in xna as the variation between GO catego-

ries, suggesting that whether a gene encodes a VIP has a

major effect on its rate of adaptation and nonadaptation (sup-

plementary table S1, Supplementary Material online). These

results could explain why there appears to be little variation in

the rate of adaptive evolution across biological functions cat-

egorized using Gene Ontology (Bierne and Eyre-Walker

2004), with viruses acting across a range of biological func-

tions likely to be a key factor in these estimates.

Our study is likely to underestimate the amount of adaptive

evolution attributable to viruses, for reasons outlined by Enard

et al. (2016). Briefly, we used the categorization of VIPs and

non-VIPs provided by Enard et al. (2016). However new VIPs

are being discovered regularly, suggesting there are some VIPs

that were not included in our analysis. Secondly, the catego-

rization of VIP and non-VIP necessarily cannot account for

proteins that adapt to viruses but do not physically interact

with them (e.g., in proteins that are upstream or downstream

of VIPs in signaling cascades).

No Asymptote in the Correlation between xa and RR

Both Campos et al. (2014) and Castellano et al. (2016) found

that there is a positive relationship between the rate of adap-

tive evolution and RR in Drosophila. Furthermore, Castellano

et al. (2016) showed using a larger data set that the positive

correlation between RR and xa asymptotes in Drosophila,

suggesting that above a certain level of recombination Hill–

Robertson interference has little effect. In this study, we do

not find clear evidence for this asymptote in hominids for

either the rate of adaptive or nonadaptive evolution (fig. 1a

and supplementary fig. S1, Supplementary Material online).

The lack of an apparent asymptote might be because we have

few genes with high rates of recombination and so it is diffi-

cult to detect the asymptote. It might also be because the RR

estimates we are using do not reflect the RR over the diver-

gence of humans and chimpanzees. Rates of recombination

evolve rapidly in hominids; humans and neanderthals share

few recombination hotspots (Lesecque et al. 2014) and rates

of recombination in 100-kb windows are only mildly corre-

lated between humans and chimpanzees (Stevison et al.

2016). Hence, we may not be correlating xa against a rele-

vant measure of the RR. The correlation in RR between

humans and chimpanzees is substantially higher at the

1 Mb than the 100-kb scales (Stevison et al. 2016), so the

average RR in 1-Mb windows might represent a more appro-

priate measure. However, we find that the xa is not signifi-

cantly correlated to RR at this scale (r¼ 0.17, P¼ 0.48),

whereas the correlation with xna remains significantly nega-

tively (r¼�0.55, P¼ 0.011). The final possibility for the lack

of an apparent asymptote is that most genes are affected by

HRi in hominids; that the RR in hominds is not sufficient to

prevent HRi. This is perhaps not unexpected. The level of HRi

will depend on several factors—the effectiveness of recombi-

nation in breaking down associations, the density of selected

sites, and the mutation rate to alleles that are subject to se-

lection; if weakly selected mutations are responsible for HRi

then the effective population size and the level of nearly neu-

tral genetic diversity will also be important. Recombination is a

considerably more effective force in Drosophila; linkage dis-

equilibrium decays over a scale of 10 s of base pairs (Mackay

et al. 2012) rather than the 10,000 s that we observe in

humans (1000 Genomes Project Consortium 2015). This

1,000-fold difference in the effectiveness of recombination

is likely to more than compensate for the fact that humans

have approximately 20-fold greater genome size, and a

higher rate of deleterious mutation (2.1 in humans

[Lesecque et al. 2012] to 1.2 in Drosophila [Haag-Liautard

et al. 2007], respectively).

Gene Age

Cai and Petrov (2010) found that older genes exhibit a lower

rate of protein evolution (as measured by the Ka/Ks ratio) than

younger genes. The authors demonstrated that this was at

least in part due to stronger purifying selection acting on older

genes than on younger ones, by showing that levels of non-

synonymous to synonymous polymorphism were lower in

older genes. Our findings corroborate these results, with the

strong negative correlation between xna and gene age show-

ing that older genes are under a lower rate of protein evolu-

tion than younger genes. However, we also find a significant

negative correlation between gene age and the rate of adap-

tive evolution, xa, whereas Cai and Petrov found no such
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correlation. There are two potential causes of this discrepancy.

Firstly, for this analysis Cai and Petrov group genes by their

age based on lineage specificity (LS), that is, how specifically a

gene and orthologs of a gene are distributed on a given phy-

logeny (Cai et al. 2006), whereas we group our genes by

phylostratigraphic category (PL), that is, where genes are

ranked by PL based on their earliest ortholog (Domazet-

Loso et al. 2007). Each method has its limitations. Because

the LS method relies on the phylogenetic profiles of individual

genes, Cai and Petrov removed genes with patchy distribu-

tions (Cai et al. 2006), resulting in 10,032 of 20,150 genes

being removed from the data set for having irregular phylo-

genetic profiles. The PL method relies on parsimony and

assumes that a gene family can be lost, but cannot re-

evolve in different lineages (Domazet-Loso et al. 2007), mean-

ing that those genes that would be removed using the LS

method are maintained in the PL method. By using the PL

method, our data set contained 15,439 grouped into 19 phy-

lostratigraphic bins. Secondly, Cai and Petrov obtained diver-

gence and polymorphism data from the compiled Applera

data set (Bustamante et al. 2005; Lohmueller et al. 2008) of

39 humans (19 African Americans and 20 European

Americans), whereas we have used data from the 661

African samples within the 1000 genomes data set (1000

Genomes Project Consortium 2015). Notably, the African

population has undergone a more stable demographic history

than Europeans, who carry proportionally more deleterious

genetic variation, which Lohmueller et al. (2008) ascribe to

the bottleneck encountered by the Eurasian population at the

time of the migration out of Africa. This higher proportion of

segregating deleterious alleles will inevitably affect estimates

of the rate of adaptive evolution, but not the ratio of non-

synonymous and synonymous substitution rates (the latter of

which yields a strong correlation with gene age using both the

PL and LS methods in Cai and Petrov’s study).

The Effect of Population Contraction

It has been shown previously that the MK test can generate

artifactual evidence of adaptive evolution if some nonsynon-

ymous mutations are slightly deleterious and the population

in question has undergone recent expansion, because selec-

tion is more effective during the polymorphism phase than

during the divergence phase (McDonald and Kreitman 1991;

Eyre-Walker 2002). Although, the effective population size in

humans has increased recently, the effective population size is

considerably reduced from that in the human–chimpanzee

ancestor (Hobolth et al. 2007; Burgess and Yang 2008;

Prado-Martinez et al. 2013; Schrago 2014). This population

contraction can depress the signal of adaptive evolution in

humans. Furthermore, we have shown elsewhere that if a

factor, for example gene age, is correlated to the mean

strength of selection against deleterious mutations, popula-

tion size change will generate an artifactual correlation

between that factor and the rate of adaptive evolution (Soni

et al. 2021). The direction of this correlation depends on the

direction of the correlation between the mean strength of

selection acting against deleterious mutations and the factor

in question and whether the population has expanded or

contracted; for example, if factor X is positively correlated to

the absolute mean strength of selection (i.e., selection is stron-

ger against genes with larger values of X), then population

contraction will induce an artifactual positive correlation be-

tween xa and X.

All four factors are positively correlated to the log absolute

mean strength of selection against deleterious mutations, es-

timated from the site frequency spectrum (gene age:

r¼ 0.916, P< 0.001; RR: r¼ 0.828, P< 0.001; gene length:

r¼ 0.818, P< 0.001; gene expression: r¼ 0.948, P< 0.001)

(fig. 3). Population contraction undergone by hominids should

therefore tend to induce an artifactual positive correlation

between xa and each factor in our analysis. This artifactual

positive correlation is contrary to the negative correlation that

we observe between xa and age (fig. 1). This may be one

reason why we observe a weaker correlation between gene

age and the rate of adaptive evolution in hominids compared

with Drosophila and Arabidopsis species (Moutinho AF, Eyre-

Walker A and Dutheil J, unpublished data). However, popu-

lation contraction might be responsible for the positive corre-

lation between xa, RR, protein length, and expression.

Because xna is estimated exclusively from polymorphism

phase data, we do not expect the correlations between xna

and our four factors to be affected by the population

contraction.

In summary, we observe a significant correlation between

the rate of adaptive evolution, RR, protein length, and gene

expression, and a negative correlation between the rate of

adaptive evolution and gene age. However, we cannot be

very confident that any of these correlations are genuine;

the positive correlation between xa, RR, protein length, and

gene expression might be due to an artifact of population size

contraction, and the correlation between xa and age might

be due to the problems of identifying rapidly evolving genes,

with high values of xa, in more distant taxa. In contrast, the

rate of nonadaptive evolution is independently negatively cor-

related to all factors. We have confirmed that whether a pro-

tein interacts with viruses is an important factor in

determining whether a gene undergoes high rates of adaptive

and nonadaptive evolution, however, we also demonstrate

that there is significant variation between GO categories,

even when this factor is controlled for.

Materials and Methods

Data

We obtained orthologous human and chimpanzee gene

sequences from the Ensembl biomart (Yates et al. 2019) for
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the human GRCh38 and Pan_tro_3.0 genome builds. We

aligned these orthologs using MUSCLE (Edgar 2004). After fil-

tering out genes with gaps that were not a multiple of 3, we

were left with 16,344 pairwise alignments. Proportions of syn-

onymous and nonsynonymous substitutions were estimated us-

ing codeml from the PAML package (Yang 2007) program. We

used polymorphism data from the African superpopulation of

the 1000 genomes data set (1000 Genomes Project Consortium

2015) to construct our site frequency spectra, with rates of

adaptive (xa) and nonadaptive (xna) evolution estimated using

Grapes (Galtier 2016), under the “GammaZero” model. We

used African SNPs because the African population has been

subject to relatively simple demographic processes (Gravel

et al. 2011). CIs on our estimates of xa and xna were generated

by bootstrapping the data set by gene.

Gene ages were obtained from Litman and Stein (2019). In

this data set, genes are ranked by phylostratigraphic category

(PL) based on their earliest ortholog. Gene lengths were

obtained by taking the total coding sequence length of the

longest transcript of each protein, whereas gene expression

data were obtained from the Expression Atlas database

(Papatheodorou et al. 2019), wherein the baseline experiment

E-MTAB-5214 was used. These data are from the GTEx

genotype-tissue expression analysis of 53 tissue samples

(GTEx Consortium 2015). We estimated the arithmetic

mean expression value across tissues for each gene, and

binned gene by mean gene expression of 20 roughly equally

sized bins (each containing 808–811 genes). RR maps were

obtained from Spence and Song (2019) and Kong et al.

(2010); these maps are based on population genetic and

FIG. 3.—Correlation between the log of the mean strength of selection against deleterious mutations and (a) gene age, (b) RR, (c) gene length, and (d)

gene expression. A linear regression has been fitted to each data set.
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pedigree data, respectively. The mean RR was calculated be-

tween the start and end of the largest transcript for each

gene, or the average RR across the MB in which the gene

was centered. GO category information was obtained from

Ensembl’s Biomart (Ashburner et al. 2000; Yates et al. 2019;

Gene Ontology Consortium 2021).

Correlating Factors with Rates of Adaptive and
Nonadaptive Evolution

To correlate the rates of adaptive and nonadaptive evolution

with each of RR, protein length, and gene expression, we

binned our genes into 20 roughly equal sized bins. For gene

age, we binned data by PL, of which there were 19. To control

for BGC in our RR analysis, we restricted the analysis to those

polymorphisms and substitutions that are unaffected by

BGC—that is, A<>T and G<>C changes. This reduced our

data set to about 20% of its previous size.

To investigate whether factors were independently corre-

lated to xa and xna, we ran the analysis controlling for each of

the other three factors in turn. We controlled for each factor

by taking the values of the co-correlate close to the modal

value. We took the modal value and 0.5 standard deviations

(SDs) either side which reduces the SD of the co-correlate

within each analysis. Because this reduces the data set con-

siderably, we also ran an analysis in which we predicted the

correlation coefficient between Y and X under the assump-

tion that they are only correlated to each other because they

are both correlated to Z. If rYZ is the correlation between Y and

Z, then rYZ
2 is the proportion of variance in Y explained by Z,

and vice versa. Hence, the proportion of variance explained in

Y by X, because of their mutual correlation to Z is rYZ
2 rXZ

2.

Hence the expected correlation coefficient between Y and X

is rYX ¼ Sign
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
YZ r2

XZ

q
, where Sign is positive if both rYZ and

rXZ are positive or negative, and negative otherwise. To assess

significance, we grouped genes according to X variable, and

then within each group, we generated a bootstrap data set.

We estimated xa, xna, the mean value of X and Z for each

group and the observed and predicted correlations between

xa, xna, mean X, and mean Z. We tabulated the number of

bootstrap replicates in which predicted rYX>observed rYX. We

performed 100 bootstrap replicates for each analysis.

Gene Function Analysis

Genes were divided by GO category and rates of adaptive and

nonadaptive evolution were estimated for each category

(note genes can contribute to multiple categories). For the

VIP analysis, we split each GO category into two groups—

VIP and non-VIP genes, as per (Enard et al. 2016). To test

whether there was significant variation in xa and xna across

GO categories, we shuffled data between gene labels; that is,

for each gene, we have its synonymous and nonsynonymous

site frequency spectra and numbers of synonymous and non-

synonymous substitutions. These data were randomly

assigned to gene labels, hence preserving the covariance

structure of the data—that is, the fact that a gene can con-

tribute to multiple GO categories. This shuffling was per-

formed 100 times, each time recalculating xa and xna.

We are interested in the extent to which the rate of adap-

tive and nonadaptive evolution is determined by whether it is

a VIP gene versus other GO categorizations. We can quantify

this by partitioning the variance in a two-way analysis of var-

iance where the dimensions are VIP/non-VIP, and GO cate-

gory. However, to estimate the variances, we need to balance

the data so that the error variance is the same for all cells in

the two-way ANOVA. We did this by downsampling the data

using a hypergeometric distribution, such that each cell had

200,000 combined nonsynonymous and synonymous sites.

To estimate the error variance, we split the SFS and substitu-

tion data into two halves using a hypergeometric distribution

and estimated xa and xna for each set; hence we have for

each combination of VIP/non-VIP and GO category two esti-

mates of the rate of adaptive and nonadaptive evolution,

where the error variances for these estimates should be ap-

proximately equal.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Data Availability

The analysis used publicly available data. Scripts used to pro-

cess and analyze the data are available at https://github.com/

vivaksoni/gene_level_factors_affecting_rates_of_evolution_

in_hominids.
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