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NITRIC ox ide  (NO), produced by alveolar m acrophage s
(AM) is  used as  a m arke r of r espiratory tract in flam -
m ation . Lipocor tin  1 (Lc-1) is  an  an ti-in flam m atory,
glucocor ticoid-inducible prote in . Th e current aim s
w ere to determ in e w he ther (a) an  Lc-1-derived pep-
tide, Ac2–26, in hibited lipopolysaccharide (LPS)-
in duced NO re leas e by prim ary AM in vitro and (b) the
in hibitory action  of dex am ethasone was Lc-1-depend-
en t. LPS treatm ent s tim ulated NO release  from  rat AM.
Ac2–26 had little  effect on  unstim ulated release , but
suppres sed LPS-s tim ulated release  at concen trations
³ 320 nM (320 nM, 10 ± 3%; 3.2 m M, 15 ± 3%; 32 m M, 27
± 4% NO in hibited, m ean  ± SEM, n = 6). Inh ibition  by
dex am ethasone of NO re lease was unaffected by
neutralizin g an ti-Lc-1 indicating that th is  action  is  Lc-
1-independen t in  prim ary AM. Neverthe less  in hibi-
tion  of NO release  by Ac2–26 (80 m M) w as s im ilar to
that of 1 m M dex am ethasone (Ac2–26, 40 ± 6%;
dex am ethasone, 48 ± 6% NO in h ibited, m ean  ± SEM,
n = 6).

Key w ords : lipocortin peptide, glucocorticoid, nitric
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Introduction

Lipocortin-1 (Lc-1) is a 37 kDa anti-inflammatory,
glucocorticoid-inducible member of the annexin
superfamily of proteins. Its synthesis is upregulated
by glucocorticoids both in vitro and in vivo in a
number of species, including man.1 There is consider-
able evidence to suggest that intact Lc-1 and synthetic
peptides derived from its primary sequence possess
intrinsic anti-inflammatory properties in a range of
experimental models.2–7

Lc-1 is a potential mediator of the anti-inflammatory
action of glucocorticoids. Increased levels of cellular
Lc-1 protein have been observed in vivo in human
alveolar macrophages (AM) exposed to oral gluco-
corticoid8 and in human mononuclear cells following
i.v. administration of hydrocortisone.9,10 Studies on
adrenalectomized rats have shown a decrease in Lc-1
mRNA and protein in the lung, spleen, liver and
kidney, suggesting not only a pharmacological mod-
ulation, but endogenous physiological steroidal con-
trol on Lc-1 expression and turnover.11 Immuno-
neutralization studies have confirmed that a number
of the anti-inflammatory actions of exogenous gluco-
corticoids are, in part, dependent on Lc-1, both in
vivo 5 –7,12 and in vitro .13–17

Previous studies have demonstrated that the lung is
a rich source of Lc-118 –20 which is detectable in a
number of different cell types, including human AM21

and epithelial cells.22 Lc-1 is present in bronchoalveo-
lar lavage fluid,23 in which its levels are increased by

oral glucocorticoids in healthy volunteers,24,25

patients with lung disease,24 and control and carra-
geenin-treated rats.26 Increased Lc-1 concentrations in
lung lavage also occur in response to non-specific
stimuli, such as cigarette smoke27 and LPS;28 this may
reflect increased expression of Lc-1, but may also be a
result of increased cell number, cell death or injury.

Inflammation in the respiratory tract is associated
with the release of numerous inflammatory media-
tors, including cytokines and eicosanoids. Recently,
nitric oxide (NO) has received much attention as a
potential modulator of lung function in health and
disease. Both constitutive nitric oxide synthase
(cNOS) and inducible nitric oxide synthase (iNOS) are
present in the respiratory tract. The former is found in
endothelial cells and peripheral nerves, where it acts
as a smooth muscle relaxant and neurotransmitter29

and the latter, which is probably involved in lung
defence, is localized to AM and epithelial cells30,31 and
is increased in acute and chronic inflammation.32

Systemic administration of LPS or generalized sepsis
results in high levels of exhaled NO in the lungs of
rats.33 Wood smoke-exposed rats have elevated con-
centrations of NO metabolites in the plasma which
correlates with increased lung epithelial permeability,
a process reversible with NOS inhibitors.34 This
suggests that smoke-induced damage may be due to
reactive nitrogen radicals in the lung. Intra-tracheal
instillation of LPS to rats also causes an increase in
epithelial leak, elevated levels of NO in respiratory
tract secretions and increased NO release by AM35 and

0962-9351/98/020093-06 $9.00 © 1998 Carfax Publishing Ltd 93

Research Paper

Mediators of Inflammation, 7, 93–98 (1998)



is associated with induction of iNOS mRNA.36 Raised
iNOS activity and NO release also occur in rat
macrophages and epithelial cells in response to
exposure to cytokines, such as IFN-g , TNFa and IL-1.31

Unlike cNOS, which produces NO at a constant low
level, activation of iNOS results in high output NO
production. 37 Thus, many pulmonary inflammatory
conditions are accompanied by increased NO release.
Although it is unclear whether the NO is damaging or
protective, NO release is used as a marker of lung
inflammation.

Glucocorticoids inhibit NOS activity in the J774.2
macrophage-like cell line,38 an effect which is Lc-1
dependent in these cells.15 Similarly, inhibition by
glucocorticoid of LPS-induced iNOS activity in rat
lung homogenates is Lc-1-dependent, the AM being
suggested as a potential target for the glucocorticoid
action.15 Therefore, we hypothesized that NO release
from AM in vitro could be inhibited by gluco-
corticoids in a Lc-1-dependent manner. Primary AM
represent a useful in vitro model system for examin-
ing the relationship between glucocorticoids, Lc-1
and pulmonary NO, since they possess functional
glucocorticoid receptors,39 release NO via the activity
of iNOS and express Lc-1.21 In addition they are the
predominant cell type in the airspaces with potential
anti-and pro-inflammatory functions. The AM there-
fore encapsulates all the components under examina-
tion and, furthermore, is easily accessible and readily
isolated.

Thus the aims of the current study were to
determine the effect of a synthetic peptide derived
from the N-terminal of Lc-1 (Ac2–26),4,6,40,41 on NO
release by primary rat AM in vitro and to examine
whether inhibition of NO release by glucocorticoids
in this system is Lc-1 dependent.

Methods
Animals and removal of lungs

Pathogen-free male Wistar rats (Charles River), weigh-
ing 200–250 g were killed by a lethal intra-peritoneal
injection of pentobarbitone (1 g/kg body weight) and
heparin (1000 U/kg body weight). Prior to excision,
the trachea was cannulated and the lungs perfused
free of blood via the right ventricle and pulmonary
artery using a gravity feed of sterile 0.15 M NaCl.

Isolation and culture of alveolar macrophages
(AM)

Excised lungs were fully inflated via the tracheal
cannula with 10 ml aliquots of sterile 0.15 M NaCl,
emptied, and lavage repeated until approximately
50 ml of fluid had been recovered. The lavage fluid
was pooled and centrifuged at 300 3 g for 10 min at
4°C. Pelleted cells were resuspended in Hanks’s

balanced salt solution, without Ca2+ or Mg2+ (Sigma)
and centrifuged as before. BAL cells (approximately
95% AM) were resuspended in low protein hybridoma
medium, containing 2% foetal calf serum, glutamine
(2 mM), penicillin (100 U/ml) and streptomycin
(100 m g/ml). Cells were counted and seeded in to
96-well plates (Nunc) at a density of 1 3 105 cells per
well. AM were allowed to adhere for 3 h in a
humidified chamber at 37°C in 5% CO2 in air. All cell
culture reagents were obtained from Gibco.

Effect o f dexamethasone and peptide Ac2–26 on
NO relea s e
Following the 3-h adherence period, non-adherent
cells and conditioned media were aspirated and
replaced by fresh medium containing graded concen-
trations of Lc-1 peptide, Ac2–26 (3.2 nM–80 m M), or
dexamethasone (10 nM–1 m M). Adherent cells were
pre-incubated for 1 h, following which lipopoly-
saccharide (0.1–10 m g/ml, serotype 055:B5 from
Escherichia  co li, Sigma) was added to all wells except
controls and the cells incubated for a further 24 h.
Conditioned media were harvested and analysed for
nitrite. The competitive NOS inhibitor NG-mono-
methyl L-arginine (L-NMMA 4 mM, Sigma) was added
to selected wells to determine the proportion of
measured nitrite which originated from the activity of
NOS.

Effect o f Lc-1 immuno-neutra lization on
dexamethasone activity
Non-adherent cells and conditioned media were
removed as above and replaced with fresh medium
containing a sheep polyclonal neutralising antibody to
Lc-1 (LC01, the generous gift of Professor R. J. Flower,
William Harvey Research Institute, London) used at
1:50 dilution. The cells were pre-treated with this anti-
serum for 3 h, then incubated with graded doses of
dexamethasone for 1 h and stimulated with lipopoly-
saccharide for 24 h as described above.

Measurement of nitrite

Spontaneous ox idation of the NO radical in aqueous
solutions leads to the formation of nitrite (NO2–) as
the predominant stable breakdown product.29,42

Nitrite accumulation in conditioned media was there-
fore used as an index of NO release by AM, 24 h post-
LPS. This was measured using the colorimetric Greiss
reaction.43 Nitrite concentrations were determined
by comparison with standard solutions of sodium
nitrite (0.78–100 m M) prepared in culture medium.

Data analysis

Data were analysed by the Wilcoxon’s signed rank test
for paired data; a probability of P<0.05 was regarded
as statistically significant. Percentage inhibition of
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LPS-stimulated NO release was calculated from the
data in Figure 3 as:

% Inhibition

=
(LPS alone – LPS + Ac2–26)

(LPS alone – LPS + 4 mM L-NMMA)
3 100

Results
Effect of lipopolysaccharide on NO release

Median basal release of NO was 56, range 47–61 nmol
NO/106 cells/24 h in culture (Fig. 1, n = 4); 86% was
inhibited by 4 mM L-NMMA. Stimulation of AM with
LPS produced a concentration-dependent increase in
nitrite accumulation in the culture medium compara-
ble with that observed in previous studies31,38,44 (Fig.
1). At a concentration of 10 m g LPS/ml, 85% of NO
release was inhibited by L-NMMA. Based on these
observations, an LPS dose range of 0.1–10 m g/ml was
used in all subsequent experiments.

Effect of peptide Ac2–26 on NO release

The peptide had no significant effect on basal NO
release in unstimulated cells (Fig. 2) except at the
highest concentrations of Ac2–26 tested (32 m M and
80 m M) where basal release was significantly inhibited
(31% and 28% respectively). Ac2–26 significantly
inhibited LPS-induced NO release by AM at concentra-
tions of 320 nM or more (Fig. 3). The maximum
inhibition observed was 40% by a concentration of
80 m M Ac2–26. The action of Ac2–26 was similar
irrespective of the LPS concentration used (Table 1)
and therefore only data for LPS at 10 m g/ml are
illustrated.

Inhibition of NO by  a lipocortin peptide
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FIG. 1. Effect of increasing concentrations of LPS on NO
release from rat AM in vitro. Data are presented as mean ±
SEM, n = 4; Open squares represent LPS-stimulated NO
release; Open diamond represents basal (unstimulated) NO
release.

FIG. 2. Effect of Ac2–26 and dexamethasone on basal NO
release by rat AM in vitro. Percentage NO remaining
following L-NMMA, peptide or dexamethasone treatment
was calculated using the following formula: (NO release by
unstimulated AM + peptide/NO release by unstimulated AM)
3 100 Data are presented as mean ± SEM, n = 6, *P < 0.05,
Wilcoxon’s signed rank test for paired data; open squares
represent NO release in the presence of Ac2–26; open
diamonds represent NO release in the presence of dex-
amethasone; open Circle represents NO release in the
presence of L-NMMA.

FIG. 3. Effect of Ac2–26 and dexamethasone on NO release
by LPS-stimulated rat AM in vitro (10 m g/ml LPS). Percentage
NO remaining following L-NMMA, peptide or dexametha-
sone treatment was calculated using the following formula:
(NO release by LPS-stimulated AM + peptide/NO release by
LPS-stimulated AM) 3 100 Data are presented as mean ±
SEM, n = 6, *P < 0.05, Wilcoxon signed rank test for paired
data; open squares represent NO release in the presence of
Ac2–26; open diamonds represent NO release in the pres-
ence of dexamethasone; open Circle represents NO release
in the presence of L-NMMA.



Effect of dexamethasone on NO release

Dexamethasone significantly inhibited basal NO
release at all concentrations of drug and LPS-stimu-
lated release at concentrations above 10 nM dex-
amethasone (Table 1 and Figs 2 and 3). Maximal
inhibition by dexamethasone was 48%.

Effect of anti-Lc-1 neutralizing antibody on NO
release

Pre-treatment of rat AM with a neutralizing antibody
to Lc-1, had no effect on dexamethasone-mediated
inhibition of NO release, irrespective of the concen-
tration of dexamethasone used (Fig. 4).

Discussion
This study demonstrates that the N-terminal peptide
of Lc-1, Ac2–26, inhibits LPS-induced NO release from
rat AM in a concentration-dependent manner. To our
knowledge, this is the first such in vitro demonstra-
tion in a primary cell w ith a known pro-inflammatory
function. By increasing the dose of Ac2–26 to 80 m M
it was possible to achieve the same degree of
inhibition as with 1 m M dexamethasone. Interestingly
use of a neutralising anti-Lc-1 antiserum indicated that
the inhibitory action of dexamethasone itself on NO
release was independent of endogenous Lc-1.

Downregulation of LPS-induced NO release by a
longer Lc-1 peptide, Lc-11–188 , at a concentration of
20 m g/ml has been reported in the J774.2 cell line.15

The observation that it was effective at a substantially
lower concentration than Ac2–26 may reflect differ-
ences between the responsiveness to Lc-1 of the cell
line and the primary AM used in the current study.
Another possibility is that the Ac2–26 was partially
degraded by AM-derived products during the long
incubation period. Alternatively, there may be differ-
ences between the peptides themselves, as shown
previously with murine neutrophils;4 it is possible
that the Ac2–26 does not activate the signal transduc-
tion machinery needed to trigger the cell response as
effectively as does the larger molecule. The optimal
size for inhibition of NO release by Lc-1-derived
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Table 1. Effect of Ac2–26 and dexamethasone on LPS-stimulated NO release. Data are presented as mean ± SEM, and
calculated as described in the legend to Fig. 3

LPS ( m g/ml)

0 0.1 1 10
% NO Remaining

Ac2–26 ( m M)
0.0032 95 ± 5 100 ± 3 100 ± 2 100 ± 2
0.032 93 ± 7 99 ± 4 100 ± 3 95 ± 4
0.32 90 ± 7 94 ± 6 96 ± 3 92 ± 3*
3.2 88 ± 7 90 ± 6 95 ± 2 87 ± 3*
32 74 ± 9* 83 ± 6* 83 ± 6* 77 ± 4*
80 77 ± 8* 80 ± 7* 76 ± 6* 66 ± 6*

Dexamethasone ( m M)
0.01 87 ± 3* 89 ± 1* 90 ± 2* 92 ± 5
0.1 71 ± 7* 73 ± 5* 79 ± 11 75 ± 10*
1 65 ± 10* 61 ± 5* 62 ± 5* 59 ± 6*

*P < 0.05, Wilcoxon signed rank test for paired data, n = 6.

FIG. 4. Effect of Lc-1 immunoneutralization on dexametha-
sone-mediated inhibition of NO release by LPS-stimulated
rat AM in vitro (10 m g/ml LPS). Data are presented as mean ±
SEM, n = 6; open squares represent LPS-stimulated release
in the presence of dexamethasone and Lc-1 neutralizing
antibody (1:50 dilution); open diamonds represent LPS-
stimulated release in the presence of dexamethasone
alone.



peptides remains to be established. Provided that the
peptides are as effective as dexamethasone and low in
toxicity, the absolute concentration required to ach-
ieve inhibition is probably not a major consideration
for their use in vivo .

Dexamethasone was an effective inhibitor of NO
release by AM in this study, although interestingly, use
of neutralizing antiserum indicated that its action was
Lc-l-independent. Pulmonary AM treated with dex-
amethasone are capable of increasing their Lc-1
expression and release.21 However, studies in our
laboratory indicate that at the highest concentration
of dexamethasone used in the current investigation
(1 m M) the increase in cellular Lc-1 above baseline is
likely to be modest in rat AM.45 Since the anti-
inflammatory actions of glucocorticoids are mediated
via multiple pathways, the effect of dexamethasone
on NO release is likely to be via another mechanism,
perhaps downregulation of iNOS.36 Similarly, the
mode of action of dexamethasone in the lung in vivo
is not fully known. Previous publications by us and
others have demonstrated increases in cellular and
extracellular pulmonary Lc-1 following oral gluco-
corticoid24,25 and also after non-specific stimuli
including LPS15 and carrageenin.26 A previous study
in vivo by Wu et al.15 showed that neutralizing
antisera to Lc-1 blunted the action of dexamethasone
against LPS-induced NO release from lung homoge-
nates, suggesting that increases in endogenous Lc-1
contribute to the steroid action. However, in vivo ,
there are many other potential sources of Lc-1 in the
lung which may be targets for the dexamethasone,
such as epithelial and gland cells.19 Our previous
work indicates that the type II epithelial cell (TII)
releases enhanced levels of Lc-1 in response to lower
doses of dexamethasone than AM. Allied with their
high number in the lung,46–48 this makes TII likely
cellular mediators of the Lc-1-dependent action of
dexamethasone observed by Wu et a l.15 Similarly, in
vivo , extracellular Lc-1 may inhibit NO release by a
variety of cell types not present in our simple in vitro
model.

In summary, we have shown that Ac2–26 causes
the same degree of inhibition of LPS-induced NO
release by AM as dexamethasone, but at a much
higher concentration and by a different mechanism.
This and other peptides derived from Lc-1 may have
therapeutic potential for suppression of pulmonary
inflammation, since they could be delivered topically
to the target organ.
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