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The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that

catalyze the cleavage of carbon–halogen bonds in 2-haloalkanoic acids, releasing

halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of

particular interest in environmental remediation and environmentally friendly synthesis

of optically pure chiral compounds due to their ability to degrade a wide range

of halogenated compounds with astonishing efficiency for enantiomer resolution.

The 2-haloacid dehalogenases have been extensively studied with regard to their

biochemical characterization, protein crystal structures, and catalytic mechanisms.

This paper comprehensively reviews the source of isolation, classification, protein

structures, reaction mechanisms, biochemical properties, and application of 2-haloacid

dehalogenases; current trends and avenues for further development have also

been included.
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INTRODUCTION

Halogenated organic compounds show excellent thermal conductivity, insulation, heat resistance,
lipophilicity, and biological activity (Kim et al., 2020; Zakary et al., 2021). They are widely used in
industrial, agricultural, medical, and military fields as cleaning agents, biocides, gasoline additives,
solvents, degreasers, pesticides, and intermediates for chemical synthesis, yielding enormous
economic and social benefits (Kurumbang et al., 2014; Zhang et al., 2019; Gul et al., 2020b;
Ameen et al., 2021). However, increasing amounts of halogenated compounds are discharged
into the environment due to overproduction and extensive use, which results in environmental
contamination. These compounds spread in lakes, drinking water, groundwater, seawater, and
soil. Unlike naturally occurring halogenated compounds, which can be used as antibiotics to
treat bacterial infections, man-made halogenated compounds, which are used as degreasers,
solvents, biocides, pharmaceuticals, cleaning agents, and in many other industrial applications, are
dangerous when introduced to the environment (Wu et al., 2019; Kirkinci et al., 2021). This is
because these compounds do not degrade easily in natural environments because of their chemical
stability, resulting in their environmental accumulation. Moreover, these compounds can become
concentrated and accumulate in organisms through the food chain, with carcinogenic, teratogenic,
and mutagenic effects (Fan et al., 2020; Lou Y. Y. et al., 2021; Zhang C. et al., 2021). This poses a
serious threat to human health and has become an issue of concern all over the world (Artabe et al.,
2020; Lou Y. Y. et al., 2021).
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As the main decomposers in nature, microorganisms convert
complex organic compounds into simple compounds, thus
maintaining the cycle of elements that are vital to life (Hellal et al.,
2021; Kajla et al., 2021; Yu et al., 2021). Microorganisms growing
in environments polluted by organic halogenated compounds
have the potential to transform these compounds owing to
the presence of enzymes that catalyze dehalogenation in their
cells, called dehalogenases (Atashgahi et al., 2018; Oyewusi
et al., 2020b, 2021b). Among them, 2-haloacid dehalogenases
are a family of critical enzymes that hydrolytically catalyze
the dehalogenation of 2-haloacids to form corresponding 2-
hydroxy acids (Kurihara and Esaki, 2008; Adamu et al.,
2020). They cannot only degrade toxic pollutants with low
energy consumption but also have a wide substrate profile
and high catalytic efficiency. They have highly chiral resolution
properties, which may enable the production of optically pure 2-
halogenated and 2-hydroxyl compounds (Oyewusi et al., 2020a).
Hence, 2-haloacid dehalogenases are highly valuable in the
field of environmental remediation and environmentally friendly
manufacturing of chiral chemicals. Here, we review the isolation
source, classification, molecular structure, catalytic mechanism,
catalytic properties, and industrial applications of 2-haloacid
dehalogenases. These will enrich the biocatalytic repertoire of
haloacid dehalogenases and broaden their applications and
developments in the future.

ISOLATION SOURCES AND
CLASSIFICATION OF 2-HALOACID
DEHALOGENASES

Microorganisms possessing 2-haloacid dehalogenase are
widespread in nature, and have been explored since the
beginning of the 20th century. So far, increasing numbers of
bacterial and fungal species capable of degrading halogenated
xenobiotic pollutants have been isolated (Table 1). Most
of these microorganisms were isolated from terrestrial
environments, with only a few from marine environments,
including Burkholderia sp. I37C (Chiba et al., 2009),
Rhodobacteraceae sp. (Novak et al., 2013a), Psychromonas
ingrahamii (Novak et al., 2013b), Pseudomonas stutzeri DEH130
(Zhang et al., 2013), Paracoccus sp. DEH99 (Zhang et al.,
2014), Lysinibacillus boronitolerans MH2 (Heidarrezaei et al.,
2020), and Bacillus megaterium BHS1 (Wahhab et al., 2020).
The marine environment is the primary and optimal sink
for halogenated pollutants because of their natural release by
marine macroalgae, bacteria, sponges, tunicates, corals, worms,
phytoplankton, and other invertebrates (Bidleman et al., 2019).
Additionally, marine environments are considered extreme
owing to a combination of unique properties including high
pressure, high salinity, low temperature, oligotrophy, and special
lighting conditions (de Oliveira et al., 2020; Ameen et al., 2021;
Zhang J. et al., 2021). Because of this, microorganisms living in
this environment are diverse and specific in gene composition
and ecological functions; the intracellular enzymes of these
microorganisms are correspondingly diverse and specific,
conferring physiological and biochemical characteristics

TABLE 1 | The reported microorganisms degrading 2-haloalkanoic acids.

Microorganisms Genus References

Bacteria Agrobacterium Köhler et al., 1998

Alcaligenes Hill et al., 1999

Ancylobacter Kumar et al., 2016

Arthrobacter Bagherbaigi et al., 2013

Azotobacter Diez et al., 1996

Bacillus Horisaki et al., 2011;

Ratnaningsih and Idris, 2018;

Oyewusi et al., 2021a

Burkholderia Edbeib et al., 2020

Klebsiella Idris Ratnaningsih, 2015

Lysinibacillus Heidarrezaei et al., 2020

Methylobacterium Kurihara and Esaki, 2008

Mesorhizobium Zakary et al., 2021

Moraxella Kurihara et al., 2000

Paracoccidioides Satpathy et al., 2015

Paracoccus Zhang et al., 2014

Pseudoalteromonas Liao et al., 2015

Pseudomonas Hasan et al., 1994; Park et al.,

2003; Schmidberger et al., 2008;

Zhang et al., 2013

Psychromonas Novak et al., 2013b

Pyrococcus Arai et al., 2006

Rhizobium Adamu et al., 2016; Oyewusi

et al., 2020b

Rhodobacteraceae Novak et al., 2013a

Serratia Rosland Abel et al., 2012

Sulfolobus Xu et al., 2004

Xanthobacter van der Ploeg et al., 1991

Fungi Beauveria Satpathy et al., 2016

Botrytis Bustillo et al., 2003

Candida Polnisch et al., 1991

Dichomitus Muzikár et al., 2011

Fusarium Li et al., 2011

Metarhizium Satpathy et al., 2016

Phanerochaete Wang et al., 2009

Pycnoporus Muzikár et al., 2011

Trichoderma Bagherbaigi et al., 2013

such as barophilicity, salt tolerance, cold adaptability,
hyperthermostability, chemoselectivity, stereoselectivity,
and regioselectivity (Thippeswamy et al., 2021; Zhang J. et al.,
2021). The marine environment is therefore expected to be an
important source of novel enzymes.

The 2-haloacid dehalogenases have been classified according
to amino acid sequence conservation and substrate selectivity
(Wang et al., 2018; Adamu et al., 2020). These enzymes are
classified into four types according to their substrate specificities
and product configurations: D-2-haloacid dehalogenase (D-
DEX, EC 3.8.1.9), L-2-haloacid dehalogenase (L-DEX, EC
3.8.1.2), configuration-inverting DL-2-haloacid dehalogenase
(DL-DEXi, EC 3.8.1.10), and configuration-retaining DL-2-
haloacid dehalogenase (DL-DEXr, EC 3.8.1.11) (Zakary et al.,
2021). D-DEX catalyzes the dehalogenation of D-2-haloalkanoic

Frontiers in Microbiology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 758886

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wang et al. Advances in 2-Haloacid Dehalogenases

acids, whereas L-DEX specifically acts on L-2-haloalkanoic
acids. DL-DEXi and DL-DEXr act on both enantiomers of
substrates, but yield different product configurations. The 2-
haloacid dehalogenases in general are divided into Group I
and Group II enzymes according to the amino acid sequence
homology; D-DEX and DL-DEX belong to Group I and L-DEX
to Group II.

STRUCTURAL AND CATALYTIC
CHARACTERISTICS OF 2-HALOACID
DEHALOGENASES

The structural diversity of 2-haloacid dehalogenases determines
their diversity of function. The different types of 2-haloacid
dehalogenases have different structures and catalytic
mechanisms; an overview of this is provided in this section.

L-DEX
Structural Characteristics and Catalytic Mechanism
L-DEX specifically acts on L-2-haloalkanoic acids to produce
D-2-hydroxyalkanoic acids. These enzymes are widespread in
nature and their biochemical characteristics and structures have
been studied extensively (Satpathy et al., 2016; Wang et al.,
2016; Adamu et al., 2020). So far, the three-dimensional (3D)
structures of specific L-DEXs and their substrate complexes have
been analyzed, including L-DEX YL from Pseudomonas sp. strain
YL (Hisano et al., 1996), DhlB from Xanthobacter autotrophicus
GJ10 (Ridder et al., 1997), PH0459 from Pyrococcus horikoshii
OT3 (Arai et al., 2006), DehIVa from Burkholderia cepacia
MBA4 (Schmidberger et al., 2007), DehSft from Sulfolobus
tokodaii (Rye et al., 2009) and DehRhb from Rhodobacteraceae
(Novak et al., 2013a).

L-DEX is an α/β type hydrolase consisting of a typical
Rossman-fold-like core domain and subdomain, with the active
site located between the two domains (Figure 1), apart from
DhlB, which is composed of a core domain and two subdomains.
Most L-DEX molecules are dimers consisting of two identical
subunits, except for PH0459, which is amonomer according to its
crystal structure (Arai et al., 2006). In a typical L-DEX structure,
six-stranded parallel β-sheets (in order: β5-β4-β1-β6-β7-β8) are
flanked on both sides by five α-helices, forming three layers of
α/β fold units together constituting a sandwich domain (Hisano
et al., 1996; Poelarends and Whitman, 2010; Zhang et al., 2018).
Although the core domain of L-DEX has an α/β-type structure, it
does not belong to the α/β hydrolase fold family, in which the
typical domains are eight-stranded β-strands (in order: β1-β2-
β4-β3-β5-β6-β7-β8) with the β2-strand antiparallel to the others.
Two β-strands are separated by α-helix from the third strand,
forming a β/α/β unit. The first α-helix and the last α-helix are
located at one side of the β-sheet, and the remaining α-helices are
at the other side (Janssen, 2004; Kunka et al., 2018; Babkova et al.,
2020; Mazur et al., 2021).

The dehalogenation is catalyzed by L-DEX in an
SN2 nucleophilic substitution reaction as confirmed
by X-ray Crystallography, O18 isotope labeling, liquid
chromatography–mass spectrometry (LC–MS), site-directed

mutagenesis, and quantum mechanic/molecular mechanic
(QM/MM) calculations (Adamu et al., 2017a,b). The carboxylic
acid group of the aspartic acid residue acts as the nucleophile
in the active center, which attacks the C2 atom of the L-2-
haloalkanoic acid to form an ester intermediate (Schmidberger
et al., 2007). This intermediate product is then hydrolyzed by a
water molecule, activated by His/Glu (in DehRhb) or Asn/Ser (in
DehIVa) or Lys (in L-DEX YL) (Figure 2). The resultant halide
ions are stabilized with the assistance of Arg or Asn or Phe.
Greater numbers of halide ion acceptors can cleave stronger C-X
bonds (Kurihara, 2011; Kondo et al., 2014).

Biochemical Properties
L-DEXs have been isolated from both terrestrial and marine
environments. Some biochemical characteristics are shared
between enzymes, and some differ. For example, L-DEX exhibits
high catalytic activity on chlorinated and brominated substrates,
but no such activity on D-2-haloalkanoic acids. Additionally, this
enzyme cannot catalyze the dehalogenation of fluorinated and
C3-substituted haloalkanoic acids. With the exception of L-DEX
YL, L-DEXs only show high catalytic activity on haloalkanoic
acids of two or three carbons in length, with low or no activity
on haloalkanoic acids four or more carbons in length (van der
Ploeg et al., 1991; Liu et al., 1994; Zhang et al., 2013, 2014).

L-DEX enzymes differ in substrate specificity; L-DEX YL is
more specific to L-2-chloropropionic acid than chloroacetic acid,
whereas the L-DEX from Bacillus strain I37C is more specific to
chloroacetic acid than to 2-chloropropionic acid (Liu et al., 1994;
Chiba et al., 2009). The optimal pH range for L-DEX reactions is
9–11 (alkaline). Subunit molecular weights range from 25 to 28
kDa. Natural L-DEXs exist as monomers, dimers, and tetramers
(van der Ploeg et al., 1991; Liu et al., 1994; Zhang et al., 2013,
2014).

L-DEXs isolated from different bacterial species have different
thermal stability: the optimum reaction temperature for L-DEX
from the terrestrial Pseudomonas putida is 30◦C−45◦C, and it
loses 50% activity after 15min incubation at 55◦C. Psychromonas.
ingrahamii is isolated from the sea-ice interface (−10◦C) and
exhibits psychrophilic properties; the lowest temperature at
which this strain is able to grow is −12◦C. L-DEX Pin, from
P. ingrahamii, has an optimum reaction temperature of 45◦C,
with a melting temperature of 85◦C. L-DEX Pin possesses
the characteristics of both psychrophilic and thermophilic
enzymes. Structurally, compared with mesophilic enzymes, L-
DEX Pin has more hydrophobic surfaces and more salt bridges
(Novak et al., 2013b).

The optimum reaction temperature for DehRhb, isolated
from marine Rhodobacteraceae, is 55◦C. The activity of this
enzyme remains at ∼45% after incubation for 1 h at 60◦C,
indicating moderate thermal stability. Its key catalytic residues
are His183 and Glu21, which are different from L-DEXs from
terrestrial environments, suggesting that it may catalyze the
dehalogenation with a novel catalytic mechanism (Novak and
Littlechild, 2013). In summary, natural dehalogenases with novel
properties may be more likely to be isolated from marine and
other extreme environments; a greater understanding of their
structures, catalytic mechanism and catalytic properties may
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FIGURE 1 | L-DEX structures. (A) Structural superposition of DhlB (hotpink, PDB ID: 1qq5) and L-DEX YL (green, PDB ID: 1jud). (B) Structural superposition of DhlB

(hotpink, PDB ID: 1qq5), L-DEX YL (green, PDB ID: 1jud), PH0459 (cyan, PDB ID: 1x42), DehIVa (magenta, PDB ID: 2no4), DehSft (yellow, PDB ID: 2w11) and

DehRhb (salmon, PDB ID: 2yml).

FIGURE 2 | Reaction mechanism of L-DEX (Schmidberger et al., 2007).

provide theoretical guidance for determining the direct evolution
of L-DEXs and other dehalogenases.

DL-DEX
Structural Characteristics and Catalytic Mechanism
DL-DEX enzymes, which include DL-DEXi and DL-
DEXr, catalyze the hydrolytic dehalogenation of both
enantiomers of 2-haloalkanoic acids to produce corresponding
2-hydroxyalkanoic acids.

For DL-DEXi, the configuration of the product is opposite
to the substrate: the C2 atom of the substrate configuration is
inverted during dehalogenation catalyzed by DL-DEXi. Six DL-
DEXi enzymes have been reported so far, including DL-DEX YL
from Pseudomonas putida YL (Hasan et al., 1994; Soda et al.,
1996), DL-DEX 113 from Pseudomonas sp. 113 (Nardi-Dei et al.,
1999; Park et al., 2003), DehI from Pseudomonas putida PP3
(Park et al., 2003; Schmidberger et al., 2008), DL-DEX Mb from
Methylobacterium sp. CPA1 (Siwek et al., 2013), DehE from
Rhizobium sp. RC1 (Hamid et al., 2011; Zainal Abidin et al.,
2019), and DhIIV from Alcaligenes xylosoxidansABIV (Brokamp
et al., 1996; Hamid et al., 2011). The crystal structures of DehI
andDL-DEXMb have been studied, revealing that DL-DEXi is an

α-helical hydrolase, with no structural homology to L-DEX and
other fold superfamilies in the hydrolases (Schmidberger et al.,
2008; Siwek et al., 2013).

As shown in Figure 3, DehI is a homodimer according to its
crystallographic structure. The N-terminus (amino acid residues
1–130) and C-terminus (residues 166–296) share 16% sequence
identity in monomers, which form a pseudo-dimer. The active
site is located at the interface of the pseudo-dimer, which
binds D- and L- substrates (Schmidberger et al., 2008). The
catalytic mechanism of DL-DEXi is different to that of L-DEX:
dehalogenation catalyzed by D-DEXi is directly mediated by an
activated water molecule, without involving the formation of
E-S ester intermediate (Figure 4) (Nardi-Dei et al., 1999). The
nucleophilic water molecule is likely activated by the conserved
Asp and Asn residues; however, there is no relevant experimental
evidence for this.

The transformation of the C2-configuration of the substrate
catalyzed by DL-DEXr is opposite to that of DL-DEXi. DL-DEXr
catalyzes dehalogenation with retention of the C2-configuration
of the substrate. Therefore, the substrate and product share the
same configuration. DL-DEXr has so far only been reported
in P. putida PP3 (Weightman et al., 1982; Park et al., 2003).
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FIGURE 3 | Structural superposition of DehI (green, PDB ID: 3bjx) and DL-DEX Mb (cyan, PDB ID: 4n2x). The active pocket is shown as surface.

FIGURE 4 | Reaction mechanism of DL-DEXi (Nardi-Dei et al., 1999).

Gene sequence information for this enzyme is still unknown, and
the reaction mechanism has not been analyzed. It is proposed
that dehalogenation involves a cysteine residue, as DL-DEXr is
highly sensitive to sulfhydryl reagents such as N-ethylmaleimide
and p-chloromercuribenzoic acid. The reaction is thought to
proceed with double inversion of the C2-configuration of the
substrate, resulting in the retention of the C2-configuration:
the first C2-configuration inversion releases halogen ions and
forms an E-S thioester intermediate; then, the intermediate is
hydrolyzed under the attack of a water molecule, and the C2-
configuration is reversed again. However, there is currently no
direct experimental data to confirm this hypothesis (Figure 5)
(Weightman et al., 1982).

Biochemical Properties
In DL-DEXs, only DehI, DehE, DL-DEX 113 and DL-DEX
ABIV have been characterized in terms of their enzymatic
properties (Brokamp et al., 1996; Schmidberger et al., 2008).
These enzymes have a greater specificity for L-2-haloalkanoic
acids than D-2-haloalkanoic acids (Table 2). DL-DEXi can
catalyze the dehalogenation of haloalkanoic acids with a carbon
chain length of two to four, and catalyzes the formation of
oxalate from trichloroacetate (Soda et al., 1996). Most DL-DEXi
enzymes are homodimers, except for DL-DEX YL, which is a
monomer. The subunit molecular weight ranges from 26 to 36
kDa (Kondo et al., 2014). DL-DEXi maximum activity levels
occur at a pH of ∼9.5. The optimum reaction temperature is
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FIGURE 5 | Possible mechanism of DL-DEXr involving the retention of C2-configuration of the substrate (Weightman et al., 1982).

TABLE 2 | Enatioselectivity of DL-DEXis from different strains.

Enzymes Strains L/Da References

DehI P. putida PP3 1.2 Park et al., 2003

DehE R. sp. RC1 1.6 Hamid et al., 2011

DL-DEX 113 P. sp. 113 1.4 Park et al., 2003

DhIIV A. xylosoxidans ABIV 1.1 Brokamp et al., 1996

DL-DEX YL P. putida YL –

DL-DEX Mb M. sp. CPA1 –

aL/D, the ratio of catalytic activity on L-2-chloropropionic acid and D-2-chloropropionic

acid; -, no experimental data is available.

between 30 and 40◦C (Leigh et al., 1986; Park et al., 2003; Hamid
et al., 2011). DL-DEXr is sensitive to SH-reagents; like DL-
DEXi, it degrades haloalkanoic acids with a chain length of 2–4
(Weightman et al., 1982).

D-DEX
Structural Characteristics and Catalytic Mechanism
D-DEXs specifically catalyze the hydrolytic dehalogenation of D-
2-haloalkanoic acids to produce L-2-hydroxyacids. So far, only
four kinds of primary structure information are available for
D-DEX, including DehD from Rhizobium sp. RC1 (Sudi et al.,
2014), DehII from Agrobacterium sp. NHG3 (Higgins et al.,
2005), HadD AJ1 from Pseudomonas putida AJ1 (Smith et al.,
1990) and DehDIV-R from Pseudomonas sp. ZJU26 (Wang Y.
et al., 2020). HadDAJ1 andDehDIV-R share the highest sequence
homology (89%); HadD AJ1 and DehII NHG3 share 22.2%
sequence homology, and HadD AJ1 and DehD share 32.6%
sequence homology.

The author has extensively studied on the structure and
catalytic mechanism of HadD AJ1. The crystal structure of HadD
AJ1 is highly similar to that of DL-DEXi. Both types of enzymes
are α-helical proteins, different from the α/β fold structure. HadD
AJ1 is a homotetramer according to its crystallographic structure;
eachmonomer comprises two repeats with 20% sequence identity
(Figure 6). The two repeated folds are composed of N-terminal
α-helices 1–6 and C-terminal α-helices 7–12, respectively, with
a linker section containing 33 amino acids and a 310-helix
η1 (Figure 6A). These two repeats are stabilized by van der
Waals forces, salt bonds, hydrogen bonds, and hydrophobic
interactions. As shown in Figure 6B, helix α4 and α10 are
arranged in parallel with each other, and α6 and α12 cross each
other at the bulge between them. Helices α6 and α12 mutually
interlace at their bulges, located in the middle of the helices
(Wang et al., 2018). This has been reported in many proteins
with internal structural repeats, which are considered to result
from genetic processes such as fusion and fission of domains and
gene duplication during protein evolution (Longo et al., 2014;
Berezovsky et al., 2017; Vrancken et al., 2020).

InHadDAJ1, Asp205 is the key catalytic residue, activating the
water molecule with the assistance of Asn131. This was identified
through an analysis of the complex structure of wildtype (WT)
enzyme binding the product L-lactic acid (L-LA) and a D205N
mutant binding the substrate D-2-chloropropionate (D-2-CPA)
(Figure 7A). The dehalogenation catalyzed by D-DEX is directly
mediated by activated water molecules, without forming an
ester intermediate in the reaction process; this is the same
process as DL-DEXi (Figure 7B). The activated water molecule
attacks the C2 atom of the substrate from the opposite side
of the halogen atom, breaking the C-X bond (Figure 7A). The
halogen ion is released toward F281, and simultaneously, the
hydroxyl group of the activated water molecule is bonded
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FIGURE 6 | HadD AJ1 monomer (Wang et al., 2018). (A) Ribbon representation of monomeric HadD AJ1 composed of two repeats (repeat 1: red; repeat 2: yellow)

and a linker (cyan). (B) 3D superposition of repeat 1 (red) and repeat 2 (yellow).

to the C2 atom of the substrate to form L-lactic acid
(Wang et al., 2018).

D-DEX and DL-DEXi share high amino acid sequence as
well as structural homology. Moreover, both types of enzymes
catalyze dehalogenation by the same mechanism, directly
mediated by the nucleophilic water molecule; this differs from
dehalogenation catalyzed by L-DEX, which is mediated by E-
S ester intermediates. This suggests an evolutionarily close
relationship between D-DEX and DL-DEXi.

Biochemical Properties
Currently, there are only a few studies on D-DEX enzymes, likely
a result of the lack of microorganisms known to produce D-DEX.
From analyses of DehD and HadD AJ1 biochemical properties,
D-DEXs specifically catalyze dehalogenation of D-2-chlorinated
and D-2-brominated acids with carbon chain lengths of 2–4.
However, D-DEX has a higher catalytic activity on brominated
than chlorinated substrates (Smith et al., 1990; Huyop and Sudi,
2012). Km values of DehD, HadD AJ1, and DehDIV-R are 0.06,
0.94, and 2.2mmol/L, respectively, with D-2-CPA as the substrate
(Smith et al., 1990; Huyop and Sudi, 2012; Wang Y. et al., 2020).
Compared with HadD AJ1 and DehDIV-R, DehD has a stronger
affinity for D-2-CPA.

The natural active states of D-DEXs are different: DehD exists
is a homodimer, while HadDAJ1 is a homotetramer. The optimal
reaction pH of D-DEXs ranges from 9.0 to 10.0. The enzyme
activity decreases rapidly when the pH falls outside the range
of 8.0–10.0; under these conditions, HadD AJ1 exhibits <50%
catalytic activity (Smith et al., 1990). In comparison with L-DEXs,

D-DEXs are mesophilic, with an optimal reaction temperature
of 50◦C−60◦C; however, the enzyme molecules are relatively
stable between 30 and 40◦C, but rapidly lose activity in a reaction
temperature higher than 40◦C (Smith et al., 1990).

APPLICATION

The 2-haloacid dehalogenases can detoxify halogenated
pollutants by hydrolysis without the addition of other
reductive agents; for this reason, their potential application
in bioremediation is particularly attractive (Behbahani et al.,
2018; Oyewusi et al., 2020b, 2021b; Zakary et al., 2021). The
2-haloacid dehalogenases are also highly stereoselective, and
they may therefore be valuable in fine chemistry synthesis
applications (Chen and Ribeiro de Souza, 2019; Adamu et al.,
2020; Wang S. et al., 2020). These enzymes can be used to
obtain chiral hydroxy acids and haloalkanoic acids with low
molecular weights; these small organic acids generally act
as intermediates for synthesizing agrochemicals, medicines,
and other important chemicals (Leemans Martin et al., 2020;
Gurushankara, 2021). Hence, 2-haloacid dehalogenases are
promising and potentially highly valuable for their application in
environmental remediation and chemical synthesis (Bommarius,
2015; Tanokura et al., 2015; Zhang et al., 2018); here, we discuss
the main fields in which they could be applied.

Environmental Bioremediation
Halogenated carboxylic acids such as 2-chloropropionic
acids and 2,2-chloropropionic acids are widely used as an
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FIGURE 7 | The molecular mechanism of dehalogenation catalyzed by D-DEX. (A) Structural superimposition of WT/L-LA (green, PDB ID: 5gzy) and D205N/D-2-CPA

(cyan, PDB ID: 5gzx) complex. (B) Reaction mechanism of D-DEX (Wang et al., 2018).

intermediate in the synthesis of pesticides and pharmaceuticals,
especially the chirally pure 2-chloropropionic acid precursors
for synthesizing many chiral drugs (Nguyen et al., 2021; Zhou
et al., 2021). However, these haloacids produce chlorinated
organic contaminants owing to extensive use and improper
disposal. Haloacids are also intermediates in the degradation
of some halogenated compounds, such as 1,2-dichloroalkane
and hexachlorocyclohexane, which results in more haloacid
contaminants in the environment (Hermon et al., 2018). The
accumulation of these pollutants causes serious environmental
problems and threats to human and other organisms’ health.
The 2-haloacid dehalogenase can catalyze the dehalogenation of
2-chloropropionic acids and 2,2-dichloropropionic acids to form
non-toxic hydroxyl acids, which is a very promising potential tool
for environmental bioremediation (Oyewusi et al., 2021b; Zakary

et al., 2021). Dioxin compounds are carcinogenic byproducts
originating from natural and anthropogenic sources such as
herbicides, pesticides, and combustion processes; high levels of
dioxin-contamination have been reported in food, soils, and
blood samples of local residents in Southern Vietnam (Nguyen
et al., 2021). Burkholderia cenocepacia strain 869T2 can degrade
0.2mg L−1 of dioxin within 1 week under aerobic conditions, in
which L-2-haloacid dehalogenase plays a crucial role (Nguyen
et al., 2021). Haloacetic acids are the second most prominent
class of disinfection by-products, and are frequently detected
in surface and drinking water systems. These compounds
have genotoxic, mutagenic, cytotoxic, and tumorigenic effects
in humans (Kim et al., 2020; Long et al., 2021; Lou J. et al.,
2021). In metabolically engineered Burkholderia species, the
degradation activity of haloacetic acids can be increased by 4–8
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times (Su et al., 2013). The bacterial degradation of haloacetic
acids was found to be affected by water distribution system
conditions, including pH, phosphate, total organic carbon and
residual chlorine (Behbahani et al., 2018). The order of mean
haloacetic acid degradation rates has been found to be di >mono
>tri-halogenated acetic acids.

Phytoremediation has been attracting more attention as an
environmentally friendly technology to clean up environmental
contamination (Kurade et al., 2021); transgenic tobacco that
produces haloalkane dehalogenase and haloacid dehalogenase,
and which therefore contains a complete degradation pathway,
has been reported to degrade 1,2-dichloroethane (Mena-Benitez
et al., 2008).

Fine Chemical Synthesis
The growing interest in the use of 2-haloacid dehalogenases in
fine chemical synthesis is due to their chiral selectivity. Optically
pure compounds are generally synthesized using chemical
methods; however, this is unpopular owing to the involvement
of toxic reagents, as well as the low yield and low optical purity
of products (Santi et al., 2021). Biocatalysis is considered as a
more environmentally friendly and effective method because of
the mild reaction conditions, and remarkable enantioselectivity
(Novak et al., 2013b; Schober and Faber, 2013; Wang S. et al.,
2020).

L-2-chloropropionic acid is an important precursor in the
synthesis of herbicides and pesticides (Zhou et al., 2021). D-
DEX specifically hydrolyzes D-2-chloropropionic acid in racemic
2-chloropropionic acid; L-2-chloropropane acid is therefore
obtained with high enantiomeric purity by separation (Gong
et al., 2018). To obtain optically active L-2-chloropropionic acid,
Imperial Chemical Industries has already applied HadD AJ1 to
the resolution of racemic 2-chloropropionic acid in an industrial
setting, which has been the primary method for producing chiral
chloropropionic acid (Taylor Stephen, 1985; Parker and Colby,
1995). It has also been used by AstraZeneca in the resolution
of rac-2-CPA by D-DEX. This method is also suitable for the
production of other short-chain chiral 2-halogenated acids, and
the scale can be higher than 1,000 tons/year (Schober and Faber,
2013).

D-2-CPA is an important raw material for chemical
synthesis that can be directly used to produce a variety
of pharmaceutical intermediates, such as the nutritional
medicine L-alanyl-L-glutamine and the anti-tuberculosis drug
thiolactomycin. L-DEX can be used for the resolution of racemic
2-chloropropionic acids to obtain D-2-CPA with enantiomeric
purity (Breuer et al., 2004).

Optically pure lactic acid is an important chiral intermediate
in the synthesis of agrochemical, pharmaceutical, and chemical
industries; it has been reported that L-lactic acid can be used
to synthesize nanoparticles and nanofibers, which act as drug
carriers (Chuan et al., 2020; Liu et al., 2021; Ma et al., 2021; Yavari
Maroufi et al., 2021). D-lactic acid is also involved in the synthesis
of important chiral drug intermediates, such as methyl D-lactate
(Sengupta et al., 2020). Xie and colleagues studied the reaction
conditions of L-DEX from thermophilic archaea Sulfolobus
tokodaii in the catalytic conversion of racemic 2-chloropropionic

acid to D-lactic acid (Rye et al., 2009; Xie et al., 2015); after
optimizing reaction conditions with regard to substrate, buffer,
and enzyme concentration, preparation of D-lactic acid was
found to work best with 0.5 mol/L 2-chloropropionic acid.

D-2-bromobutyric acid is used as an intermediate for
the synthesis of pharmaceuticals and agrochemicals. The
fluoroacetate dehalogenase mutant H155V/W156R/Y219M is
reported to catalyze the kinetic resolution of rac-2-bromobutyric
acid, producing D-2-bromobutyric acid with an enantiomeric
excess of 99.7% (Wang S. et al., 2020).

Agricultural Production
Herbicides with broad spectrum can effectively remove a variety
of weeds, such as monochloroacetic acid, 2-chloropropionic
acid, and 2-dichloropropionic acid. However, these herbicides
can also damage economically valuable crops, resulting in
significant losses in agricultural production. These losses can be
avoided by developing herbicide-resistant crops, which requires
the introduction of genes encoding dehalogenases into these
crops. The dehD gene from Rhizobium sp. RCI, encoding D-
2-haloacid dehalogenase, has been successfully introduced into
tobacco as selective tag, constructing a transgenic variant of
Nicotiana benthamiana with anti-monochloroacetic acid activity
(Mohamed et al., 2020). This transgenic, herbicide-resistant
tobacco is confirmed to be effective at various development
stages, including seed germination and mature leaf stages. The
dehalogenase gene is therefore likely to play an important role
as a dominant, selectable marker gene for the construction
of other crop species resistant to broad-spectrum halogenated
compound herbicides.

Other Fields
Dehalogenases can also be used to construct biosensors for in situ
detection of organic halogenated pollutants in the environment
(Artabe et al., 2020; Gul et al., 2020a,b). By immobilizing
halohydrin dehalogenase on a glass fiber membrane, detection
limits of 0.06 mmol/L 1,3-dichloro-2-propanol and 0.09 mmol/L
2,3-dibromo-1-propanol have been achieved (Gul et al., 2020b).
A detection limit of 1 mg/L dichlorethane has been achieved by
immobilizing haloalkane dehalogenase on stacked chitosan films
(Shahar et al., 2019a,b).

Dehalogenases act as tags when genetically fused to a
protein of interest, termed HaloTag technology (England et al.,
2015; Döbber and Pohl, 2017; Erdmann et al., 2019). This
technology overcomes the current limitations of traditional
protein tagging platforms, as it can be applied to protein isolation
and purification, studies of protein synthesis and degradation,
analyses of protein function, studies of protein–protein and
protein–DNA interactions, and molecular and cellular imaging
(Encell et al., 2012; Merrill et al., 2019; Cattoglio et al., 2020;
Freitas et al., 2021; Minner-Meinen et al., 2021). Furthermore,
novel technologies have been developed for tumor diagnosis
and treatment involving the linkage of dehalogenase fused with
cancer cell recognition peptides to multifunctional nanoparticles
(Garbujo et al., 2020).
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DISCUSSION AND PROSPECTS

A variety of 2-haloacid dehalogenases have so far been isolated
and identified. Although structural information and catalytic
mechanisms for L-DEX, DL-DEXi, and D-DEX have generally
been well-understood, very little information on the structure
and catalytic mechanism of DL-DEXr is available. Therefore,
further study is necessary to understand DL-DEXr.

Enzyme stereoselectivity has been attracting a great deal
of attention for asymmetric synthesis and chiral resolution.
The 2-haloacid dehalogenases show typical stereoselectivity;
however, little is known about the stereoselective mechanism.
The enantioselective mechanism of L-DEX has been studied
using quantum mechanics/molecular mechanics (QM/MM) and
fragment molecular orbital calculation (Kondo et al., 2015;
Adamu et al., 2019), which have confirmed that the high
activation energy barrier prevents this enzyme from acting on the
D-substrate. However, it is still unclear how selectivity of enzymes
on chiral substrates is regulated. The stereoselective mechanism
of D-DEX has been studied, and enzymatic stereoselectivity
was found to be controlled by the residue Leu288, which
determines the entry of L-substrate into the active site of the
enzyme with steric hindrance. The mutation of residue leucine
to isoleucine enables the enzyme to catalyze the dehaologenation
of the L-substrate, owing to the different rotation position of
Ile288 compared with Leu288. In the mutant enzyme, Ile288
functions as a wing gatekeeper, interacting with the substrate
by gate-flipping during dehalogenation, allowing the L-substrate
to enter the active site. However, it is still unclear how DL-
DEXr andDL-DEXi recognize and interact with chiral substrates.
Stereoselective properties make biocatalysts valuable in the
preparation of optically pure compounds, which is an important
area of environmentally friendly chemistry. An ideal industrial
biocatalyst should have both high catalytic activity and specific
stereoselectivity; exploring the molecular regulatory mechanisms
underlying these properties forms the basis of artificial
customization of dehalogenases with these properties. Reactions
can be controlled using direct regulation of enzyme selectivity,
forming products with high optical purity and unique structures.
Further study on the stereoselectivity of 2-haloacid dehalogenase
is therefore required in order to successfully manipulate
this property.

Most 2-haloacid dehalogenases have a high catalytic activity
with short-chain halogenated acid substrates containing fewer
than four carbon atoms, while they show weak or no catalytic
activity for longer-chain halogenated acids. Additionally, the
low tolerance of these enzymes to organic solvents limits
the range of their substrate profile. In order to obtain
enantiomerically pure chiral products, enzymatic catalysis is
sometimes used in enantiomeric resolution by combining
with chemical convergence (Clayton et al., 2020). However,
the conditions of the enzymatic reaction are incompatible
with the high temperature and extreme pH required for
chemical hydrolysis in the downstream separation process.
Therefore, it remains necessary to identify novel 2-haloacid

dehalogenases with unique properties, allowing them to function
in these more extreme conditions (Marshall et al., 2021).
Marine microorganisms may be the primary source of novel
enzymes with extraordinary properties owing to their previously
established genetic and biochemical diversity.

The birth of protein engineering technology has opened up
a new route for researchers to develop excellent biocatalysts by
redesigning natural enzymes (Marshall et al., 2021; Watanabe
et al., 2021; Xiong et al., 2021). Many enzyme engineering
design strategies have emerged, such as directed evolution,
rational, semi-rational, de novo, computer-assisted, and
artificial intelligence (Bunzel et al., 2021; Narayanan et al.,
2021; Tunyasuvunakool et al., 2021; Woolfson, 2021; Wu
et al., 2021). These strategies have been used to improve
enzyme stability, activity, and selectivity for substrates.
However, so far, only L-2-haloacid dehalogenases have
been engineered to alter their substrate specificity. The
mutation of residue Ser188 to Val in the enzyme DehE
enables it to act on 3-chloropropionic acid (Hamid et al.,
2015). Recent developments in understanding the structural
and catalytic properties of 2-haloacid dehalogenases will
also likely enable these enzymes to be more easily modified
for commercial uses alongside L-2-haloacid dehalogenases.
Given this overall direction of research, an increasing variety
of 2-haloacid dehalogenases will likely be modified through
protein engineering techniques to improve their properties for
biotechnological applications.
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