
Alzheimer’s & Dementia: Translational Research & Clinical Interventions 3 (2017) 562-570
Featured Article

Study protocol of the Intense Physical Activity and Cognition study: The
effect of high-intensity exercise training on cognitive function in older adults
Belinda M. Browna,b,*, Stephanie R. Rainey-Smithb,c, Natalie Castalanellib,d, Nicole Gordona,
Shaun Markovica,b, Hamid R. Sohrabib,c,e, Michael Weinbornb,c,d, Simon M. Lawsb,c,f,g,h,

James Doeckef,i, Kaikai Shenc,f,i, Ralph N. Martinsb,c,e, Jeremiah J. Peiffera

aSchool of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
bSir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, Western Australia, Australia

cSchool of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
dSchool of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia

eSchool of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
fCo-operative Research Centre for Mental Health, Carlton, Victoria, Australia

gCollaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
hSchool of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia,

Australia
iAustralian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
Abstract Introduction: Inconsistent results from previous studies of exercise and cognitive function suggest
There are no confl
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that rigorously designed randomized controlled trials are urgently needed. Here, we describe the design
of the Intense Physical Activity and Cognition (IPAC) study, which will assess the impact of a 6-month
high-intensity exercise intervention on cognitive function and biomarkers of dementia risk, compared
with a 6-month moderate-intensity exercise intervention and control group (no study-related exercise).
Methods: One-hundred and five cognitively healthy men and women aged between 60 and 80 years
are randomized into a high-intensity exercise, moderate-intensity exercise, or control group. Individ-
uals randomized to an exercise intervention undertake 6months of cycle-based exercise twice aweek,
at 50 minutes per session. All participants undergo comprehensive neuropsychological testing, blood
sampling, brain magnetic resonance imaging, fitness testing, and a body composition scan at baseline,
6 months (immediately after intervention), and 18 months (12 months after intervention).
Discussion: The IPAC study takes a multidisciplinary approach to investigating the role of exercise
in maintaining a healthy brain throughout aging. Rigorous monitoring of exertion and adherence
throughout the intervention, combined with repeated measures of fitness, is vital in ensuring an op-
timum exercise dose is reached. Results from the IPAC study will be used to inform a large-scale mul-
ticentre randomized controlled trial, with the ultimate aim of pinpointing the frequency, duration, and
intensity of exercise that provides the most benefit to the brain, in terms of enhancing cognitive func-
tion and reducing dementia risk in older adults.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

The relationship between physical activity and cognition
has been the subject of consistent study over recent years
[1–5]; yet, despite expanding literature on the topic,
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questions still remain regarding the effectiveness of physical
activity and exercise as a protective measure against the
development of cognitive decline and dementia in older
adults. While exercise interventions have demonstrated
benefits to cognitive function in older adults [3,6–10], a
recent Cochrane review published in 2015 suggested there
was insufficient evidence from randomized controlled
trials (RCTs) to conclude such a benefit [11]. Since this
review, a number of RCTs have published data demon-
strating the benefits of exercise using comprehensive batte-
ries of cognitive tasks as outcome measures. Tamura et al.
[10] reported that a 2-year exercise intervention was associ-
ated with improvements in attention shift, a positive change
that was maintained 6 months after intervention. Vidoni
et al. [9] evaluated the potential dose response of exercise
duration on cognitive function, demonstrating increasing
benefits in visuospatial processing across groups exercising
75 min wk21, 150 min wk21, and 225 min wk21. Most
recently, a review commissioned by The Lancet recommen-
ded the prescription of exercise for dementia prevention in
older adults [12]. In contrast to the above, a recent large
RCT (n5 1635) reported no benefits to cognition following
a 24-month moderate-intensity (MI) exercise intervention
[13]. This study, however, has received methodological crit-
icisms, in particular regarding both the use of relatively short
unsupervised exercise sessions and the inability of the inves-
tigators to ensure exercise was conducted at a moderate
intensity [14]. Importantly, previous observational work
indicated that high-intensity (HI) exercise provides greater
benefit to cognitive health than low-intensity exercise
[15,16]. The aforementioned findings highlight the
importance of rigorous methodological procedures in
exercise interventions, particularly in regards to ensuring
an optimum exercise dose is reached. Thus, RCTs
conducting supervised and monitored exercise
interventions are vital in examining the true effect of
exercise on cognitive health parameters.

The aim of the Intense Physical Activity and Cognition
(IPAC) study is to contribute to the growing research base
linking exercise to cognition and more specifically provide
clarity for researchers, practitioners, and the community in
relation to the impact of exercise intensity on cognitive
health, and ultimately dementia risk. The IPAC study has
been rigorously designed to ensure that criticisms of previ-
ous exercise interventions in older adults are considered.
More specifically, we propose to undertake repeated aerobic
fitness measurements, conduct supervised HI and MI
exercise interventions, and monitor participant exertion
throughout each exercise session. Our primary objective is
to assess whether 6 months of HI exercise is associated
with improved cognitive function, compared with an MI
exercise intervention or control group. Our secondary objec-
tives are to assess the impact of a 6-month HI exercise inter-
vention on (1) cortical gray matter (GM) volume, region of
interest GM volumes (most specifically, hippocampal vol-
ume), and default mode network connectivity measured by
magnetic resonance imaging (MRI) and (2) Alzheimer’s
disease (AD)–related blood-based biomarkers, including
proteomics and gene expression, compared with an MI exer-
cise intervention or control group. Our tertiary objectives are
to evaluate mediating and moderating variables of the
relationship between exercise and cognitive function, that
is, evaluating the mediating effect of cardiorespiratory
fitness, biomarkers, and brain volume and connectivity and
also examining the moderating effect of genotypes associ-
ated with increased dementia risk, such as carriage the apoli-
poprotein (APOE) ε4 allele or the brain-derived
neurotrophic factor (BDNF) Val66Met single nucleotide
polymorphism.
2. Methods

The IPAC study is conducted as a single-centre single-
blind RCT and is currently funded by the National Health
and Medical Research Council National Institute of Demen-
tia. The human research ethics committees of Edith Cowan
University and Murdoch University (Western Australia)
have approved this study. The study is registered with the
Australian New Zealand Clinical Trials Registry (under
identification number ACTRN12617000643370).

2.1. Participants and power analysis

The study cohort comprised 105 cognitively healthy men
and women (equal ratio) aged 60 to 80 years. Participants are
randomized into one of three groups: HI exercise (n 5 35),
MI exercise (n 5 35), or a control group (n 5 35; Fig. 1).
Participants will be recruited via advertisements in local
community and state-wide newspaper publications, presen-
tations to local community organizations, and word-of-
mouth. Detailed inclusion and exclusion criteria are listed
in Table 1.

Our power analysis is based on our primary outcome var-
iable, cognitive function. Using estimates of change in
cognitive composite scores from Vidoni et al. [9], the sample
size required to detect differences in cognition (domains
assessed in Vidoni et al.: verbal memory, visuospatial pro-
cessing, and simple attention) between the three groups
with at least 80% power and at the 5% level of significance
is 28 per group. Assuming a dropout rate of 10% during the
6-month intervention and accounting for possible variance
due to covariates in our planned analyses (e.g., age, APOE
ε4 allele carriage), 35 subjects will be recruited in each of
the 3 groups, giving a total required sample size of 105.

2.2. Procedures

In the 4 weeks preceding the start of the exercise interven-
tion (or control period), baseline measurements are obtained
in relation to neuropsychological testing, blood sample
collection, neuroimaging (MRI), completion of question-
naires, assessments of physical fitness, and a dual-energy
X-ray absorptiometry (DXA) scan for the evaluation of



Fig. 1. Schematic diagram of IPAC study design. Please refer to Table 2 for detailed study outcome measures. Abbreviation: IPAQ, International Physical Ac-

tivity Questionnaire.
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body composition. After 3 months of the exercise interven-
tion (or control period), all participants will undergo assess-
ments of physical fitness, a DXA scan, and completion of
questionnaires. Following completion of the 6-month inter-
vention (or control period) and at 12-month postintervention
completion, all participants will repeat all procedures under-
taken at baseline. Study procedures (including fitness
testing, blood sample collection, cognitive testing, MRI,
and DXA) are undertaken at intervals as per the assessment
schedule illustrated in Fig. 1 and described in Table 2.
Table 1

Inclusion and exclusion criteria for the International Physical Activity Questionna

Inclusion criteria

� Age 60–80 years

� English speaker

� Adequate visual and auditory acuity to complete neuropsychological

testing

� Willingness to participate in entirety of study

� Willingness and ability to provide written informed consent

� A letter from the usual general practitioner endorsing participants

ability to partake in all aspects of the study
2.3. Randomization

All participants are assigned to one of three groups: HI
exercise group, MI exercise group, or control group. Assign-
ment of individuals to each group is performed using a block
randomization protocol with a block size of three. Age and
gender are both associated with cognitive function, and
thus, participants are stratified by age and gender before be-
ing randomly assigned to one of the three conditions: HI ex-
ercise, MI exercise, or control.
ire study

Exclusion criteria

� Dementia diagnosis or another neurodegenerative disease

� Score �26 on the Mini–Mental State Examination

� Score of �6 on the Geriatric Depression Scale (Short Form)

� Inability to undertake cycling-based exercise due to neuromuscular

and/or musculoskeletal limitations

� Inability to obtain medical clearance to participate in the exercise

program

� History of schizophrenia, schizoaffective disorder, or bipolar disorder

� Subjects with untreated obstructive sleep apnea

� History of electroconvulsive therapy or serious head injury resulting

in a prolonged period of unconsciousness

� History of alcohol abuse or dependence within 2 years of screening

� Participants with a history of cancer (other than skin or in situ prostate

cancer) within the previous 5 years

� Any significant systemic illness or unstable medical condition

� Insulin-requiring diabetes or uncontrolled diabetes mellitus

� Uncontrolled hypertension (systolic BP . 170 or diastolic

BP . 100 mmHg)

� Participants in whom magnetic resonance imaging is contraindicated

including, but not limited to, those with a pacemaker, presence of

metallic fragments near the eyes or spinal cord, or cochlear implant

(dental fillings do not present a risk for magnetic resonance imaging).



Table 2

Overview of assessments at each time point

Measure Screening

Baseline (after

intervention)

3 months (during

intervention)

6 months (immediately

after intervention)

18 months (12 months

after intervention)

Primary objective

Cognitive assessment X X X

Secondary objectives

Blood sample X X X

Gene expression X X X

Biomarkers X X X

Brain MRI X X X

Mediating/moderating variables, covariates, and descriptive data

Fitness Testing (VO2max) X X X X

Mini–Mental State Examination X

DXA X X X X

Height and weight X X X X

Blood pressure X X X X

Questionnaires

IPAQ X X X X X

SF-36 X X X X

DASS X X X X

CHAMPS X X X X

CCV FFQ X X X X

PSQI X X X X

GDS X

Medical history and

demographic information

X

Genotyping X

Abbreviations: CCV FFQ, Cancer Council of Victoria Food FrequencyQuestionnaire; CHAMPS, Community Healthy ActivitiesModel Program for Seniors;

DASS, Depression, Anxiety and Stress Scale; DXA, dual-energy X-ray absorptiometry; GDS, Geriatric Depression Scale; IPAQ, International Physical Activity

Questionnaire; MRI, magnetic resonance imaging; PSQI, Pittsburgh Sleep Quality Index; SF-36, short-form health survey; VO2max, maximal oxygen

consumption.
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3. Intervention

All participantsmust demonstrate their ability to undertake
upright stationary cycling before the exercise intervention (or
control period). Researchers determine the most appropriate
setup for each participant, and any participants who cannot
adequately use the equipment (i.e. due to functional or
anatomical limitations) are excluded from the study.

Participants allocated to an exercise intervention com-
plete 6 months of either an MI or HI cycling program con-
sisting of 100 minutes of cycling per week (two sessions at
50 minutes per session). All exercise sessions are completed
within a university setting under the supervision of an Exer-
cise and Sports Science Australia–accredited exercise phys-
iologist and undergraduate exercise science students. Using
this supervisory method, a participant-to-researcher ratio of
no greater than 3:1 (i.e., 3 participants per researcher) is
ensured. All exercise is completed on a cycle ergometer
(WattbikePro; Wattbike, Australia) allowing accurate mea-
surement of intensity (wattage), and radiotelemetric heart-
rate monitors (Garmin HRM1G; Garmin, USA) are used
to provide an assessment of physiological intensity.

The target exercise intensity for the MI and HI conditions
are set using the 6 to 20 Borg Scale of perceived exertion
(6 5 no exertion and 20 5 maximal exertion; [17]). This
method is ecologically valid and provides the ability for
participants to auto regulate their exercise, thus maintaining
a relative level of intensity consistent with changes in fitness
over time [18]. All exercise sessions commence with verbal
instruction from the supervising exercise specialist
regarding the purpose and focus of the session. Participants
are educated on the difference between perceived exertion
and effort [19] during the first exercise session and are
explicitly instructed to base exercise intensity on perceived
exertion, irrespective of effort. During the MI sessions, par-
ticipants exercise at a constant intensity (50%–60% aerobic
capacity; 13.0 Borg Scale) for 50 minutes. Individuals in the
HI group first complete a 10-minute cycling warm-up at a
low intensity (30–40% aerobic capacity; 11.0 Borg Scale)
after which they complete 11 intervals of 1 minute of hard
exertion (.80% aerobic capacity; 18.0 Borg Scale) inter-
spersed with 2 minutes of active recovery (30%–40% aero-
bic capacity; 12.0 Borg Scale). At the end of the HI session,
participants complete a 9-minute cooldown at a perceived
exertion of 11.0 (Fig. 2). Throughout all exercise sessions,
heart rate and power output are collected for use in post
hoc analyses to assess session intensity. The protocols
described previously are theoretically work matched based
on an 80-kg person with a maximal aerobic capacity of
27 mL kg21 min21 to provide approximately 386 Met
min21 and 380 Met min21 per week for the MI and HI con-
ditions; respectively.



Fig. 2. MI (left) and HI (right) training programs. Both exercise protocols have been designed to provide a similar amount of total work per session within

60.4% over their respective time frames (MI: 386 Met min21 and HI: 380 Met min21; based on 80-kg male with a maximal aerobic capacity of

27 mL kg21 min21). Abbreviations: HI, high-intensity; MI, moderate-intensity.
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Individuals assigned to the control group attend informa-
tion sessions regarding the benefits of diet and exercise with
respect to cognition, dementia, and brain aging; however,
these individuals do not receive any instruction related to
exercise prescription.

3.1. Intervention safety and compliance

Before the start of any exercise testing or training ses-
sions, all participants are required to obtain medical clear-
ance from their general practitioner for participation in HI
exercise. Participants are provided with written documenta-
tion to provide to their general practitioner with a plain En-
glish description of the study procedures. In addition to the
medical clearance, participants are required to complete
the Exercise and Sports Science Australia pre-exercise
screening questionnaire.

During all exercise sessions, at minimum, one staff mem-
ber supervising the exercise session must hold a current se-
nior first aid and cardiopulmonary resuscitation certification.
The exercise facility has a formalized emergency plan and
unrestricted access to an automated defibrillator and supple-
mental oxygen.

During training sessions, participant attendance is re-
corded for post hoc analyses. To increase compliance, partic-
ipants receive encouragement during their session to meet
their target intensities and are provided with session feed-
back at completion.
4. Outcome measures

4.1. Primary outcome measure: neuropsychological
assessment

A comprehensive battery of neuropsychological tests has
been selected for this study. The selected measures have
demonstrated sensitivity, reliability, and validity in previous
research with similar participant groups [20] and provide
assessment of key areas of cognition, including verbal
learning and memory, verbal attention, visuospatial function
and memory, working memory, processing speed, and exec-
utive function. The neuropsychological measures include
Montreal Cognitive Assessment, Wechsler Adult
Intelligence Scale-III Digit Span, California Verbal
Learning Test (CVLT-II), Brief Visual Memory Test, and
Trail Making Test forms A and B. The unstructured task,
verbal fluency, flanker, and set-shifting from the NIH
EXAMINER are also administered [21]. In addition, the
Cogstate battery of tests, including Groton maze learning
and recall, one-back task, one-card learning, and continued
paired associate learning task are completed by all partici-
pants.

The primary outcome measures (global cognitive com-
posite score) are calculated using results from the paper
and pen cognitive tasks: Montreal Cognitive Assessment,
Digit Span, CVLT-II, Brief Visual Memory Test, Trails A
and B, unstructured task, and verbal fluency. Adjusted (for
age, gender, and APOE ε4 allele carriage) Z-scores are
calculated for each measure (Z-scores for tasks with multi-
ple measures, i.e., CVLT, short and long delay, will be aver-
aged to provide one Z-score to ensure the composite is not
heavily weighted toward one task) and are averaged to yield
a composite Z-score. Further analyses will be conducted to
examine the effect of the intervention on specific domains
of cognitive function.
4.2. Secondary outcome measures

4.2.1. Genotyping, blood-based biomarkers, and gene
expression

At baseline, 6, and 18 months, fasted (10 hours) venous
blood samples are collected into serum-separating tubes
(isolation of serum), tubes containing EDTA (isolation of
plasma) and PAXgene tubes (for gene expression analysis).
Blood samples will be analyzed for standard blood chemis-
try analyses, measurement of blood biomarkers and gene
expression. Blood processing is conducted in accordance
with the Australian Imaging Biomarkers and Lifestyle Study
protocol [22]. The blood products collected for biomarker
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research are stored in liquid nitrogen until required for
analysis.

Genotyping is completed on baseline samples only:
briefly, manufacturer’s instructions are followed to extract
DNA from whole blood using QIAamp DNA Blood Maxi
Kits (Qiagen, Hilden, Germany). TaqMan genotyping assays
are used to determine APOE genotype (rs7412, assay ID:
C____904973_10; rs429358, assay ID: C___3084793_20),
and BDNF Val66Met single nucleotide polymorphism
(rs6265, assay ID: C__11592758_10).

Gene expression profiles are assessed at baseline and
6 months on RNA extracted from PAXgene Blood RNA
tubes (Becton, Dickinson and Company) using the PAXgene
Blood RNA Kit (Qiagen). ThermoFisher Scientific (Life
Technologies) TaqMan Human AD microfluidic array cards
(Cat#4378713) are used to simultaneously assess expression
of 94 AD-associated genes and 2 endogenous controls (18S
and HPRT1). BDNF gene expression, not included on the
array, is analyzed separately using a standalone TaqMan
gene expression assay (assay ID: Hs02718934_s1) and
endogenous controls (18S, assay ID: Hs99999901_s1;
HPRT1, assay ID: Hs99999909_m1). TaqMan genotyping
and gene expression assays are performed on a QuantStudio
12K Flex Real-Time-PCR system (Applied Biosystems,
Foster City, CA) using the TaqMan GTXpress and Gene
Expression Master Mix (Life Technologies), respectively.

For all blood samples, a panel of blood-based proteo-
mic biomarkers will be measured. Blood biomarkers
will be included in the panel based on current evidence
available in the literature of high sensitivity and speci-
ficity in predicting conversion to dementia [23–25]. We
will also quantify levels of blood biomarkers known to
play an important role in the relationship between
exercise and brain health, that is, growth factors such as
BDNF, nerve growth factor, and vascular endothelial
growth factor.

4.2.2. Magnetic resonance imaging
At baseline, 6, and 18 months, participants are

positioned in a standard head coil and a brief scout T1-
weighted (T1W) image obtained, followed by a
magnetization-prepared rapid gradient-echo sequence and
a T2 sequence: The structural magnetization-prepared
rapid gradient-echo and T2-weighted images are
segmented into white matter (WM), GM, and cerebrospinal
fluid, and GM cortical thickness is computed [26]. Regions
of interest are propagated from an atlas to the T1W images
to extract various regional volumes (including hippocam-
pal volume). The full pipeline used to segment the T1W im-
ages has been detailed previously [27]. Following the
volumetric sequences, fluid-attenuated inversion recovery
and diffusion tensor imaging sequences are conducted for
the measurement of WM hyperintensities and WM connec-
tivity, respectively.

Following this, two functional MRI (fMRI) blood-
oxygen level dependent sequences are performed for the
investigation of brain activation and connectivity while at
rest and during a cognitive task. During the blood-oxygen
level dependent sequences, participants are asked to (1) be
at rest with their eyes open (resting-state fMRI) and then
(2) participate in an n-back task (1-back and 2-back), by
looking at a screen positioned above their face and by re-
sponding to buttons held in their hands (task-evoked
fMRI). FMRIB Software Library Multivariate Exploratory
Linear Optimized Decomposition into Independent Compo-
nents is utilized to conduct independent component ana-
lyses, with the aim of identifying changes in the default
mode network from preintervention to postintervention.
FMRIB Software Library FMRI Expert Analysis Tool will
be used to analyze patterns of brain activation during the
n-back task from preintervention to postintervention [28].
4.3. Demographic, descriptive, and other potential
mediating factors

4.3.1. Demographic and medical history data collection
Demographic and medical history information is

collected by a staff member via questionnaire and semi-
structured interview. Demographic and medical history in-
formation is collected at screening (questions pertaining to
eligibility only) and baseline (more extensive detail).
Comprehensive health history taken at baseline will include
questions regarding prior illness/surgery and medication use
(past and current, prescribed, over the counter, and supple-
ments).

4.3.2. Physical assessments
At baseline, 3 months (mid intervention), 6 months

(immediately after intervention) and 18 months (12 months
after intervention completion), participants are assessed for
their maximal aerobic capacity (VO2max) and peak power
using a cycling-based graded exercise test. All tests use
2-minute stage durations with consistent increases in work
rate at each stage until participants reach volitional fatigue.
To ensure similar test durations and stage progression (i.e.,
no greater than 2 metabolic equivalent units), test selection
is determined relative to the participants baseline body
mass using the following criteria: (1) participants under
70 kg commence testing at 30 W with increases of 20 W
each stage, (2) participants between 70 to 100 kg commence
testing at 30 W with increases of 25 W each stage, and (3)
participants over 100 kg commence testing at 40 W with in-
creases of 35 W each stage.

During each test, heart rate is continuously recorded and
expired ventilation is collected and analyzed as 15-second
mean values, using a Parvo TrueOne (ParvoMedics, USA)
metabolic cart, for the rate of oxygen consumption (VO2)
and carbon dioxide production (VCO2). Before each test,
the pneumatach is calibrated across a range of flow rates
(50 to 400 Lmin21), and the oxygen and carbon dioxide sen-
sors are calibrated to a known gas mixture (16% oxygen and
4% carbon dioxide). At test completion, maximal heart rate
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is determined as the highest heart rate value recorded during
the test, and VO2max is determined as the highest 15-second
mean VO2 value obtained during the final 2 minutes of the
test. Additional criteria for the assessment of VO2max involve
participants reaching a maximal heart rate greater than 85%
of their age predicted maximum (i.e., (220 2 age) * 0.85)
and a respiratory exchange ratio (VCO2/VO2) greater than
1.15. Peak power is determined using the following equa-
tion:

Peak power5PLCS1ðFst � BMPÞ

where PLCS is the power at the last completed stage, Fst is the
fraction of the last uncompleted stage, and BMP is the body
mass–specific increase in work rate per stage.

4.3.3. DXA scan
All participants undergo a DXA scan at baseline, 3-, 6-,

and 18-month assessments. DXA uses very low dose radia-
tion in a collimated beam to determine the volume of fat,
muscle, and bone tissue in the whole of the body. All
DXA scans are completed using the Hologic Discovery
Bone Densitometer (Hologic, USA): segmental composition
is determined via Hologic internal software.

4.3.4. Questionnaires
At baseline only, participants complete questionnaires

regarding subjective memory complaints (Memory Assess-
ment Clinical-Questionnaire) and personality factors (NEO
Personality Inventory). Furthermore, participants complete
a series of questionnaires at all time points to assess health
and role function (Health Short form; SF-36), depression
and anxiety (Depression, Anxiety and Stress Scale), habitual
physical activity levels (international physical activity ques-
tionnaire and Community Healthy Activities Model Pro-
gram for Seniors), sleep quality (Pittsburgh Sleep Quality
Index), and nutrient intake (Cancer Council of Victoria
Food Frequency Questionnaire).
5. Statistical analysis

Statistical analysis will be overseen by a biostatistician
and will be performed using IBM SPSS Statistics, version
22, data analysis software (IBM Corporation) and the R
environment, version 3.3.2 [29]. Quantitative data will be
log-transformed before statistical analyses to ensure a
gaussian distribution.

Each of the proteomic and gene expression biomarker
panels will be represented via the top 2–3 Eigen vectors
that represent the maximal variance explained by the
biomarker set. To do this, singular value decomposition
will be used on the log-transformed and scaled biomarker
data before choosing the optimal components to represent
the biomarker panel. These components will then be used
in subsequent linear mixed modeling to represent overall
changes in blood-based biomarkers.
To address the primary objective, intention-to-treat
analyses will be conducted. Furthermore, a per-protocol
analysis will be conducted using data from only those who
completed the exercise intervention with at least 80% adher-
ence. A linear mixed model will be used to examine the
effect of the HI intervention, compared with the MI and
control groups, on the global cognitive composite score (ac-
counting for confounders such as gender, age, and APOE ε4
allele carriage). Post hoc analyses will be conducted for any
significant group*time interactions.

To address the secondary objectives, both intention-to-
treat and per-protocol analyses will again be conducted. A
series of linear mixed models will be conducted to examine
the effect of the HI intervention, compared with the MI
group and control group, on Eigen vectors from blood bio-
markers and gene expression panels, and MRI-quantified
brain volume (including cortical GM volume and regions
of interest such as hippocampal volume) and default
mode network connectivity (accounting for confounders).
Post hoc analyses will be conducted for any significant
group*time interactions.

Additional mediation analyses will be conducted to eval-
uate the potential of particular variables (physical fitness,
biomarkers) as mediators in the relationship between exer-
cise and cognition. Moderation analyses will also be con-
ducted to examine the moderating effect of relevant
genotypes (i.e., APOE, BDNFVal66Met) on the relationship
between exercise and cognition. Using the PROCESS macro
in SPSS [30], ordinary least squares path analysis will be
conducted to perform a series of simple mediation and
moderation analyses.
6. Discussion

The IPAC study is a proof-of-principle trial that aims to
compare the effects of HI cycling-based exercise on cogni-
tive health (i.e., neuropsychological measures, MRI bio-
markers, and blood-based biomarkers), with an MI
cycling-based exercise intervention and a control group.
The outlined protocol provides (1) robust fitness assessments
and monitored training sessions, ensuring compliance and
the ability to assess the contribution of changes in fitness
to cognitive performance, (2) a set of validated cognitive as-
sessments consistent with the field, allowing for compara-
bility with the scientific literature, and (3) repeated
measures of a range of brain and blood-based biomarkers
associated with cognitive decline and dementia risk to help
characterize possible mechanistic contributions of exercise
to maintaining brain health throughout aging.

The IPAC study has the potential to provide the first evi-
dence of its kind for the benefits of exercise intensity on
cognitive function and biomarkers of brain health and may
contribute to the development of “Best Practice” preventa-
tive public health strategies to enhance cognitive function
and delay dementia onset in older adults. If proven effec-
tive, exercise represents a cost-effective and safe method
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for maintaining a healthy aging brain throughout older
adulthood.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed previous
published literature in the field of physical activity,
cognition and dementia. Previous observational
studies have reported that high-intensity physical ac-
tivity is of greater benefit to cognitive function than
low-intensity physical activity. Interventional
research evaluating the effect of exercise on cogni-
tive function has provided inconclusive results.

2. Interpretation: There is a requirement for future studies
to utilise repeated measures of fitness and monitoring
of physical exertion throughout exercise interventions
to ensure participants are reaching desired intensities.
Furthermore, comprehensive outcome measures
relating to brain health need to be measured, including
cognitive tests, magnetic resonance imaging bio-
markers, and blood-based biomarkers.

3. Future directions: This article describes the protocol
of a trial examining the effect of high-intensity ex-
ercise on cognitive function. Results from this proj-
ect will be vital in the design of future large
randomised controlled trials.
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