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Abstract
Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic
genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns,
a substantial fraction of which share position in distant taxa, such as plants and animals. Depending
on the methods and data sets used, researchers have reached opposite conclusions on the causes
of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies
conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary
conservation, whereas others attribute it to parallel gain of introns. To resolve these
contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies
on arbitrary assumptions.

Results: We developed a probabilistic model of evolution that allows for variability of intron gain
and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying
this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average,
accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains
over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel
gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel
gains appear to contribute up to 20% of the shared intron positions. In accord with these findings,
we estimated that ancestral introns have a high probability to be retained in extant genomes, and
conversely, that a substantial fraction of extant introns have retained their positions since the early
stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion
is estimated to be, approximately, one in seven basepairs.

Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed
sharing of intron positions between eukaryotic species separated by different evolutionary
distances. The results indicate that, although the contribution of parallel gains varies across the
phylogenetic tree, the high level of intron position sharing is due, primarily, to evolutionary
conservation. Accordingly, numerous introns appear to persist in the same position over hundreds
of millions of years of evolution. This is compatible with recent observations of a negative
correlation between the rate of intron gain and coding sequence evolution rate of a gene,
suggesting that at least some of the introns are functionally relevant.
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Background
The presence of spliceosomal introns and the concurrent
splicing machinery are one of the principal distinctive fea-
tures of eukaryotic genomes [1-3]. Indeed, even early
branching eukaryotes that were once suspected of being
intronless have been shown in recent years to posses at
least a few introns [4-7]. This suggests that the evolution
of introns is tightly linked to the central aspects of the evo-
lution of eukaryotes, and it even has been proposed that
introns were the driving force behind the emergence of
the eukaryotic nucleus and other features of the eukaryo-
tic cell [8,9].

Thanks to their ubiquity and potential major role in the
evolution of eukaryotes, intron evolution has drawn con-
siderable attention [1-3,10]. It is generally accepted that
introns are units of evolution such that their presence/
absence pattern is a result of stochastic processes of loss
and gain. The details of these processes, however, remain
elusive. Only in recent years, with the accumulation of
genomic data, evolution of introns has become amenable
to a systematic, genome-wide analysis. However, different
attempts to accomplish such a study led to incongruent
conclusions regarding the prevalence, rates, and timing of
intron loss and gain during the evolution of eukaryotes
[11-18]. Apparently, these discrepancies are due, prima-
rily, to incomplete underlying evolutionary models and
biased estimation techniques [10].

Recently, we have obtained more conclusive results by
developing a comprehensive probabilistic model of
intron evolution, and by compiling a data set that is con-
siderably larger than any one previously used [19,20]. The
probabilistic models used so far to study intron evolution
can be classified into two groups: branch-specific and
gene-specific ones. The branch-specific models assume
that the processes of intron gain and loss along a branch
are determined only by the properties of the branch,
regardless of the particular gene in question [17,18,21].
Conversely, gene-specific models assume that these proc-
esses are determined only by the particular gene, inde-
pendent on the branch in question [12]. Obviously, in
reality, the characteristics of intron gain and loss processes
vary considerably both across genes and across branches.
Thus, each of the models employed thus far seem to
describe only one facet of a more complex reality. By con-
trast, our model allows for the variability of intron gain
and loss characteristics with respect to both genes and
branches such that any of the previously suggested models
can be shown to be a special case of this comprehensive
model [20]. Moreover, this model is even more realistic in
that it also includes rate variability between sites, with
respect to both intron gain and intron loss. In order to
estimate the model parameters, we devised an expecta-
tion-maximization (EM) algorithm that can also be used

to reconstruct ancestral states [22]. Combining this algo-
rithm with the profile likelihood technique allows one, in
addition to all of the above, to compute confidence inter-
vals of the model parameters.

Here, we describe, in detail, the developed model of
intron evolution and the derivation of an improved ver-
sion of the EM algorithm used to estimate its parameters.
Previously, we have applied this comprehensive model to
a set of 391 conserved genes from 19 eukaryotic species,
to investigate evolutionary trends in gene structure both at
the lineage level [20] and at the gene level [19]. The results
of this analysis suggest that introns invaded eukaryotic
genomes at early stages of eukaryogenesis in a nearly neu-
tral process. At early times, during periods of major tran-
sitions in the eukaryotic evolution that led to population
bottlenecks, these introns seem to have vastly proliferated
in the ancient genomes. Gradually, a considerable fraction
of the introns appear to become involved in various cellu-
lar functions, mostly, regulation of gene expression [19].

In the present work, we focus on the process of intron
gain, and address the causes of the high level of intron
position conservation between eukaryotic taxa. It had
been already noticed that many intron positions are
shared between distant eukaryotic taxa [11,13]. For exam-
ple, plants and animals share up to 25% of the intron
positions [13]. However, these findings can be explained
by either remarkable conservation of ancient introns or by
parallel, independent, intron gains in the same positions,
or (perhaps, most likely) by a combination of both these
factors. The previous analyses that have attempted to
quantify the relative contributions of evolutionary conser-
vation and parallel gain in intron position sharing have
differed widely, with estimates of the extent of parallel
gain ranging from nearly 0% to nearly 100% [11-
13,18,23]. Using our probabilistic model, we developed a
rigorous measure for assessing the amount of parallel gain
of introns. We found that, overall, parallel gain is respon-
sible for ~8% of the shared intron positions, with the rest
due to shared ancestry. However, we also demonstrate
substantial heterogeneity in the extent of parallel gain,
with almost none in closely related lineages, but up to
~20% in distant ones, such as plants and unikonts. On the
whole, these results support the notion that intron posi-
tions are highly conserved during evolution.

Results and discussion
Notation
The primary input component in the study of intron evo-
lution consists of G sets of aligned protein-coding
sequences of orthologous genes from S species. Each
nucleotide in these alignments is substituted by 0 or 1
depending on whether or not an intron is present follow-
ing the respective position. We allow for missing data by
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using a third symbol (*) to indicate lack of knowledge
about the presence or absence of an intron. Consequently,
every site in the alignments, called pattern, is a vector of
length S over the alphabet (0,1,*) and is denoted by ω. Let
Ω be the total number of unique patterns in the entire set
of G alignments, and let ngp be the count of the number of
times pattern ωp (p = 1, ..., Ω) is found in the multiple
alignment of gene g. Assuming that the sites evolve inde-
pendently, the set Mg = (ng1, ..., ngΩ) fully characterizes the
multiple alignment of the g th gene.

Let T be a rooted, bifurcating phylogenetic tree with S
leaves (terminal nodes), describing the evolutionary rela-
tionships between the S species above. The total number
of nodes in T is N = 2S - 1, and we index them by t = 0,1,
..., N - 1, with the convention that zero is the root node.
The state of node t is described by the variable qt, which

can take the values 0 and 1 (and * in leaves). We use Vt for

the set of all leaves such that node t is among their ances-
tors. The entire collection of leaves is, obviously, V0. The

parent node of t is denoted P(t). We use the notations 

and  for qP(t) and VP(t), respectively. Analogously, the

two direct descendents of the node t are denoted L(t) and

R(t), and we use the notations , , , and  for

qL(t), qR(t), VL(t), and VR(t), respectively. The branches are

indexed by the node into which they are leading, and ∆t

denotes the length (in time units) of the t th branch. Here-
inafter we assume that the tree topology, as well as all the

branch lengths ∆1, ..., ∆N-1, are known.

The probabilistic model
A bifurcating phylogenetic tree can be viewed as a graphi-
cal model depicting the probabilistic model

We use the notation πi = Pr(q0 = i) to describe the prior

probability of the root, and Tij(g, t) = Pr(qt= j|  = i, g) to

describe the transition probability for gene g along branch
t. In our model, we assume that this transition probability
depends on both the gene and the branch, and that it
takes the explicit form

Here, ηg and θg are non-negative parameters which deter-

mine, respectively, the intron gain and loss rates per site
for gene g. That is, along branch t the gene's contribution
to intron gain and retention probabilities per site is

 and , respectively. We assume that each
branch is characterized by an intrinsic branch-specific

intron gain coefficient, ξt, as well as an intrinsic branch-spe-

cific intron loss coefficient, φt, both of which are bounded, 0

≤ ξt, φt ≤ 1.

In other fields of molecular evolution, it had been long
realized that the precision of the analysis significantly
improves if one allows for rate variability across sites [24-
26]. Typically, such rate variability is modeled by intro-
ducing a rate variable, r, which scales, for each site, the time
units of the phylogenetic tree, ∆t ← r·∆t. This rate variable
is a random variable that is distributed according to a dis-
tribution function with non-negative domain and unit
mean, typically, the unit-mean gamma distribution. The
rate variability captures rate variations among sites of the
same gene. Specifically, there are fast-evolving sites (r >>
1), as well as slow-evolving ones (r << 1). In our model of
intron evolution, we extend this idea by assuming that the
gain and loss processes are subject to rate variability, inde-
pendently of each other. Hence, a site can have any com-
bination of gain and loss rates, for example, it can be fast
to gain introns but slow to lose them. To implement this
approach, we use two independent rate variables, rη and
rθ, that are used to scale, for each site, the gene-specific
gain rate, ηg ← rη·ηg, and the gene-specific loss rate, θg ←
rθ·θg, respectively. We further assume that the distribu-
tions of these rate variables are independent of the genes,
and are explicitly given by

Here, Γ(x; λ) is the unit-mean gamma distribution of the
variable x with the shape parameter λ, δ(x) is the Dirac
delta-function, and ν is the fraction of sites that are
assumed to have zero gain rate. The existence of these zero
sites reflects the notion that introns cannot be gained at
any location within genes, but rather are preferentially
inserted at specific locations, contingent on particular
sequence motifs known as proto-splice sites [27-29], the
density of other introns in the neighborhood, the chroma-
tin exposure, and more. According to this interpretation,
1 - ν measures the density of potential intron insertion
sites. Importantly, using the same value of ν for the entire
tree does not mean that the proto-splice sites are constant
throughout the evolution, or are identical for different lin-
eages. It only means that, on the average, the fraction of
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potential insertion sites, whatever is their concrete nature,
is similar across the lineages throughout the course of
eukaryotic evolution. The incorporation of such invariant
sites in a rate variability model appears natural for intron
evolution and has proved beneficial also in other fields of
molecular evolution [30-32]. By contrast, intron loss does
not have an invariant counterpart because the assumption
is that, once an intron is gained, it can always be lost.
Therefore, the loss rate variable is assumed to be distrib-
uted according to a gamma distribution, which is by far
the most popular distribution for describing rate variabil-
ity [24,33].

In practice, the rate distributions in (3) are rendered dis-
crete [34]. We assume that the gain rate variable can take

Kη discrete values  with probabilities

 such that . Analogously,

we assume that the loss rate variable can take Kθ discrete

values  with probabilities  such that

. For a particular gain rate value , we

denote the actual gain rate ·ηg by ηkg. Similarly, for a

particular loss rate value , we denote the actual loss rate

·θg by θkg.

For notational clarity, we aggregate the model's parame-

ters into a small number of sets. To this end, let Ξt = {ξt,

φt} be the set of parameters that are specific to branch t,

and let Ξ = (Ξ1, ..., ΞN-1) be the set of all branch-specific

parameters. Similarly, let Ψg = (ηg, θg) be the set of param-

eters that are specific for gene g, and let Ψ = (Ψ1, ..., ΨG)

be the set of all gene-specific parameters. Additionally, we

denote by Λ = (π0, ν, λη, λθ) the "global" parameters that

determine the rate variability and the prior probability of
an intron absent in the root. When the distinction
between the different sets of parameters is irrelevant, we

shall use Θ = (Ξ, Ψ, Λ) as the set of all the model's param-
eters. We achieve further succinctness in notations by
denoting the actual gene-specific rate values for particular

values  and  of the rate variables as Ψkk'g = (ηkg, θk'g).

The Expectation-Maximization algorithm
We estimate the parameters of the model using maximum
likelihood. As the probability model includes observed
random variables (state of the tree leaves) as well as hid-

den random variables (state of internal nodes in the tree
and value of actual rate variables), the expectation-maxi-
mization algorithm is a natural tool to use [35]. This is a
hill climbing iterative algorithm that requires two steps in
each iteration – the expectation (E) step followed by the
maximization (M) step. The details of the algorithm are
given under Methods.

The total number of parameters in the model is 2G + 4S,
where G is the number of genes and S is the number of
species. For data sets in the hundreds of genes, this sums
up to >1000 parameters. For infinite data, maximum like-
lihood estimators are known to be nonbiased and effi-
cient. However, as each gene typically goes through a
small number of intron-related events during its lifetime,
the information content of our data is limited, and cannot
straightforwardly support the estimation of such a large
number of parameter. To overcome this, we adopt a two-
phase approach in the data analysis. In the first phase, that
we denoted homogeneous evolution, it is assumed that all
the genes have identical intron gain and loss rates, for-
mally, that θg = θ0 and ηg = η0 for any gene g. In the second
phase, denoted heterogeneous evolution, all the global and
branch-specific parameters are fixed, which allows for esti-
mation of the gene-specific parameters θg and ηg that can
now take different values for different genes. Except for
the rate variability within genes, the model of evolution
under the homogeneous phase resembles the branch-spe-
cific models, and consequently the EM algorithm used in
this part has similar structure to the EM algorithm devel-
oped by Nguyen et al. [18,36].

Using simulations, we showed that this approach yields
highly accurate evolutionary reconstructions: a relative
error of 1%, 3%, and 11% in estimating the number of
introns in internal nodes, the number of loss events along
each branch, and the number of gain events along each
branch, respectively [20]. The current analysis is pattern-
centered rather than gene-centered and thus we have used
the results of the homogeneous phase only. While slightly
less accurate than the heterogeneous counterparts, the
reconstructions after the homogeneous phase are still
highly accurate: a relative error of 2%, 4%, and 12% in
estimating the number of introns in internal nodes, the
number of losses along each branch, and the number of
gains along each branch, respectively [20]. Also notable is
that, apart from the fraction of zero sites v, the rate varia-
bility within genes can be ignored without having any sig-
nificant effect on the results (Ref. [20] and Additional file
1), indicating that those sites that are capable of gaining
introns do so at comparable rates.

The EM algorithm was applied to the set of 391 ortholo-
gous genes from 19 eukaryotic species ([20] and see Meth-
ods), under the homogeneous evolution assumption, and
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the profile likelihood technique was used to estimate the
95% confidence interval for each parameter (Additional
file 1). In computing the confidence intervals for a partic-
ular parameter, we allow all other parameters to vary.
Sometimes, different combinations of parameters yield
similar likelihood values, an observation that has already
been made formal for simpler models [18]. This occasion-
ally leads to wide single-parameter confidence intervals,
especially for the intron gain and loss rates of deep nodes.
Importantly, this does not reflect similarly large errors in
the ensuing inference, as was demonstrated by an exhaus-
tive simulation study [19,20].

One in 7 nucleotides is a potential intron insertion site
The maximum-likelihood estimate for the fraction of zero
sites is ν = 0.862, suggesting a potential intron insertion
site every 7 nucleotides. Taking into account the 95% con-
fidence interval for ν, [0.631, 0.928], the density of poten-
tial insertion sites is estimated to be 1 site per 3-14
nucleotides. Based on a smaller data set, Nguyen et al. [18]
computed a 95% confidence interval of 1 potential inser-
tion site in 9–14 nucleotides. Although this estimate falls
within our confidence interval, our results suggest, gener-
ally, a denser population of potential insertion sites. The
present estimate is also compatible with the high density
of intron insertion sites (one site per 9.7 nucleotides)
observed for some large protein families, e.g., small G pro-
teins [37]. The problem of estimating the number of zero
sites is of fundamental importance in maximum likeli-
hood techniques, so both Csuros [17] and Nguyen et al.
[18] developed different heuristic procedure to handle it.
We took the alternative and, arguably, more natural
approach of integrating this estimate into the model as
part of the gain rate variability distribution (see above)
such that additional, ad hoc computations are not
required.

One should be cautious about identifying potential intron
insertion sites with proto-splice sites. More realistically,
the density of potential insertion sites reflects the overall
average (across species) of the impact of multiple factors
such as differential tendencies to be inserted into different
proto-splice sites, local densities of pre-existing introns,
and degree of chromatin exposure. Furthermore, this den-
sity estimation strongly depends on the specific data set as
the parameter ν "absorbs" the information on zero sites.
Thus, if intronless genes are added to the data, only this
parameter will be heavily affected.

With the total number of sites N0 = 289,902 our calcula-
tions yield 39,962 sites that can gain introns (95% confi-
dence interval 20,891 to 106,901). Accordingly, the 5,755
sites that are actually occupied by introns in the genes ana-
lyzed here comprise 14.4% of all sites that can potentially
gain introns (95% confidence interval 5.4% to 27.5%).

Thus, even when data from 19 species are combined, the
density of the sites actually occupied by introns is still far
below the density of sites capable of hosting introns,
which emphasizes the inadequacy of any analysis that
considers only those sites in which introns are, actually,
observed.

The number of shared intron positions is much greater 
than expected by chance
Numerous intron positions are shared even between taxa
that had diverged during the early stages of the eukaryotic
evolution [11,13]. To quantify this conservation more
precisely and to estimate how surprising it is, compared to
the random expectation, we propose the following meas-
ure: let Ni and Nj be the number of intron positions in spe-
cies i and j, respectively; let Sij be the number of intron
positions shared by the two species; and let N be the total
number of sites capable of gaining introns. Then, approx-
imately, we would expect that NiNj/N positions will be
shared between the two species by chance alone. We
define the conservation level

as the log-ratio between the observed number and the
number expected by chance. Positive values designate that
Sij exceeds random expectation, whereas negative values
indicate that Sij is below expectation. Even if we take for N
its lower 95% confidence interval bound of 20,891 (see
the preceding section), almost all pairs show a positive
value, namely, a greater than random number of shared
positions (Fig. 1). The only exception is the pair S. cerevi-
siae – P. falciparum (the two most intron-poor species in
our set) that do not have even a single shared position.

The number of positions shared by chance between two
species is a random variable distributed, approximately,
according to a binomial distribution with the probability
of success p = NiNj/N2, and N experiments. Therefore, it is
easy to associate a p-value with any observed number of
shared positions, Sij measuring how improbable it is to
obtain by chance this value or a greater one. An overall sig-
nificance level of 0.05 is equivalent to a Bonfferoni-cor-
rected significance level of 0.0003 (overly conservative as
we assume that all pairs are independent). The calcula-
tions indicate that only 20 species pairs out of 171, all
involving the intron-poor S. cerevisiae or one of the api-
complexans, had a number of shared positions that was
indistinguishable from the random expectation; all other
pairs had a significant excess of shared intron positions
(Additional file 2).
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Twelve out of thirteen shared intron positions reflect 
common ancestry
The significant excess of shared intron positions over the
random expectation can be explained by one of two fac-
tors or a combination thereof. The first explanation is that
this observation reflects genuine evolutionary conserva-
tion; the implication is that, once an intron is gained, it is
hard to lose, perhaps, due to functional importance of
introns or because the deletion event itself is destructive.
The second explanation is that different lineages gain
introns at the same position, independently. The chance
of such parallel gain is not necessarily as low as it seems at
first sight because introns are, apparently, preferentially

inserted into proto-splice sites (see above). Accordingly,
regions of high sequence conservation might gain introns
at exactly the same position.

The two explanations have opposing impacts on our
understanding of the evolution of eukaryotic genes. If
introns are persistent, many must have been gained early
in the eukaryotic evolution, and the later evolution
involved multiple losses [16,38]. By contrast, if parallel
gain is the dominant mechanism, many of the extant
introns are evolutionarily young, and the eukaryotic evo-
lution involves, primarily, multiple introns gains [12].

Conservation of intron positions between eukaryotic speciesFigure 1
Conservation of intron positions between eukaryotic species. The scale to the right shows the pairwise conservation level of 
intron positions, measured as the log-ratio of the observed number of shared positions to the number expected by chance (see 
text). The expected value of this ratio is 0, so the positive values indicate an excess of shared intron positions, and the negative 
values indicate an unexpected deficit of such positions. Species and lineage abbreviations: Anoga (Anopheles gambiae), Arath 
(Arabidopsis thaliana), Aspfu (Aspergillus fumigatus), Caeel (Caenorhabditis elegans), Cioin (Ciona intestinalis), Cryne (Cryptococcus 
neoformans), Danre (Danio rerio), Dicdi (Dictyostelium discoideum), Drome (Drosophila melanogaster), Galga (Gallus gallus), Homsa 
(Homo sapiens), Neucr (Neurospora crassa), Orysa (Oryza sativa), Plafa (Plasmodium falciparum), Sacce (Saccharomyces cerevisiae), 
Schpo (Schizosaccharomyces pombe), Strpu (Strongylocentrotus purpuratus), Thepa (Theileria parva), roden (Mus musculus and Rat-
tus norvegicus combined).
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In order to estimate the extent of parallel gain, we exam-
ined all the sites that host introns in at least two species.
Assuming that these sites are not invariant, the probability
was estimated that the corresponding pattern had arisen
from parallel gain, by computing the probability of the
last common ancestor of the intron-bearing species to lack
an intron. This approach assumes that, if the last common
ancestor had an intron in a particular position, no parallel
gain occurred, i.e., highly unlikely scenarios involving at
least two gains and one loss at the same site are neglected.
The probabilities of parallel gain for all the patterns
observed in our data set are summarized in Additional file
3. Overall, the data set harbors 3176 sites with shared
intron positions (741 unique patterns) out of which 317
positions (10%) are expected to result from parallel
intron gain. As inferences involving the root of the tree are
prone to significantly elevated standard errors [20], the
calculation was repeated using only patterns that do not
have the root as the last common ancestor of all intron-
bearing species. This calculation yielded 2913 sites with
shared intron positions (568 unique patterns) of which
229 (~7.9%) are expected to be due to parallel intron
gain. Each of these calculations provides a rough estimate
of the level of errors introduced into some of the recent
studies that explicitly excluded the possibility of parallel
gain [13,16,21].

Importantly, however, the contributions of parallel gains
to the emergence of different patterns of intron sharing
are widely different; in particular, some rare patterns are
explained (almost) entirely by parallel gain and do not
reflect evolutionary conservation (Additional file 3). For

example, for the single site that harbors introns only in
humans and N. crassa, the probability is >0.99 that it
results from parallel gain. Considering somewhat more
frequent patterns, 11 sites harbor introns in C. intestinalis,
A. thaliana and O. saliva, with the probability of parallel
gain ~0.875, and another 12 sites harbor introns only in
C. elegans and C. intestinalis, with the probability of paral-
lel gain ~0.8.

Generally, the distribution of parallel gains in compari-
sons of specific clades is, obviously, more informative
than overall counting (Table 1). To obtain this informa-
tion, for each internal node t (excluding the root of the
tree), all patterns that have 1s in the two sub-clades stem-

ming from t,  and  were tallied, and the probability

that t is in state zero was computed. By this analysis, in
which 728 unique patterns were included, we found that
nearly 20% of the shared intron positions between plants
and unikonts, thought to have diverged more than a bil-
lion and a half years ago [39], are due to parallel gain. In
fungi and metazoa, diverged ~1.4 billion years ago, >10%
of the shared positions are estimated to derive from paral-
lel gains. In contrast, many recently diverged clades show
almost no parallel gain (e.g., humans versus rodents,
birds versus mammals, Aspergillus versus Neurospora, and
flies versus mosquitoes). Table 2 lists all patterns for
which the estimated contribution to parallel gain was
greater than two sites. The estimated total number of sites
with parallel gain is 248. Out of the 728 unique patterns,

Vt
L Vt

R

Table 1: The estimated number of parallel gains on the branches stemming out of each of the internal nodes in the phylogenetic tree 
(excluding the root; see Additional file 4)

internal node Subclade_1 subclade_2 total number of 
shared sites

total number of parallel gains 
[95% confidence inrterval]

% parallel gains 
[95% confidence inrterval]

AME Unikonts Magnoliophyta 630 122.8 [38.5 – 229.3] 19.5 [6.1 – 36.4]
Unikonts Dicdi Opisthokonts 212 4.9 [1.6 – 15.3] 2.3 [0.7 – 7.2]
Opisthokonts Metazoa Fungi 606 70.7 [23.0 – 123.1] 11.7 [3.8 – 20.3]
Metazoa Caeel Coelomata 374 24.0 [7.8 – 38.7] 6.4 [2.1 – 10.4]
Coelomata Deuterostomia Diptera 350 7.0 [2.4 – 11.5] 2.0 [0.7 – 3.3]
Deuterostomia Strpu Chordata 1395 4.7 [1.6 – 8.2] 0.3 [0.1 – 0.6]
Diptera Drome Anoga 192 0.0 [0.0 – 0.1] 0.0 [0.0-0.0]
Fungi Cryne Ascomycota 223 7.0 [2.4 – 13.7] 3.1 [1.1 – 6.1]
Ascomycota Schpo ScAfNc 82 0.3 [0.0 – 0.5] 0.3 [0.0 – 0.7]
ScAfNc Sacce Pezizomycotina 5 0.0 [0.0 – 0.1] 0.5 [0.1 – 1.2]
Magnoliophyta Arath Orysa 1337 0.2 [0.1 – 0.5] 0.0 [0.0-0.0]
Chordata Cioin Vertebrata 822 2.5 [0.9 – 4.2] 0.3 [0.1 – 0.5]
Vertebrata Danre Amniota 1701 0.3 [0.1 – 0.5] 0.0 [0.0-0.0]
Apicomplexa Thepa Plafa 113 3.9 [0.4 – 8.0] 3.4 [0.3 – 7.1]
Pezizomycotina Aspfu Neucr 221 0.1 [0.0 – 0.3] 0.1 [0.0 – 0.1]
Amniota Galga Mammals 1659 0.1 [0.0 – 0.1] 0.0 [0.0-0.0]
Mammals Homsa Roden 1448 0.0 [0.0-0.0] 0.0 [0.0-0.0]

Species abbreviations are as in Fig. 1. AME stands for the last common Ancestor of Multicellular Eukaryotes
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the 22 in this list (3%) account for 116 parallel gains, i.e.,
~47% of the total estimated number.

Given that most of the other studies report overall esti-
mates on a smaller (8 species) data set [13], a direct com-
parison of their results with the present ones is not
feasible due to the apparent non-uniformity in the extent
of parallel gain in different parts of the tree. Nevertheless,
an overall parallel gain of ~10% has been computed also
for the smaller data set. Rogozin et al. [13] used simula-
tions to assess the extent of parallel gain and showed that,
under various assumptions regarding the density of proto-
splice sites, parallel gains could be responsible to ~2–40%
of the shared intron positions. Accounting more accu-
rately for the likely density of proto-splice sites, Sverdlov
et al. estimated the contribution of parallel gains to the
observed sharing of intron positions to be in the range of
5–10% [23]. An even higher estimate, 18.5% parallel
gains, was obtained by Nguyen et al. using a branch-spe-
cific maximum-likelihood model [18].

Intron retention
We conclude, therefore, that a substantial majority of the
shared intron positions are due to evolutionary conserva-
tion, hence intron positions tend to be retained for long
times. To further validate this conclusion, we explicitly
computed the probability of an intron to survive along
given paths in the phylogenetic tree. To this end, let B

denote the set of branches that comprise a path in the tree.
Then, intron retention probability along this path is

where  is the retention probability along

branch t, and  is the probability of being at loss-rate

category k'.

In accord with the above conclusions on the high level of
evolutionary conservation, this probability is, typically,
high, even for very long paths in the phylogenetic tree
(Table 3). For example, an intron present in the last com-
mon ancestor of the metazoa has a probability of 0.83 to
be retained in humans whereas an intron present in the
last common ancestor of multicellular life (AME) has a
probability of 0.57 to be retained in extant plants.

A complementary approach involves the computation of
the probability of extant introns to be of ancient origin. To
calculate this probability, we assumed that a site is known
to host an intron in one species, and that no information
is available on this site in other species (that is, their state
is *). Then, we used our model to compute the probability
that this intron was present in any of the ancestors of that
species (Table 4 and Fig. 2). Clearly, these probabilities
decay quite slowly with evolutionary time. For instance,

P f eB k t
t Bk

K
k g t= − −

∈=
∏∑ ’

’

( ) ,’θ θφ
θ

1
1

∆

( ) ’1− −φ θ
t e k g t∆

fk ’
θ

Table 2: Patterns that are estimated to contribute more than two sites to the total count of parallel gains

Pattern total number of patterns Estimated number of parallel gains

Caeel, Arath, Orysa 20 14.9
Cryne, Arath, Orysa 28 12.6
Cioin, Arath, Orysa 11 9.6
Caeel, Cioin 12 9.6
Strpu, Danre, Galga, Homsa, Arath, Orysa, Roden 39 7.5
Strpu, Cioin, Danre, Galga, Homsa, Arath, Orysa, Roden 32 6.1
Strpu, Cryne 16 5.8
Strpu, Arath, Orysa 13 5.7
Danre, Galga, Homsa, Arath, Orysa, Roden 13 5.3
Cioin, Cryne 5 4.5
Caeel, Cryne 6 4.3
Strpu, Danre, Galga, Homsa, Cryne, Roden 32 4.1
Thepa, Plafa 65 3.3
Caeel, Thepa 23 3.0
Caeel, Strpu, Cioin, Danre, Galga, Homsa, Arath, Orysa, Roden 4 2.9
Aspfu, Arath 3 2.6
Dicdi, Strpu, Danre, Galga, Homsa, Aspfu, Neucr, Roden 4 2.6
Caeel, Strpu, Danre, Galga, Homsa, Drome, Anoga, Arath, Orysa, Roden 7 2.3
Caeel, Strpu, Danre, Galga, Homsa, Schpo 14 2.3
Arath, Orysa, Thepa, Plafa 3 2.3
Cioin, Danre, Galga, Homsa, Arath, Orysa, Roden 7 2.2
Danre, Galga, Homsa, Drome, Anoga 3 2.0

Species and lineages abbreviations are as in Figure 1.
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an intron in C. elegans, H. sapiens and D. melanogaster has
a probability of 0.44, 0.69, and 0.68, respectively, to have
been present in the last common ancestor of metazoa.

Conclusion
Despite the extensive attention given to the evolution of
eukaryotic gene structure over the last three decades, the
fundamental characteristics of this process remain contro-
versial. In particular, depending on the methods and data
sets used, different researchers have reached opposite con-
clusions on the causes of the remarkably high fraction of
shared introns in orthologous genes from distant eukary-
otic species. Some attribute it (almost) entirely to a
remarkable evolutionary conservation of intron positions
and others, largely, to parallel gain of introns. To resolve
these contradictions, it is important to analyze the evolu-

tion of introns by using a probabilistic model that mini-
mally relies on arbitrary assumptions. To this end, we
developed a model that allows for variability of intron
gain and loss rates over branches of the phylogenetic tree,
individual genes, and individual sites. Applying this
model to an extended set of conserved eukaryotic genes,
we found that parallel gain, on average, accounts for only
~8% of the shared intron positions. However, the distri-
bution of parallel gains over the phylogenetic tree of
eukaryotes is highly non-uniform such that there are,
practically, no parallel gains in closely related lineages,
whereas for distant lineages, such as animals and plants,
parallel gains might have contributed up to 20% of the
shared intron positions. Given the distinctly non-uniform
distribution of the inferred gain events over the phyloge-
netic tree of eukaryotes [20], most of the recently diverged

Table 3: Probabilities of an intron to be retained along selected paths in the phylogenetic tree

If an intron was present in chances are that it would be present in 95% confidence interval

AME 0.63 Homsa [0.57 – 0.68]
Metazoa 0.83 Homsa [0.79 – 0.84]
Deuterostomia 0.86 Homsa [0.85 – 0.88]
Vertebrata 0.95 Homsa [0.94 – 0.96]
Mammals 0.96 Homsa [0.95 – 0.97]
Fungi 0.01 Sacce [0.00 – 0.01]
Fungi 0.26 Aspfu [0.24 – 0.27]
Apicomplexa 0.26 Plafa [0.20 – 0.33]
Apicomplexa 0.69 Thepa [0.57 – 0.80]
AME 0.57 Arath [0.50 – 0.64]
AME 0.57 Orysa [0.50 – 0.65]

Species and lineage abbreviations are as in Fig. 1.

Table 4: Probability of an intron in extant species to be inherited from an ancestral node

intron is present in Probability that it is also present in 95% confidence interval

Dicdi 0.71 AME [0.46 – 0.92]
Caeel 0.19 AME [0.10 – 0.74]
Strpu 0.31 AME [0.17 – 0.79]
Cioin 0.22 AME [0.12 – 0.75]
Danre 0.29 AME [0.16 – 0.78]
Galga 0.29 AME [0.16 – 0.78]

Homsa 0.30 AME [0.17 – 0.78]
Roden 0.30 AME [0.17 – 0.78]
Drome 0.30 AME [0.17 – 0.78]
Anoga 0.28 AME [0.16 – 0.78]
Cryne 0.29 AME [0.17 – 0.78]
Schpo 0.39 AME [0.24 – 0.82]
Sacce 0.27 AME [0.16 – 0.77]
Aspfu 0.27 AME [0.15 – 0.77]
Neucr 0.21 AME [0.11 – 0.75]
Arath 0.31 AME [0.18 – 0.79]
Orysa 0.30 AME [0.17 – 0.78]
Thepa 0.30 Apicomplexa [0.10 – 0.77]
Plafa 0.46 Apicomplexa [0.21 – 0.81]

Confidence intervals are wide due to the large amount of uncertainty associated with the input patterns (each pattern has 18 out of 19 sites with 
the presence/absence of the intron marked as unknown). Species and lineages abbreviations are as in Table 1.
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lineages have amassed very few gains during their separate
evolution; by contrast, deeply diverged lineages, such as
animals and plants appear to have gone through inde-
pendent stages of extensive intron gain, which would
explain the greater share of parallel gains.

We estimated that ancestral introns have a high probabil-
ity to be retained in extant genomes, and conversely,
many of the extant introns are ancient. The reasons for
this remarkable endurance of a substantial fraction of the
introns are not clear. One possibility is mechanistic, i.e.,
removing existing introns might be imprecise and hence
potentially deleterious. Another possibility is functional,
i.e., introns might have acquired many functional roles
since entering eukaryotic genomes. The latter possibility is
compatible with the recent observation of a negative cor-
relation between the rate of intron gain and coding
sequence evolution rate of a gene [19] which suggests that
at least some of the introns are functionally relevant.

Methods
The data set
The methods and criteria used in compiling the data set
have been described previously [19,20]. Briefly, the ana-
lyzed data set consisted of the reliable alignments of 391
genes from 19 eukaryotic species (a total of 289,902 sites).
These include 9 animals (Caenorhabditis elegans, Strongylo-
centrotus purpuratus, Ciona intestinalis, Danio rerio, Gallus
gallus, Homo sapiens, rodents (Mus musculus and Rattus nor-
vegicus combined), Drosophila melanogaster, Anopheles gam-
biae); 5 fungi (Cryptococcus neoformans, Schizosaccharomyces
pombe, Saccharomyces cerevisiae, Aspergillus fumigatus, Neu-
rospora crassa); two plants (Arabidopsis thaliana, Oryza
sativa); two apicomplexans (Theileria parva, Plasmodium
falciparum); and the amoebozoan Dictyostelium discoi-
deum.

The probability of an intron in extant species to be present in ancient ancestorsFigure 2
The probability of an intron in extant species to be present in ancient ancestors. a) an intron in D. melanogaster, b) an intron in 
H. sapiens, c) an intron in C. neoformans. AME stands for the last common ancestor of multicellular eukaryotes.
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Phylogenetic tree topology
Throughout this paper we assumed the traditional
"crown-group" tree topology (Additional file 4). Specifi-
cally, the root position is between the Apicomplexa and
the common ancestor of multicellular eukaryotes (plants
and animals) [40], as opposed to the alternative Unikont-
Bikont division [41]. We furthermore assume the Coelo-
mata topology (Deuterostomia and insects are grouped
together to the exclusion of nematodes) [42,43] as
opposed to the Ecdysozoa topology (insects and nema-
todes are grouped together to the exclusion of Deuterosto-
mia) [44,45]. The results, however, are not sensitive to the
exact tree topology, as explicitly shown elsewhere [19,20].

The EM Algorithm

For each site, the S leaves form a set of observed random
variables, their states being described by the correspond-

ing pattern ωp. The states of all the internal nodes, denoted

σ, form a set of hidden random variables, that is, random
variables whose states are not observed. In order to
account for rate variability across sites, we associate with

each pattern two hidden random variables,  and ,

that determine the value of the rate variables in that site.

To sum up, the observed random variables are ωp, and the

hidden random variables are (σ, , ).

We assume that sites within a gene, as well as the genes
themselves, evolve independently. Therefore, the total
likelihood can be decomposed as

and so

According to the well-known EM paradigm [35], log
L(M1, ..., MG|Θ) is guaranteed to increase as long as we
maximize the auxiliary function

where

If we replace the formal summing over all states of 

and  in (6) by a direct sum, we get

Using our notational conventions, we can write the first
term in (7) as

and the second term as

Substituting (8) and (9) back into (7) gives

Denoting by wgpkk' and Qgpkk' the first and second square
brackets, respectively, this expression becomes

And, consequently.
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The E-step
In this step, the function Q(Θ, Θ0) or, equivalently, the set
of coefficients wgpkk' and Qgpkk' is computed by using
inward-outward recursion on the tree.

The inward (γ) recursion

Here we suggest a variation on the well-known Felsen-
stein's pruning algorithm [46]. Let us associate with each
node t (except for the root) a vector

. This is the probabil-

ity of observing the nodes Vt (which are a subset of the

pattern ωp) for a gene g, when the gain and loss rate varia-

bles are  and , respectively, and the parent node of t

is known to be in state i. By definition, this function is ini-

tialized at all leaves (t ∈ V0) by

Here and in the derivations to follow, we omit the super-
script from γ. For all internal nodes (except for the root),
γ is computed using the recursion

where  is defined as γj(L(t))γ j(R(t)). This is easy to

see, as

The first term is, simply, the definition of Tij (g, t). Given

qt,  is independent of , thus the second term is just

Pr(  | qt = j) = γj(tL) . By similar argument, the third term

is simply Pr(  | qt = j) = γj(tR). Substituting these results

in (14), we recover the recursion formula (13).

The γ-recursion allows for computing the likelihood of
any observed pattern ωp, given the values of the rate vari-
ables:

Given q0,  is independent of , and so

and

One of the useful features of this recursion is that is allows
to treat missing data fairly easily. Only a single option has
to be added to the initialization phase (12),

The outward (α-β) recursion

Once the γ-recursion is computed, we can use it to com-
pute a second, complementary, recursion. To this end, let
us associate with each node t (except for the root node) a

matrix . It is

convenient to define for each node t (except for the root
node) a vector

.

Upon the computation of α, β is readily computed, too.

Again, omitting the superscripts, α can be initialized from
its definition on the two direct descendants of the root,

Here, D(0) stands for any one of the direct descendants of

the root, and  is its sibling. For any other internal

node, α is computed using the outward-recursion
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To prove this recursion, let us start with the definition of
α,

and make the decomposition V0 = Vt + , with  being

the set of all leaves such that node t is not among their

ancestors. But, given , the state of node t is independ-

ent on , and therefore (19) becomes

From Bayes formula,

But, given qt, Vt is independent of P(t) and therefore

Combining (22) and (21) in (20), we get

which is just another form of (18). Finally, for each leaf
that is not a descendant of the root

When missing data are present, two simple modifications
are required. First, we have to add to the initialization
phase (17) an option

Second, we have to add to the finalization phase (23) an
option

These inward-outward recursions are the phylogenetic
equivalent of the backward-forward recursions known
from hidden Markov models, and other versions of this
method have been developed previously [47,48]. The ver-
sion developed here can be shown to be the realization of
the junction tree algorithm [49] on rooted bifurcating
trees. The junction tree algorithm is a scheme to compute
marginal probabilities of maximal cliques on graphs by
means of belief propagation on a modified junction tree.
Indeed, the matrix α computes marginal probabilities of
pairs (t, P(t)), but such pairs are nothing but maximal
cliques on rooted bifurcating trees.

Computing the coefficients wgpkk'

Here we show that the γ-recursion is sufficient to compute
the coefficients wgpkk'. From the definition,

. Using the

Bayes formula Pr(x, y | z) = Pr(x, y, z)/Σx, y Pr(x, y, z), we

can rewrite it as

But  is the current estimate of the

probability of the gain rate variable to have the value ,

namely . Similarly,  is just

. Therefore, the expression for the coefficients wgpkk'

reduces to

The function  is the likelihood of

observing pattern ωp for gain and loss rate variables 

and , respectively. This is readily computed upon com-

pletion of the γ-recursion, using (15).
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Computing the coefficients Qgpkk'
Here we show that those coefficients require the α, β-
recursion. By definition,

The probability Pr(ωp, σ | Ξ, Ψgkk') is the likelihood of a
particular realization of the tree, thus from (1)

Here, δ(a, b) is the Kronecker delta function, which is 1 for
a = b and 0 otherwise. Denote the expectation over

 by Eσ. Applying it to (25), we get

But , and

similarly .

Hence, Qgpkk' is given by

The M-step
Substituting (26) in (11), we obtain an explicit form of
the function whose maximization guarantees stepping
up-hill in the likelihood landscape,

Actually, any increase in Q is sufficient to guarantee an
increase in the likelihood, suggesting that the precise max-
imization of Q is not particularly important. Therefore,
we speed up the computations by performing low-toler-
ance maximization with respect to each of the parameters
individually. Except for the parameters λη and λθ, it is easy
to differentiate Q twice with respect to any parameter. This
lends itself to using simple zero-finding algorithms of
which we chose the Newton-Raphson algorithm [50].

Maximizing Q with respect to the shape parameters λη and

λθ is more involved, as Q depends on these parameters

only through the discrete approximation of the rate varia-
bility distributions (3). In our implementation, we used
Yang's quantile method [34] to compute the discrete lev-
els of the gamma distributions such that each level has

equal probability. Formally, 

for k = 2, ..., Kη and  for k = 1, ..., Kθ. To perform

the maximization in this case, we used Brent's maximiza-
tion algorithm that does not require derivatives [50].

Reconstruction of Ancestral States and Events

Given the α, β, γ-recursions on the tree with the final
model parameters, it is straightforward to reconstruct the
history of intron evolution, and to assign gains and losses
to specific branches. The number of introns in an internal

node t for a gene g, assuming gain rate variable  and

loss rate variable , given that the observed pattern is ωp,

is . Similarly, the number of loss events
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along the branch t is , and the number

of gain events along this branch is .

Confidence Intervals

In order to obtain confidence intervals on the model
parameters, we used the profile likelihood technique. In

brief, if ϑ is one parameter in the model, and  is the set

of remaining parameters, then the profile likelihood of ϑ
is defined as

That is, we compute the maximum likelihood under the
constraint that the value of ϑ is given. If we denote the
overall maximum likelihood by L(Θ) = maxΘ Pr(Θ), then
the likelihood ratio

under the hypothesis that ϑ = ϑ0 is distributed according
to the χ2 distribution with one degree of freedom. In order
to find the 95% confidence interval of the parameter ϑ
around its optimal value ϑ0, we find the value of ϑ for
which the likelihood ratio (28) exceeds the value 3.84
(95%-percentile of the χ2(1) distribution). This value is
found numerically using Ridder's method [50].
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