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Abstract: S100A10, a member of the S100 family of Ca2+-binding proteins, is a widely distributed
protein involved in many cellular and extracellular processes. The best recognized role of S100A10
is the regulation, via interaction with annexin A2, of plasminogen conversion to plasmin. Plasmin,
together with other proteases, induces degradation of the extracellular matrix (ECM), which is an
important step in tumor progression. Additionally, S100A10 interacts with 5-hydroxytryptamine
1B (5-HT1B) receptor, which influences neurotransmitter binding and, through that, depressive
symptoms. Taking this into account, it is evident that S100A10 expression in the cell should be under
strict control. In this work, we summarize available literature data concerning the physiological
stimuli and transcription factors that influence S100A10 expression. We also present our original
results showing for the first time regulation of S100A10 expression by grainyhead-like 2 transcription
factor (GRHL2). By applying in silico analysis, we have found two highly conserved GRHL2 binding
sites in the 1st intron of the gene encoding S100A10 protein. Using chromatin immunoprecipitation
(ChIP) and luciferase assays, we have shown that GRHL2 directly binds to these sites and that this
DNA region can affect transcription of S100A10.
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1. Introduction

The S100 protein family consists of over 20 low molecular weight (10–12 kDa), Ca2+-
binding proteins expressed only in vertebrates [1]. In the human genome, genes encoding
17 members of the S100 family are clustered on chromosome 1 (1q21) [2]. Despite their
shared localization, expression of S100 genes is not spatiotemporally synchronized and
each gene has its own expression pattern [3,4]. S100 proteins bind Ca2+ through two
“EF-hand” motifs. In a Ca2+-bound form, they interact with a variety of protein ligands
which, in consequence, leads to regulation of numerous processes inside and outside the
cell [5,6].

S100A10 is a unique member of the S100 protein family in that it does not bind Ca2+

and is insensitive to changes in Ca2+ concentration. Both “EF hand” motifs in S100A10 have
amino acid substitutions that allow them to maintain a conformation, which resembles
that of other S100 proteins in a Ca2+-bound form. This means that S100A10 is permanently
locked in an active state [7]. Inside the cell, S100A10 forms a heterotetrameric complex with
annexin A2, a protein that binds Ca2+ and phospholipids [8]. The annexin A2-S100A10
complex is involved in many membrane-associated processes, e.g., trafficking, fusion,
microdomain or lipid raft organization and cytoskeleton-membrane binding. Additionally,
this complex binds F-actin, which suggests that it is involved in cytoskeletal reorganization
and regulation. Moreover, the annexin A2-S100A10 complex interacts with plasminogen
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and facilitates its conversion into plasmin, a serine protease that is responsible for fibri-
nolysis but can also activate metalloproteinases and degrade extracellular matrix (ECM)
proteins [9]. Dysregulation of plasminogen conversion to plasmin plays an important role
in the etiology of many cancer and non-cancer diseases. It is well known that degradation
of extracellular matrix proteins, together with inflammation, promotes tumor growth,
invasiveness, and metastasis (Figure 1). It is thus not surprising that an elevated level of
S100A10 is a common feature of many cancers, such as squamous cell carcinoma, colon,
lung, breast, or pancreatic cancer [10–12]. The role of S100A10 in other processes such as
modulation of serotonin and other receptors, regulation of ion channel level and activity, or
involvement in macrophage migration has been extensively reviewed [13,14]. It is only nat-
ural that expression of S100A10 must be flexible enough to meet these functional demands.
In this work, we present literature data concerning various factors that influence S100A10
expression and our original results that show that the gene is regulated by GRHL2.
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2. Regulation of S100A10 Expression—Literature Data

The gene encoding S100A10 is highly inducible and its expression seems to be regu-
lated by numerous external and internal factors. Studies performed by different research
groups identified many physiological stimuli that promoted S100A10 expression, among
them transforming growth factor-β (TGF-β), gonadotrophin (GD), epidermal growth factor
(EGF), basic fibroblast growth factor (bFGF), interleukin 1β (IL-1β) [13], brain-derived
neurotrophic factor (BDNF) [15], fibroblast growth factor 2 (FGF2) [16], and nitric oxide
(NO) [17]. Theoretical analysis of the S100A10 promoter identified many potential regu-
latory sites, among them γIRE, GAS, and GRE, and consensus binding sequences for the
following transcription factors: AP-1, Sp1, Sp2, NFκB, HIF1, ATF, and CTF-NF1 [13]. Over
time, the binding of these and other transcription factors to their cognate binding sites
within the regulatory regions of S100A10 has been verified experimentally, providing rele-
vant information on the regulation of S100A10 expression. It was proposed, for example,
based on the effects of siRNA-induced knockdown of several transcription factors, that
c-Fos and c-Jun may act as activators, while CREM, Fosl2, STAT3, Sp1, and SRF may act
as inhibitors, of S100A10 expression [16]. Indeed, the binding of the c-Fos/c-Jun dimer,
which forms the AP-1 transcription factor, to the 1st exon of S100A10, was confirmed
by chromatin immunoprecipitation (ChIP) and its stimulatory effect on expression was
shown in a luciferase assay. Activation of S100A10 transcription by AP-1 is mediated by
MAPK, PI3K, and JNK cascades in response to BDNF or FGF2 stimulation and constitutes
one of the mechanisms of antidepressant response in which S100A10 plays a significant
role [16]. Another group demonstrated the binding of Sp1, and probably also of Sp3, to
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a GC-box within the −96 to −70 segment of the S100A10 promoter using electrophoretic
mobility shift assay (EMSA) [18]. It was shown that Sp1 upregulates S100A10 expression
in response to nitrosative stress induced in motor neuron-like cell line, NSC34, by high NO
concentration. Increased S100A10 level impairs the function of TASK1, a two-pore domain
K+ channel, and contributes to degeneration of motor neurons, while silencing of S100A10
is neuroprotective [18].

The mechanism of the responsiveness of S100A10 to inflammatory cues has also been
studied. It was shown that, in response to interferon γ stimulation, STAT1 binds to two
GAS sequences located at positions −1219 and −1090 of the gene promoter [19]. The
effect of STAT1 binding on S100A10 expression was assessed by the luciferase assay, which
demonstrated that overexpression of wild-type STAT1 in two epithelial cell lines, BEAS-2B
and HeLa, increased luciferase activity, while a phosphorylation deficient (Tyr 701) STAT1
mutant had no effect.

Chedeville et al. [20] observed increased S100A10 expression following HIF1α upreg-
ulation in glioblastoma cells and samples from glioblastoma patients as compared with
normal tissue [20]. Accordingly, the binding of HIF1α and HIF1β, but not HIF2α, to the
1st exon of S100A10, 103 bp downstream of the transcription start site, was shown by
ChIP. This binding occurred following hypoxia or after treatment of glioblastoma cells with
anti-cancer drugs [21]. The involvement of HIF1α links S100A10 expression with hypoxic
conditions characteristic for many cancer tissues.

It was also revealed that dexametasone-induced S100A10 expression involves gluco-
corticoid receptor (GR) binding sites in the promoter sequence [22]. Three possible GRE
sites (−223 to −241, −354 to −372, and −427 to −445) were identified in the S100A10
promoter region; at least two of them were found to be functional by means of muta-
tional analysis. The binding of GR to these sites was shown by ChIP after dexametasone
stimulation of neuroblastoma SH-SY5Y cells [22].

The stimuli and transcription factors known to be involved in regulation of S100A10
expression are listed in Table 1. Of note, in many cases, thanks to the research efforts
described above, the whole signaling pathways, starting from the initial signal downstream
to transcription factors that transduce the stimulatory cue into a higher transcription rate,
have been revealed. Although most data concern a single activating stimulus and/or
transcription factor, it is evident that in vivo these factors act in concert to modulate
S100A10 transcription according to cell’s needs.

Table 1. Stimuli and transcription factors which influence S100A10 expression.

Stimulus Transcription Factor Reference

Transforming growth factor β (TGF β) ND [13]

Epidermal growth factor (EGF) ND [13]

Interleukin 1 β (IL-1 β) ND [13]

Brain-derived neurotrophic factor (BDNF);
basic fibroblast growth factor 2 (FGF2) c-Jun/c-Fos (AP-1) [16]

Nitric oxide (NO) Sp1, Sp3 [17,18]

Gonadotrophin (GD) ND [13,22]

Hypoxia, anti-cancer drugs HIF1 [13,20,21]

Interferon γ STAT1 [19,20]

ND NFκB [13]

ND CTF-NF1 [13]

ND GRHL2 Present work
ND—not determined.
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3. Regulation of S100A10 Expression by GRHL2 Transcription Factor—Original Data
3.1. Influence of GRHL2 on S100A10 Expression

GRHL2 is a member of the grainyhead-like transcription factor family [23]. GRHL2
regulates processes such as proliferation and differentiation [24] and thus its dysregulated
expression is a common cause of malignant transformation. Interestingly, depending on the
cancer type, the disease can arise due to either up- or downregulation of this transcription
factor. This is because GRHL2 may act both as tumor suppressor, by inhibiting epithelial
to mesenchymal transition, or as an oncogene, by inducing cell proliferation and hTERT
expression. An increased level of GRHL2 was found in squamous cell carcinoma, gastric,
liver, and colon cancer [25,26] and is usually associated with bad patient prognosis [24].
Increased expression of the gene encoding GRHL2 and, as mentioned above, of that encod-
ing S100A10 is common for malignant transformation. Examples include hepatocellular
carcinoma, non-small-cell lung cancer, colorectal cancer, and pancreatic ductal adenocar-
cinoma [11,26]. Thus, it was interesting to check whether GRHL2 transcription factor is
involved in regulation of the gene encoding S100A10 protein. To show this, we used in
silico and experimental approaches described in detail in Supplementary File (Materials
and Methods).

A theoretical analysis of putative GRHL2 transcription factor binding sites in the
gene encoding human S100A10 protein (GENEBANK NC_000001.11 chr.1, GRCh38.p13
region complement 151982915-151994859) was performed using the MatInspector program
(https://www.genomatix.de/solutions/genomatix-software-suite.html (accessed on 2 July
2021)). This program identified five potential, but only two highly conserved, binding
sites for GRHL2 located in the 1st intron of S100A10 (Figure 2A—GRHL2 No1 and GRHL2
No2 and Figure 2B—bold letters) [27]. These sites were only slightly divergent from the
consensus 5′-AACCGGTT-3′ sequence. No sequence that might bind GRHL2 was found in
the promoter region.
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To assess the influence of GRHL2 on S100A10 transcription, a luciferase assay was
employed. For that, a reporter plasmid (pTA-Luc-S100A10-GRHL2-WT) containing the
luciferase gene and a 536 bp long intronic sequence (chr1:151 990 668-151 990 132), compris-
ing the identified GRHL2 binding sites, was constructed as described in Supplementary File
(Material and Methods and Table S1) and used in a Dual-Luciferase Reporter Assay System.
For that, HEK293 (human embryonic kidney) cells were transfected with the pRL-SV40
reference plasmid, as an internal control, and with the pTA-Luc-S100A10-GRHL2-WT con-
taining the examined sequence in the 1st intron of the S100A10. Cells were co-transfected
with plasmid encoding GRHL2 with a FLAG tag (EX-W2222-M12-GRHL2-3xFLAG) or
control plasmid (EX-NEG-M12-3xFLAG). Luciferase activity was assessed after 24 h using
a Glomax 20/20 luminometer. As shown in Figure 3A, overexpression of GRHL2 led to
an increase in luciferase activity, which indicates that this transcription factor regulates
S100A10 expression.
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To confirm these results, each potential binding site for the GRHL2 transcription factor
was subsequently deleted using pTA-Luc-S100A10-GRHL2-WT as a template in a PCR
reaction with appropriate primers (Supplementary File, Table S1). The resulting prod-
ucts were named pTA-Luc-S100A10-GRHL2-∆No1 and pTA-Luc-S100A10-GRHL2-∆No2.
The luciferase assay was performed as described above. As shown in Figure 3A, overex-
pression of GRHL2 in HEK293 cells transfected with plasmids containing the examined
sequence lacking one of the GRHL2 binding sites led to a statistically significant decrease
in luciferase activity.

To further assess the functionality of GRHL2 transcription binding sites in the 1st in-
tron of S100A10, a ChIP assay was performed. For that HEK293 cells were transfected with
plasmid EX-W2222-M12-GRHL2-3xFLAG and, 24 h later, were fixed with 1% formalde-
hyde, lysed, and sonicated into about 500 bp long fragments (Materials and Methods and
Figure S1 in the Supplementary File). Overexpression of FLAG-tagged GRHL2 in the ChIP
assay was necessary since available antibodies against GRHL2 are not specific and may
recognize other transcription factors of this family. The lysate was incubated overnight with
mouse IgG (control) or mouse monoclonal anti-FLAG antibody and the DNA-protein com-
plexes were immunoprecipitated using Protein A/G Agarose. The immunoprecipitated
DNA was used as a template for PCR reactions with primers flanking the two potential
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GRHL2 binding sites or primers flanking the region not predicted to bind GRHL2 (control)
(Supplementary File, Table S1).

In accordance with an in silico analysis, which ranked the two GRHL2 sites as 22
and 37 top hits out of more than 255 hits (0.8 threshold) (Supplementary File, Table S2), a
clear PCR product of an appropriate length was detected only in the sample containing
the template immunoprecipitated with antibody against the FLAG tag and amplified with
primers encompassing the two GRHL2 binding sites (Figure 3B, upper panel). No PCR
product was visible in a control experiment (Figure 3B, lower panel). Thus, the results
indicate that the GRHL2 transcription factor binds to its predicted sites within the 1st intron
of S100A10 and therefore may directly regulate expression of this gene.

3.2. Analysis of S100A10 mRNA in RC-124 Cells with Silenced GRHL2 Expression

To check the effect of the GRHL2 transcription factor on S100A10 expression, we
used kidney epithelial RC-124 cells with diminished level of this transcription factor
(transfected with GRHL2 shRNA) [28]. The level of GRHL2 mRNA in these cells and
in control ones (transfected with scrambled shRNA) was analyzed using RT-qPCR. The
TaqMan Fast Universal Master Mix with TaqMan Probes (ID: Hs02800695_m1 for HPRT
and Hs00227745_m1 for GRHL2) was used and the reaction was performed in a 7900HT
Fast Real-Time PCR System.

The obtained results were analyzed using the comparative ∆∆Ct method and gene
expression was normalized to the HPRT1 housekeeping gene. As can be seen in Figure 4A,
indeed, the level of GRHL2 mRNA in RC-124 with silenced GRHL2 expression was dimin-
ished when compared to control cells.
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obtained from n = 3 experiments was performed with the use of Student’s t-test. Results are presented
as means ± standard deviation. The level of statistical significance is indicated using * p ≤ 0.05 or
*** p ≤ 0.001. Scrambled shRNA represents control cells while GRHL2 shRNA—cells with silenced
GRHL2 expression.

S100A10 mRNA level was then analyzed by RT-qPCR using the SYBRGreen system
and appropriate primers (Supplementary File, Table S1). As it can be seen in Figure 4B, the
level of S100A10 mRNA in RC-124 cells with silenced GRHL2 expression is lower than in
control ones. In both cases, the differences were statistically significant.

In summary, by applying in silico analysis, we identified two highly conserved GRHL2
transcription factor binding sites in the 1st intron of the gene encoding the S100A10 protein.
Such intronic location of the binding sites conforms to the results of ChIP-seq analyses,
which show that GRHL2 binding occurs more frequently within intragenic and intronic
regions than gene promoters [29,30]. Intronic GRHL2 binding sites were identified in
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CDH1 (encoding E-catherin) and other genes [30,31]. The presence of regulatory sequences
outside the promoter region is not uncommon [32]. For instance, it was found that 32–40%
of transcription binding sites for HSF are located in introns [33]. Additionally, functional
binding sequences for NFAT1 have been identified outside the gene promoter [34]. By
performing chromatin immunoprecipitation (ChIP) and luciferase activity assays, we have
found that GRHL2 directly binds to the intronic binding sites and that it is able to stimulate
transcription of S100A10. Moreover, RT-qPCR showed that in cells with silenced GRHL2
expression, S100A10 mRNA level was lower than in control cells. Altogether, in this
work, we show for the first time that GRHL2 transcription factor regulates expression of
S100A10. Since both proteins are involved in proliferation/tumorigenesis/metastasis, their
interrelated regulation might have some impact on cancer development and progression.

4. Conclusions

S100A10 is a member of the S100 Ca2+-binding protein family. S100A10 is involved
in regulation of various processes, among them in plasmin production and regulation of
the level of matrix metalloproteinases. Thus, in consequence, S100A10 has an effect on
degradation of the extracellular matrix (ECM), which is an important step in tumorigene-
sis/metastasis.

Up to now, several reports have been published concerning regulation of S100A10
expression. Based on all these data, it is evident that it can be influenced by many different
stimuli, which, together with a range of transcription factors, ensure that the S100A10
protein level meets the demands of a given cell. Our work has identified yet another
transcription factor, that is GRHL2, a protein which, among others, plays a role in tumori-
genesis. Expression of GRHL2 is increased in many cancers [26] and the same applies
to S100A10 [9]. Cancer types in which the expression of both GRHL2 and S100A10 is
simultaneously increased include hepatocellular carcinoma, non-small-cell lung cancer,
colorectal cancer, and pancreatic ductal adenocarcinoma [9,26]. In the above examples,
the mechanism of GRHL2 action does not necessarily involve epithelial–mesenchymal
transition. Taking into account the increased level of S100A10 and GRHL2 in many cancers,
it is possible that regulation of S100A10 expression by GRHL2 might have an impact on
cancer progression and metastasis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11070974/s1, Materials and methods, Figure S1: Agarose gel showing the approximate
length of the sheared chromatin used in ChIP, Table S1: Sequences of primers, Table S2: Putative
transcription binding sites in S100A10 according to MatInspector.
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Abbreviations

BDNF brain-derived neurotrophic factor
BSA bovine serum albumin
ChIP chromatin immunoprecipitation assay
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
EGF epidermal growth factor
FGF2 fibroblast growth factor 2
bFGF basic fibroblast growth factor
GAS interferon γ activation site
GD gonadotrophin
GR glucocorticoid receptor
GRE glucocorticoid response element
GRHL2 grainyhead-like 2
hTERT human telomerase reverse transcriptase
JNK c-Jun N-terminal kinase
L-1β interleukin 1β
IP3 1,4,5-trisphosphate inositol
γIRE interferon γ response element
MAP mitogen activated protein
TGF-β transforming growth factor-β
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