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Abstract

Background: Identifying novel therapeutic targets is crucial for the successful development of drugs. However, the
cost to experimentally identify therapeutic targets is huge and only approximately 400 genes are targets for
FDA-approved drugs. As a result, it is inevitable to develop powerful computational tools that can identify potential
novel therapeutic targets. Fortunately, the human protein-protein interaction network (PIN) could be a useful
resource to achieve this objective.

Methods: In this study, we developed a deep learning-based computational framework that extracts
low-dimensional representations of high-dimensional PIN data. Our computational framework uses latent features
and state-of-the-art machine learning techniques to infer potential drug target genes.

Results: We applied our computational framework to prioritize novel putative target genes for Alzheimer’s disease
and successfully identified key genes that may serve as novel therapeutic targets (e.g., DLG4, EGFR, RAC1, SYK, PTK2B,
SOCS1). Furthermore, based on these putative targets, we could infer repositionable candidate-compounds for the
disease (e.g., tamoxifen, bosutinib, and dasatinib).

Conclusions: Our deep learning-based computational framework could be a powerful tool to efficiently prioritize
new therapeutic targets and enhance the drug repositioning strategy.

Keywords: Network embedding, Deep learning, Machine learning, Systems biology, Drug discovery, Protein
interaction network

Background
Biomedical research, especially for the field of drug dis-
covery, is currently experiencing a global paradigm shift
with artificial intelligence (AI) technologies and their
application to “Big Data” in the biomedical domain [1–3].
The complex, non-linear, multi-dimensional nature of big
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data is accompanied by unique challenges and opportuni-
ties when employed for processing and analysis to derive
actionable insights. In particular, existing statistical tech-
niques, such as principle components analysis (PCA), are
insufficient for capturing the complex interaction patterns
that are hidden in multiple dimensions across the data
spectrum [4]. Thus, a key challenge for future drug dis-
covery research is the development of powerful AI-based
computational tools that can capture multiple dimension
of biomedical insights and obtain “value” in the form
of actionable insights (e.g., insights toward to select and
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prioritize candidate targets and repositionable drugs for
candidate targets) from big data volumes.
“Big Data” in the biomedical domain are generally asso-

ciated with high dimensionality. Their dimensionality
should be reduced to avoid undesired properties of high-
dimensional space, such as the curse of dimensionality
[5]. Dimensionality reduction techniques facilitate clas-
sification, data visualization, and high-dimensional data
compression [6]. However, classical dimensional reduc-
tion techniques (e.g., PCA) are generally linear techniques
and thus insufficient to handle non-linear data [4, 6].
With the recent advancement in AI technologies, sev-

eral dimensionality reduction techniques have become
available for non-linear complex data [4, 6, 7]. Among
the dimensionality reduction techniques, the multi-layer
neural network-based technique, “deep autoencoder,”
could serve as the most powerful technique for reduc-
ing the dimensionality of non-linear data [4, 6]. Deep
autoencoders are composed of multilayer “encoder” and
“decoder” networks. The multilayer “encoder” compo-
nent transforms high-dimensionality data to a low-
dimensional representation while multilayer “decoder”
component recovers original high-dimensional data from
the low-dimensional representation. Weights associated
with the links that connect the layers are optimized
by minimizing the discrepancy between the input and
output of the network (i.e., in an ideal condition, the
values for the nodes in the input layer is the same
as those in the output layer). After the optimiza-
tion steps, the middle-hidden encoder layer yields a
low dimensional representation that preserves informa-
tion that is considered original data as much as pos-
sible [6]. The values of nodes in the middle-hidden
encoder layer would be useful features for classification,
regression, and data visualization of high-dimensional
data.
In drug discovery research, identifying novel drug-

targets is critical for the successful development of a
therapeutic drug [8–10]. However, the cost to experimen-
tally predict drug targets is huge and only approximately
400 genes are used as targets of FDA-approved drugs
[11]. Thus, it is inevitable to develop a powerful com-
putational framework that can identify potentially novel
drug-targets.
Drug repositioning is another promising approach for

boosting new drug development. The advantage of drug
repositioning is its established safety (i.e., toxicology stud-
ies have already been carried out with a target drug).
Therefore, the development of computational methods to
predict repositionable candidates could be a promising
strategy to reduce the cost and time for drug development.
Different drug repositioning methods have been pro-

posed in prior studies. Further, these methods can be
classified into two different major categories: activity-

based drug repositioning and in silico drug reposition-
ing. Several drugs for non-cancerous diseases have been
discovered for cancer therapeutics using the former
approach [12], and in recent years, the latter approach
has become successful because of advancements of the
protein-protein interaction database, protein structural
database, and in-silico network analysis technology. Such
types of applications for drug repositioning via the net-
work theory have also been discussed. By verifying the
similarity between CDK2 inhibitors and topoisomerase
inhibitors, Iorioet et al. [13] reported that Fasudil (a Rho-
kinase inhibitor) might be applicable to several neurode-
generative disorders. Further, Cheng et al. [14] applied the
inference method based on three similarities (drug-based,
target-based, and network-based similarities) to predict
the interactions between drugs and targets and finally
confirmed that five old drugs could be repositioned.
PIN data could be a useful resource for computa-

tional investigations of potential novel drug-targets; that
is because proteins derive their functions together with
their interacting partners and a network of protein inter-
action captures downstream relationships between targets
and proteins [8–10, 15]. With the recent advancement in
network science, various network metrics are presently
available and have been used to investigate the struc-
ture of molecular interaction networks and their relation-
ship with drug-target genes [8–10, 15, 16]. For example,
“degree,” which is the number of links to a protein, is a
representative networkmetric for investigating themolec-
ular interaction networks (i.e., almost all FDA-approved
drug-targets are middle- or low-degree proteins; however,
almost no therapeutic targets exist among high-degree
proteins [10]). Such finding indicates that the key fea-
tures for identifying potential drug target genes could
be embedded in the complex architectures of the PIN
[10].
Genome-wide PIN data are typical non-linear high-

dimensional big-data in the biomedical domain that are
composed of thousands of proteins as well as more than
ten-thousand interactions among them [8, 9]. Mathemat-
ically, a PIN is represented as an adjacency matrix [17].
The adjacency matrices for PINs within rows and columns
labeled by proteins and elements in the matrices are pre-
sented as a binary value (i.e., 1 or 0 in position (i, j) if
protein i interacts with protein j or not). In the adjacency
matrix, each row represents the interacting pattern for
each protein and may be a useful feature for predicting
potential drug target proteins.
Recently, researchers have developed “network embed-

ding” methods that apply dimensional reduction tech-
niques to extract low-dimensional representations of
a large network from the high-dimensional adjacency
matrix of the network [17, 18]. For example, several
researchers have used singular value decomposition and
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non-negative matrix factorization methods to map high-
dimensional adjacency matrices of large-scale networks
onto low-dimensional representations [19, 20]. However,
the feature vector for a protein is high dimensional (e.g.,
several thousand dimensions) and sparse; this is because
protein interaction network composed of thousands of
proteins and the vast majority of proteins in the PIN have
few interactions [17].
To address this issue, several researchers have employed

network embedding methods based on deep learn-
ing techniques [21, 22]. Deep autoencoder-based net-
work embedding methods would be especially useful
for transforming non-linear large-scale networks into
low-dimensional representations. Wang et al. applied a
deep autoencoder-based network embedding method to
large-scale social networks (e.g., arxiv-GrQc, blogcata-
log, Flicker, and Youtube) and successfully mapped these
networks onto low-dimensional representations [21].
Herein, to infer potentially novel target genes, we pro-

posed a computational framework based on a repre-
sentative network embedding method that employs a
deep autoencoder to map a genome-wide protein interac-
tion network onto low-dimensional representations. The
framework builds a classifier based on state-of-the-art
machine learning techniques to predict potentially novel
drug-targets using the resultant low-dimensional repre-
sentations. We applied the framework to predict poten-
tially novel drug targets for Alzheimer’s disease. Based on
the list of predicted candidate novel drug targets, we fur-
ther inferred potential repositionable drug candidates for
Alzheimer’s disease.

Methods
Overview
The first part of the method was preparing the PIN data
and calculating the 100 dimension vector representation
for each gene by using a deep autoencoder. To exam-
ine the performance of the deep autoencoder, we com-
pared the 100 features with nine known network metrics.
The second part was building a machine learning model
which can predict whether a gene is a putative target
of Alzheimer’s therapeutic drug or not. In this step, we
used Xgboost to build the model and SMOTE to mitigate
the sample imbalance (i.e. only a few genes were known
therapeutic targets).

PIN data and drug-target information
The PIN data was obtained elsewhere [23]. This network
is composed of 6,338 genes and 34,814 non-redundant
interactions among the genes.
We obtained information for drugs and their target

genes from the DrugBank database [24, 25]. Thereafter,
we investigated the “description” field for all the drugs
in the DrugBank database and identified 61 therapeu-

tic drugs for Alzheimer’s disease. The 61 targets for
these drugs were regarded as the established drug targets
for Alzheimer’s disease. Among the 61 targets, 31 were
mapped onto the PIN.

Feature extraction from PIN using a deep autoencoder
We build a deep autoencoder with a symmetric layer
structure composed of 7 encoder layers and 7 decoder lay-
ers (e.g., 7 encoder layers (6338-3000-1500-500-250-150-
100) and symmetric decoder layers (100-150-250-500-
1500-3000-6338)). Layers are fully connected. In addition,
layers, except output layer, use rectified linear unit (ReLU)
[26] as an activation function while output layer uses
sigmoid function to generate binary outputs. We opti-
mized the deep autoencoder network by using “adam”
[27] optimizer with a learning rate = 1.0 × 10−6, num-
ber of epochs = 10,000, batch size = 10, and default values
for the other parameters. In the optimization step, we
minimized the binary cross-entropy loss between the val-
ues of nodes in the input layer and those in the output
layer. We used a representative deep learning platform,
“Keras” [28], with Tensorflow [29] backend to implement
the deep autoencoder. To perform the deep autoencoder-
based dimensionality reduction analysis of PIN, we used
Tesla K80 GPU on the shirokane 5 super computer system
[30].

Statistical and topological analysis of the PIN
To determine the statistical topological features in the
PIN for each gene, we calculated the following represen-
tative networkmetrics: indegree, outdegree, betweenness,
closeness, PageRank [31], cluster coefficient [32], nearest
neighbor degree (NND) [33], bow-tie structures [34], and
indispensable nodes [35, 36].
Indegree: Indegree for a given node represents the

number of nodes connected to the node (i.e., upstream
neighbors of the node).
Outderee: Outdegree represents the number of links

from the given node to other nodes (i.e., downstream
neighbors of the nodes).
Betweenness: Betweenness for a given node i is the

number of shortest paths between two nodes that pass
through node i.
Closeness: The value of closeness for a given node i is

the mean length of the shortest paths between node i and
all other nodes in the network.
PageRank [31]: PageRank for a given node is a metric

used to roughly estimate the importance of the node in
the network. The PageRank score is calculated using the
algorithm proposed by Google [37]. A given node has a
higher PageRank if the nodes with a higher rank have links
to the node.
Cluster coefficient [32]: Cluster coefficient of a node

i (Ci) is calculated by using the following equation:
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Ci = 2ei
ki(ki−1) , where ki is the degree of node i and ei is the

number of links connecting the neighborhood of node i to
one another.
Nearest neighbor degree (NND) [33]: The value of NND

for a given node i is the average degree among nearest
neighbor nodes of node i.
Bow-tie structure [34]: Biological networks often pos-

sess bow-tie structures that are composed of three com-
ponents (i.e., input, core, and output layers). Yang et al.
proposed a bow-tie decomposition method to classify
nodes into three classes: the input layer, the core layer,
and the output layer [34]. In the decomposition analysis,
a strongly connected component composed of the largest
number of nodes is defined as the nodes in the core layer.
Nodes in the input layers can reach the core layer; how-
ever, those in the core layer cannot reach the input layer.
Further, the nodes in the core layer can reach the nodes
in the output layers but those in the output layer cannot
reach the core layer. Herein, one-hot vector encoding was
employed to represent the analysis results from bow-tie
decomposition. For example, for a node assigned to the
core layer, the value of the “core layer” of the node is equal
to 1 while the value of the “input layer” and the “output
layer” is equal to 0.
Indispensable nodes [35, 36]: Liu et al. developed a

controllability analysis method to identify the minimum
number of driver nodes (ND) that must be controlled to
modulate the dynamics of the entire network [36] (i.e.,
they used the Hopcroft–Karp “maximummatching” algo-
rithm [38] to identify the minimum set of driver nodes
[36]). Indispensable nodes that are potential key player
nodes and are sensitive to structural changes in a network
are obtained from controllability analysis (i.e., removal of
an indispensable node increases the ND in the network
[35]). Vinayagam et al. reported that indispensable pro-
teins in the human PIN tend to be targets of mutations
associated with human diseases and human viruses [35].
One-hot vector encoding was also used to represent the
analysis results of indispensable nodes. For example, for
an indispensable node, the value of the binary variable of
the node is equal to 1 while that for a non-indispensable
node is equal to 0.
For network analysis, we employed the igraph R package

[39].

Oversampling by the SMOTE algorithm
In order to prepare a class-balanced dataset for build-
ing binary classifier, we used a state-of-the-art sampling
method, SMORT [40], to generate this class-balanced
dataset to construct a binary classifier for drug target pre-
diction. The SMOTE algorithm synthetically creates more
cases in the minority class. Thus, the algorithm selects k
nearest neighbours of a case in the minority class and ran-
domly selects a point along the line that connects them.

The selected point is used as an additional case in the
minority class. We used the Python module, imbalance-
learn[41], to perform oversampling based on the SMOTE
algorithm. In addition, we used k = 2 to carry out
SMOTE-based oversampling.

Binary classifier model based on Xgboost
To build a binary classifier for drug target prediction, we
used Xgboost, which is the most efficient implementa-
tion of the gradient tree boosting algorithms [42]. The
algorithm generates a large number of weak learners and
builds a strong learner that exists as an ensemble of the
weak learners. In the boosting step, the algorithm con-
tinues to update the weak learners by correcting the
errors made by previous learners. Thereafter, the algo-
rithm aggregates the predictions from the weak learners
to make the final prediction by minimizing the loss with a
gradient descent algorithm.
To build the Xgboost algorithm-based binary classi-

fiers, we used the XGBClassifier and scikit-learn [43]
python modules. The XGBClassifier has several param-
eters. Briefly, we employed the following values for each
parameter (please see manual for XGBClassifier module
[44] for details): learning_rate = (0.01, 0.1 ,0.5), max_depth
= (1, 2, 3, 5, 10), n_estimators = (100), gamma = (0,
0.3), boostor = (“gblinear”), objective = (“binary:logistic”),
reg_lambda = (0, 0.1, 1.0), and reg_alpha = (0, 0.1 ,1). For
the other parameters, we used a default value. To evaluate
the binary classifier models and optimize the parameters
of the models, we performed 5-fold cross validation.

Pathway enrichment analysis
To identify the pathways that are significantly associ-
ated with the putative targets inferred by our compu-
tational framework, we used WebGestalt web tool [45].
WebGestalt uses over-representation analysis (ORA) to
statistically evaluate overlaps between the gene set of
interest and a pathway [46]. In the analysis, the number
of overlapped genes between the gene set of interest and
a pathway is first counted. Thereafter, a hyper-geometric
test is used to determine whether the pathway is over-
or under-represented in the gene set of interest (for each
pathway, the p value and FDR are calculated based on the
overlap). Based on the ORA, we examined the pathways
in Reactome, KEGG, and GO biological processes. The
pathways with an FDR < 0.05 were regarded as significant
pathways associated with the gene set of interest.

Results
Network embedding: deep autoencoder-based
dimensional reduction of PIN
We obtained the directed human PIN from [23]; this PIN
is composed of 6338 genes and 34,814 interactions (see
the “Methods” section for details). Thereafter we gener-
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ated an adjacency matrix for the human PIN. Elements
in the matrix are represented as a binary value (i.e., 1 or
0 in position (i, j) denotes whether or not protein j is a
downstream interacting partner of protein i). The resul-
tant matrix is composed of 6,338 rows and 6,338 columns.
Each row in thematrix presents the interacting pattern for
each gene and used as features of the gene. Because there
are 6,338 genes in the PIN, the features for each gene are
of 6,338 dimensions (i.e., a gene is characterized by 6338
dimensional features based on the PIN data).
As shown in Fig. 1, tomap the high dimensionality of the

features (6338 dimensions) for each gene onto low dimen-
sional features, we built and used a deep autoencoder. The
deep autoencoder is composed of 7 encoder layers (6338-
3000-1500-500-250-150-100) and symmetric decoder lay-
ers (100-150-250-500-1500-3000-6338) (see Fig. 1). In the
deep autoencoder, layers are fully connected and weights
of links connecting layers are optimized by minimizing
binary cross-entropy loss between values of nodes in the
input layer and those in the output layer (for details, see
the “Methods” section). Following optimization, for each
gene, we used the optimized deep autoencoder to map the
high dimensionality of the original features (6,338 dimen-
sional features) into low dimensionality (100 dimensional
features) through the middle layer (layer with 100 nodes)
in the network. Accordingly the resultant features for each
gene are of 100-dimensional features.
The low-dimensional latent space contains enough

information to represent original high-dimensional
human PIN. However, it is still unclear whether the low-
dimensional features in the latent scape can explain the
topological and statistical properties obtained from the

representative network metrics. To examine this issue, we
calculated nine representative network metrics for each
gene in the PIN (e.g., indegree, outdegree, betweenness,
closeness, PageRank, cluster coefficient, nearest neighbor
degree (NND), bow-tie structure, and node dispensability,
see the “Methods” section for details) and compared the
metrics to the 100-dimensional features for the gene from
the network embedding analysis (see Fig. 2 and the orig-
inal data for Supplementary Figure 1). As shown in the
figure, among the 100-dimensional feature, most of the
features were correlated with the representative network
metrics. Interestingly, several features (e.g., dimensions
58, 86, 88, and 89) did not correlate with the nine repre-
sentative network-metrics (shown in gray background).
Such findings indicate that the low-dimensional features
from the network embedding analysis can capture not
only the topological and statistical properties of network
metrics but also information that cannot be obtained
from analysis using representative network metrics.

Machine learning-based drug target prediction using the
extracted feature from PIN
In this study, we treated the issue of drug-target pre-
diction as a binary classification model. To construct
a binary classifier for drug-target prediction, we gener-
ated a training dataset using the low-dimensional features
extracted from PIN and public domain drug-target infor-
mation. From the public domain drug-target database,
we obtained known drug-target genes for Alzheimer’s
disease. Among the known targets, we could map 31
onto PIN. These 31 genes were further regarded as pos-
itive cases and the negative cases were selected from the

Fig. 1 Computational analysis pipeline for drug target prioritization. (Step 1) Our computational framework employed genome-wide PINs and
information of drug targets obtained from public domain databases. (Step 2) The framework is based on a deep autoencoder to extract
low-dimensional latent features from high-dimensional PIN. (Step 3) By using features from step 2 and a target gene list for a specific disease, we
generated 100 datasets to train the 100 classifier models. By using the 100 datasets and the state-of-the-art machine learning techniques (SMOTE
and Xgboost), we build 100 classifier models to infer potential drug targets. (Step 4) We applied the classifier models to all unknown drug-target
genes in the PIN to prioritize potential drug target genes
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Fig. 2 Relationship between features in low-dimensional latent space by deep autoencoder and representative network metrics in the PIN. The
X-axis is the latent space dimension and the Y-axis is Spearman’s correlation coefficient between a given low-dimensional feature and a given
network metric (see Supplementary Figure 1 for the original data). The gray background dimensions (58, 86, 88, and 89) indicate almost no
correlation to the representative network metrics. Several dimensions without the box (e.g., dimension 6 and 7) are n.a. because the encoded
numerical values for all genes are zero

remaining 6,307 genes. We randomly selected 500 neg-
ative cases (genes) from the 6307 genes 100 times to
build 100 datasets composed of 500 negative and 31 pos-
itive cases (genes). In the 100 datasets, each gene had
100 dimensional features that were obtained from deep
autoencoder. Further, we employed the 100 datasets to
build 100 binary classifier models to predict novel candi-
date targets for Alzheimer’s disease.
The 100 datasets are class-imbalanced (e.g., 31 positive

and 500 negative cases, respectively). Furthermore, classi-
fication using class-imbalanced data is biased toward the
majority class. In the datasets, the number of “positive”
cases was very small (i.e., only 31 positive cases were found
in the datasets). These problems can be mitigated by
using over-samplings that are often used to produce class-
balanced training datasets from class-imbalance data.
To generate class-balanced training datasets for binary
classifiers, we used a state-of-the-art sampling method,
SMOTE (Synthetic Minority Oversampling TEchnique)
[40] that synthetically creates new cases in the minority
class (in this study, “positive” case) (see the “Methods”
section in details).
By using the class-balanced training datasets from

SMOTE, we trained binary classifiers for drug target pre-

diction. The binary classifier models are based on the
Xgboost algorithm which is the most efficient implemen-
tation of the gradient boosting algorithm [42]. The trained
binary classifier models calculate two class probabilities
for each gene based on 100 dimensional features (e.g.,
probability of “positive” and that of “negative”). Accord-
ingly, a gene with a higher class probability of “positive” is
more likely to be a member of the “positive” class.
To optimize the binary classifiers based on Xgboost

for drug target prediction, we performed a grid search
with 5-fold cross validations. Notably to avoid data leak-
age, we conducted data splits for cross validations before
SMOTE-based over-sampling to generate class balancing
training datasets. To evaluate the predictive performance
of each parameter combination, we calculated area under
the receiver operator characteristic curve (AUC ROC).
The mean value of AUC ROC for the 100 binary classi-
fiers with the optimal parameters was 0.661. Such result
indicates that the 100 binary classifiers tend to assign
a high class probability of “positive” for known drug-
target genes of Alzheimer’s disease. Therefore, unknown
drug-target genes with a high probability of “posi-
tive” could serve as novel drug-targets for Alzheimer’s
disease.
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Further, to infer the putative therapeutic targets for
Alzheimer’s disease, we used the mean value of the class
probability of “positive” from the 100 binary classifier to
prioritize the 6,307 genes (see Table 1 and Supplementary
Table 1 for details); i.e., the unknown targets with a higher
mean value of “positive” for the class probability (e.g.,
DLG4 in Table 1 and Supplementary Table 1) are more
likely potential novel drug targets. A total of 187 unknown
drug-target genes had a mean value greater than 0.75
for a class probability of “positive” (see Supplementary
Table 1). These 187 genes were thus regarded as putative
novel target genes for Alzheimer’s disease.

Pathway enrichment analysis of putative target genes
To deduce the potential target pathways for Alzheimer’s
disease, we determined the significant pathways that are
associated with the 187 putative targets inferred using
our computational framework (see Figs. 3, 4, and 5). The
187 putative targets were significantly associated with the
pathways that control Alzheimer’s disease mechanisms
(e.g., cytokine-related signaling pathways and EGF recep-
tor signaling pathway), especially those associated with

inflammatory mechanisms and the immune system. The
innate immune system is a key component of Alzheimer’s
disease pathology [47]. In fact, continuous amyloid-β for-
mation and deposition chronically activate the immune
system, causing disruption of the microglial clearance sys-
tems [47]. Accordingly, the progression of Alzheimer’s dis-
ease could be suppressed by modulating these pathways,
especially the immune system and inflammation-related
pathways, by targeting these putative target genes.

Inference of repositionable drug candidates
Networks connecting drugs, targets, and diseases could
serve as useful resources for investigating novel indica-
tions for FDA-approved drugs, i.e., if target gene P is a
putative target for disease A and is a known target gene
of drug R for disease B, disease A may be a novel target
disease for drug R (see Fig. 6). Thus, to infer the putative
repositionable drugs and their potential target disease, we
further examined the list of 187 predicted putative tar-
get genes (genes with a class probability of target class
> 0.75 in Supplementary Table 1) from our computational
framework and drug-target information across different

Table 1 Top 20 genes with the highest mean probability value for the “positive (drug target)” class

Gene Mean probability

DLG4 0.99859

PLCG1 0.99775

EGFR 0.99758

SYK 0.99752

PTK2B 0.99617

RAC1 0.99585

CAV1 0.99579

DLG1 0.99512

PIK3R1 0.99500

PRKCA 0.99292

KIT 0.99224

JAK1 0.99154

PTPN6 0.98968

CRKL 0.98918

SHC1 0.98840

NCK1 0.98760

ZAP70 0.98750

PTPN11 0.98630

DLG3 0.98551

PTK2 0.98537

DLG2 0.98471

IL2RB 0.98328

JAK2 0.98299

GRB2 0.98278
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Fig. 3 Pathway enrichment analysis using GO biological database for the 187 putative targets from our computational pipeline for Alzheimer’s
disease. The names of the pathways are shown on the vertical axis, and the bars on the horizontal axis represent the − log10(p value) of the
corresponding pathway. Dashed lines in orange, magenta, and red indicate p value <0.05, 0.01, and 0.001, respectively

diseases. If at least one target of an known drug is included
among the 187 putative targets, the drug was regarded
as a potential repositionable drug. As shown in Supple-

mentary Table 2, we inferred 244 candidate repositionable
drugs for Alzheimer’s disease. For each candidate repo-
sitionable drug, we calculated the number of overlapping
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Fig. 4 Pathway enrichment analysis using the KEGG database for 187 putative targets. The legend for this figure is the same as that for Fig. 3

genes between the known targets of the drug and the
187 putative targets. Thereafter, we ranked the candidate
repositionable drugs based on the number of overlapped
genes. Among the predicted repositionable drug candi-
date, the top ranked candidates may be effective for the
target disease. Table 2 lists the 20 highest ranked candi-
date compounds.

Discussion
Putative targets from our computational framework
Among the 187 putative targets from our analysis (see
Supplementary Table 1), we investigated the top ranked

genes and found that several of these genes play an impor-
tant role in the mechanism of Alzheimer’s disease.
For example, the first ranked putative target, DLG4,

encodes PSD95, which is a key protein for synaptic
plasticity that is downregulated in under aged patients
as well as patients with Alzheimer’s disease. Recently,
Bustos et al. demonstrated that epigenetic editing of
DLG4/PSD95 ameliorates cognitions in model mice
with Alzheimer’s disease [48]. Thus, epigenetic edit-
ing of DLG4 may serve as a novel therapy for res-
cuing cognitive impairment induced by Alzheimer’s
disease.
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Fig. 5 Pathway enrichment analysis using the Reactome pathway for 187 putative targets. The legend for this figure is the same as that for Fig. 3

EGFR is the third ranked putative target and is fre-
quently upregulated in certain cancers. By employing an
amyloid-β-expressing fruit fly model, Wang et al. demon-
strated that the upregulation of EGFR causes memory
impairment [49]. Furthermore, they administered sev-
eral EGFR inhibitors (e.g., erlotinib and gefitinib) to

transgenic fly and a mouse model of Alzheimer’s dis-
ease and found that the inhibitors prevented memory
loss in both animal models. Based on these findings,
they suggested that EGFR may be a therapeutic tar-
get for the treatment of amyloid-β-induced memory
impairment.
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Fig. 6 Amethod to infer potential repositionable drugs based on the putative targets derived from our computational pipeline. Step 1: We obtained
the drug-target-disease network from the DrugBank database. Step 2: We mapped the associations between the putative target genes and their
target diseases to infer the potential repositionable drugs for a given disease

RAC1, the sixth ranked putative target, is a small sig-
naling GTPase, that controls different cellular processes,
including cell growth, cellular plasticity, and inflammatory
responses. Inhibition of RAC1 downregulates amyloid
precursor protein (APP) and amyloid-β through regula-
tion of the APP gene in hippocampal primary neurons
[50]. RAC1 inhibitors can prevent cell death caused by
amyloid-β42 in primary neurons of the hippocampus and
those of the entorhinal cortex [51]. Furthermore, based on
an analysis of the protein-domain interaction network and
experiments using drosophila genetic models, Kikuchi
et al. demonstrated that RAC1 is a hub gene in the net-
work and thus causes age-related alterations in behavior
and neuronal degenerations [52]. The RAC1 gene could
be a potential therapeutic target for preventing amyloid-
β-induced neuronal cell death in Alzheimer’s disease.
Spleen tyrosine kinase (SYK), the fourth ranked poten-

tial target, could modulate the accumulation of amyloid-β
and hyperphosphorylation of Tau protein, which is associ-
ated with Alzheimer’s disease [53]. Nilvadipine, an antag-
onist of the L-type calcium channel (LCC), inhibits the

accumulation of amyloid-β ; however, this does not occur
because of LCC inhibition, but rather other mechanisms.
Paris et al. demonstrated that the down-regulation of SYK
exerts an effect that is similar to an enantiomer of Nil-
vadipine ((-)-nilvadipine) for the clearance of amyloid-β
and reduction of Tau hyperphosphorylation [53]. Schweig
et al. demonstrated that in mice with overexpressing
amyloid-β , SYK activation occurred in the microglia. Fur-
ther, neurite degeneration was found to increase because
of the association between amyloid-β plaques and aging
[54]. These researchers also demonstrated that in mice
overexpressing Tau, SKY was activated in the microglia
while misfolded and hyperphosphorylated Tau was accu-
mulated in the hippocampus and cortex. Schweig et al.
demonstrated that SYK inhibition induces Tau reduction
in an autophagic manner [55]. Moreover, they demon-
strated that SYK acts as an upstream target in the mTOR
pathway and its inhibition induces Tau degradation by
decreasing the activation of mTOR pathway.
The 5th ranked putative target, PTK2B, is a key

gene in the mediation of synaptic dysfunction induced
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Table 2 Top 20 candidate repositioning drugs for Alzheimer’s disease

DRUG Overlaps between known targets and predicted targets # of overlaps

Regorafenib RET; FLT1; KDR; KIT; PDGFRA; PDGFRB; FGFR1; TEK; NTRK1; EPHA2; ABL1 11

Tamoxifen ESR1; ESR2; PRKCA; PRKCB; PRKCD; PRKCE; PRKCG; PRKCQ; PRKCZ; ESRRG 10

Ponatinib ABL1; KIT; RET; TEK; FGFR1; LCK; SRC; LYN; KDR; PDGFRA 10

Dasatinib ABL1; SRC; FYN; LCK; KIT; PDGFRB; EPHA2; BTK; FGR; LYN 10

Imatinib PDGFRB; ABL1; KIT; RET; NTRK1; CSF1R; PDGFRA 7

Brigatinib EGFR; ABL1; IGF1R; INSR; MET; ERBB2 6

Sorafenib PDGFRB; KIT; KDR; FGFR1; RET; FLT1 6

Sunitinib PDGFRB; FLT1; KDR; KIT; CSF1R; PDGFRA 6

Nintedanib FLT1; KDR; FGFR1; LCK; LYN; SRC 6

Pazopanib FLT1; KDR; PDGFRA; PDGFRB; KIT 5

Midostaurin PRKCA; KDR; KIT; PDGFRA; PDGFRB 5

Resveratrol ITGA5; ITGB3; SNCA; ESR1; AKT1 5

Diethylstilbestrol ESR1; ESRRG; ESR2; ESRRA 4

Tofacitinib TYK2; JAK2; JAK1; JAK3 4

Lenvatinib FLT1; KDR; FGFR1; KIT 4

Foreskin fibroblast (neonatal) FLT1; CSF2RA; PDGFRB; TGFB1 4

Baricitinib JAK1; JAK2; PTK2B; JAK3 4

Foreskin keratinocyte (neonatal) EGFR; CSF2RA; PDGFRA; TGFB1 4

Bosutinib ABL1; LYN; SRC 3

Estradiol valerate ESR1; ESR2; ESRRG 3

by amyloid-β in Alzheimer’s disease [56]. Salazar
et al. demonstrated that in a transgenic mice model of
Alzheimer’s disease, PTK2B deletion improves deficits in
memory and learning functions as well as synaptic loss
[56].
Although SOCS1 is the 78th ranked putative target, it

modulates cytokine responses by suppressing JAK/STAT
signaling to control inflammation in the CNS (central
nerve system) [57]. Thus, SOCS1may be a key therapeutic
modulator in Alzheimer’s disease.
GWAS and other sequencing technologies have identi-

fied over 20 genes that modify Alzheimer’s disease risk.
We obtained 29 genes listed in [58] and compared them
with our 187 genes. PTK2B and INPP5D were listed as
the overlap between the two gene sets. While as men-
tioned above, PTK2B is the 5th ranked strong candidate
gene, INPP5D was the 68th ranked putative gene in the
set of our 187 genes. INPP5D (Inositol Polyphosphate-5-
Phosphatase D) is selectively expressed in brain microglia
and likely a crucial player in Alzheimer’s disease patho-
physiology. Tsai et al. reported that INPP5D expres-
sion was upregulated in late-onset Alzheimer’s disease
and positively correlated with amyloid plaque density
[59].
Collectively, these findings indicate that our computa-

tional framework could successfully identify key genes

that may be novel target candidates for Alzheimer’s dis-
ease.

Promising repositionable drugs for Alzheimer’s disease
In our computational drug repositioning analysis, our
method predicted that tamoxifen (the second ranked can-
didate, see Table 2), an FDA-approved estrogen recep-
tor modulator for the treatment of hormone-receptor-
positive breast cancer patients, could serve as a potential
drug target for Alzheimer’s disease. As mentioned inWise
PM [60], estrogen therapy could protect neuronal cells
from cell death by modulating the expression of key genes
that inhibit the apoptotic cell death pathway. Based on a
nation-wide cohort study in Taiwan, Sun et al. reported
that patients with long-term use of tamoxifen exhibited a
reduced risk of dementia [61].
Our method also predicted that bosutinib (the nine-

teenth ranked target), an FDA-approved tyrosine-kinase-
inhibitor (TKI) drug (Bcr-Abl kinase inhibitor) for the
treatment of Philadelphia chromosome-positive (Ph+)
chronic myelogenous leukemia, may be a repositionable
drug for Alzheimer’s disease (see Table 2). Lonskaya
et al. reported that Bosutinib combined with nilotinib sys-
tematically modulates with immune system in the CNS
by inhibiting the non-receptor tyrosine kinase, Abl, to
remove amyloid and decrease neuroinflammation [62].
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Such findings indicates that TKIs, especially bosutinib,
could be potential repositionable drugs for the treatment
of early stage Alzheimer’s disease.
Among the predicted repositionable candidates, 19 are

immunosuppressive agents. These 19 candidates may
include promising repositionable drugs for Alzheimer’s
disease; this is because of the important role played
by inflammation in the mechanisms of Alzheimer’s dis-
ease. Among the 19 candidates, dasatinib (the fourth
ranked compound) may be the most promising candi-
date. Recently, Zhang et al. reported that senolytic therapy
(a combination of dasanitib and quercetin) could reduce
the production of proinflammatory cytokine and allevi-
ate deficits of cognitive functions in Alzheimer’s disease
mouse models, via the selective removal of senescent
oligodendrocyte progenitor cells [63, 64]. Furthermore,
the combined therapy of dasatinib and quercetin is now
registered in a clinical trial (ClinicalTrials.gov Identifier:
NCT04063124).
One limitation of our method was that the process

of identifying the putative target genes was dependent
on the drug taget gene database (i.e., the DrugBank
in this research). This means that there is a possi-
bility of bias in the known target genes because the
DrugBank contains the existing therapeutic drugs and
compounds which may have failed the clinical trials.
However, we could overcome this limitation by adding
new drug and target relationships, such as tau targeting
compounds.

Conclusions
In this study, we developed a deep autoencoder-based
computational framework and applied it to prioritize
putative target genes for Alzheimer’s disease. The method
identified key genes (e.g., DLG4, EGFR, RAC1, SYK,
PTK2B, SOCS1) associated with the disease mecha-
nisms. Furthermore, by using the putative targets, we
successfully inferred promising repositionable candidate-
compounds (e.g., tamoxifen, bosutinib, dasatinib) for
Alzheimer’s disease. Our method could be a powerful
tool for inferring potential repositionable drugs, espe-
cially those that could be used to treat Alzheimer’s
disease. Notably, our computational framework can
be easily applied to the investigation of novel poten-
tial therapeutic targets and repositioning compounds
for any disease. Accordingly, we anticipate that our
method will be used by large pharmaceutical compa-
nies that house large volumes of their own non-public
data.
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