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Transdifferentiation is a type of cellular reprogramming involving the conversion of one
differentiated cell type to another. This remarkable phenomenon holds enormous promise
for the field of regenerative medicine. Over the last 20 years techniques used to repro-
gram cells to alternative identities have advanced dramatically. Cellular identity is deter-
mined by the transcriptional profile which comprises the subset of mRNAs, and therefore
proteins, being expressed by a cell at a given point in time. A better understanding of the
levers governing transcription factor activity benefits our ability to generate therapeutic
cell types at will. One well-established example of transdifferentiation is the conversion of
hepatocytes to pancreatic β-cells. This cell type conversion potentially represents a novel
therapy in T1D treatment. The identification of key master regulator transcription factors
(which distinguish one body part from another) during embryonic development has been
central in developing transdifferentiation protocols. Pdx1 is one such example of a
master regulator. Ectopic expression of vector-delivered transcription factors (particularly
the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcrip-
tional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate
the developmental microenvironment, are employed to coax cells to adopt new identities
by indirectly regulating transcription factor activity via intracellular signalling pathways.
Both transcription factor-based reprogramming and directed differentiation approaches
ultimately exploit transcription factors to influence cellular identity. Here, we explore the
evolution of reprogramming and directed differentiation approaches within the context of
hepatocyte to β-cell transdifferentiation focussing on how the introduction of new techni-
ques has improved our ability to generate β-cells.

Introduction
The history of cell reprogramming, or the manipulation of cellular identity, spans a century of techno-
logical and conceptual innovation across developmental biology, biochemistry and medicine (for
reviews see [1,2]). Reprogramming techniques continue to evolve as we learn more about the develop-
mental and molecular cues which govern cellular differentiation and identity. Here, we discuss how
transcription factors, and their unique position as the gatekeepers of cellular identity, are exploited in
cell reprogramming protocols by exploring work focusing on one reprogramming paradigm — the
transdifferentiation of hepatocytes to pancreatic beta cells (β-cell). We consider how, over the last 20
years, advances in genetic engineering and cell culture techniques have improved the efficiency and
efficacy of the transdifferentiation process and brought us closer to a clinically relevant therapy for
type 1 diabetes (T1D). We examine how transdifferentiation protocols are evolving to ever more faith-
fully recapitulate normal developmental biology using increasingly sophisticated biomimetic techni-
ques and ectopic transcription factor expression.
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Cellular reprogramming refers to the erasure of epigenetic markers allowing for the remodelling of chroma-
tin, gene expression and ultimately cell identity. More specifically, cell reprogramming can be defined as the
process of effecting stable change to cellular identity through revision of the transcriptional profile (the comple-
ment of mRNA transcribed by a cell at a given point in time) via manipulation of epigenetic modifiers.
Reprogramming necessarily involves a switch from expression of one set of genes to another, where each gene
set represents a distinct cellular identity.
Yamanaka and Takahashi’s seminal 2006 work inducing pluripotency in differentiated cells to create the

now famous induced pluripotent stem cell (iPSC) and Gurdon’s work on somatic cell nuclear transfer (SCNT)
are examples of cellular reprogramming [3,4]. In these classical cases, cellular identity is regressed to a multipo-
tent state in response to exogenous pioneer transcription factors. In the case of Yamanaka and Takahashi these
were Oct4, Klf4, Sox2 and c-Myc (OKSM) [4]. Pioneer transcription factors are associated with the opening of
chromatin, permitting access to hitherto inaccessible regions of the genome by transcription factors [5,6].
Another category of cellular reprogramming refers to the conversion of one differentiated cell type to another
differentiated cell type, sometimes referred to as direct cellular reprogramming or transdifferentiation.
Transdifferentiation is defined as the stable conversion of one differentiated cell type to another, without the
requirement for an intermediate step in which a cell is regressed to a multipotent state (Figure 1) [7].
Transdifferentiation, does not require the administration of pioneer factors per se. Rather, protocols typically
rely on master regulator transcription factors to initiate a transcription cascade which likely involves the recruit-
ment of endogenous pioneer factors in the reprogramming process. For example, the pancreatic pro-endocrine
master regulator Neurogenin 3 (Ngn3) has been demonstrated to cooperate with the hepatic and pancreatic
pioneer transcription factor Forkhead Box Protein A2 (FoxA2) to facilitate autoinduction [8]. Studies examin-
ing the interconversion of hepatocytes and β-cells have revealed that the down-regulation of genes associated
with the starting cell type is required in order for genes associated with the desired cell type to be expressed
[9,10]. While master regulator and pioneer transcription factors act as the catalysts of change in the production
of iPSCs, in SCNT and in transdifferentiation their impact is ultimately maintained by the remodelling of chro-
matin by epigenetic modifiers including histone deacetylases and histone methyltransferases (for review see
[11,12]). In this mini-review we will limit our discussion to the instructive role of pancreatic master regulators
in liver to pancreas transdifferentiation and how the recapitulation of the in vivo environment using cell culture
techniques can augment their impact in the generation β-cells.

Transdifferentiation of liver to pancreas
Transdifferentiation has been demonstrated between several cell types and across germ layers including fibro-
blast to neuron [13], fibroblast to cardiomyocyte [14], pancreatic cell to hepatocyte [9] and fibroblast to hepato-
cyte [15]. The transdifferentiation of hepatocytes to β-cells represents one of the most clinically exciting cell
type conversions due to the potential impact on society of its successful translation to therapy [14]. β-cells are
the only physiologically relevant Insulin producing cells in the body. Rare spontaneously arising Insulin secret-
ing cells have been reported in the biliary epithelium [16]. Though these are not considered a significant source
of Insulin they might constitute an alternative source if they could be expanded [17]. T1D is caused by the
autoimmune destruction of β-cells in the pancreas [18]. In adult pancreas, β-cells are found in the islets of
Langerhans alongside other endocrine cell types; Glucagon secreting alpha (α)-cells, Somatostatin secreting
delta (δ)-cells, Pancreatic Polypepetide (PP) secreting PP-cells and Ghrelin secreting epsilon (ε)-cells. Today
Insulin therapy remains the frontline treatment for most T1D patients. Despite the effectiveness of modern for-
mulations [19,20], challenges around maintaining blood glucose levels within the healthy range (4.0 mmol/L to
5.4 mmol/L during fasting) over a lifetime means diabetic complications are commonplace. The resultant dysre-
gulation of glucose homeostasis has consequences for health including diabetic retinopathy, nephropathy and
neuropathy. Replacing those lost and exquisitely adapted β-cells is therefore the subject of intense research with
several cellular candidates being explored including stem cells [21], pancreatic exocrine cells [21,22] and hepa-
tocytes, the primary parenchymal cell of the liver. Proponents of the latter approach speak of the shared devel-
opmental lineage of liver and pancreas; both being derived from the foregut endoderm [23]. Furthermore, both
hepatocytes and β-cells rely on a common glucose sensing machinery. The components of which include the
Glucose Transporter 2 (GLUT2) [24] and the hepatic hexokinase enzyme Glucokinase [25]. Several transcrip-
tion factors are also common to both cell types including hepatocyte nuclear family (Hnf) members Hnf1α,
Hnf4α and Hnf6 [26], Haematopoietically Expressed Homeobox (Hhex) [27,28] and the pioneer transcription
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Figure 1. β-cell programming and reprogramming. Part 1 of 2

(A) Schematic representation of embryological differentiation from zygote to differentiated somatic cell (β-cell, hepatocyte), the

directed differentiation of OKSM iPSCs to β-cell and the transdifferentiation of hepatocytes to β-cell using pancreatic master

regulator transcription factors (Tgif2, Pdx1, Ngn3, NeuroD1, MafA). Black arrows indicate steps involved in the generation and

subsequent programming of iPSCs; (1) Somatic cells transfected with OKSM transcription factors are reprogrammed to a
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GATA Binding Protein 4 (GATA4) [29]. Moreover, the liver possesses the remarkable ability to regenerate
thereby representing a potentially replenishable source of cells for transdifferentiation [30].

Reprogramming strategies
The interconversion of hepatocytes and another type of pancreatic cell — the acinar cell, can occur in response
to carcinogens [31] and in liver cirrhosis [16,32]. Examples of an experimental pancreatic cell to hepatocyte
transdifferentiation include the conversion of the rat pancreatic cell line AR42J-B13 to a hepatocyte phenotype
in response to treatment with the synthetic glucocorticoid dexamethasone [9] and through feeding rats a
copper depleted diet in combination with a copper chelator [33,34]. Dexamethasone acts to repress the pancre-
atic phenotype and induce the hepatic phenotype through induction of the key regulatory transcription factor
CCAAT-Enhancer-Binding Protein Beta (C/EBPβ) [9,35]. When Pancreatic Duodenal Homeobox 1 (Pdx1) is
expressed in hepatocytes it suppresses C/EBPβ to promote the pancreatic phenotype [10]. Suppression of
hepatic genes is now recognised as a critical step in the transdifferentiation process. More recently the TALE
protein transcription factor TGFβ Induced Factor 2 (Tgif2) has been shown to similarly suppress the hepatic
phenotype and induce a pancreatic progenitor phenotype [36].
The transdifferentiation of hepatocytes to a β-cell like phenotype has been demonstrated with several tran-

scription factors alone and in combination in various models including mouse [37], Xenopus [38], primary
human cells [39] and a human hepatoma cell line [40]. Reprogramming methods are typically centred around
the administration of ectopic transcription factors, such as in liver to pancreas transdifferentiation, and in the
generation of induced pluripotent stem cells using the Yamanaka (OKSM) factors [4]. The reprogramming
process is subsequently fine-tuned through manipulation of the microenvironment to direct differentiation to a
desired phenotype [21]. Expression of ectopic transcription factors in the case of iPSCs, initiates broad tran-
scriptional remodelling with multiple downstream signalling cascades effected. Microenvironment manipulation
involves the use of small molecules and other environmental cues to act as triggers for activating intracellular
pathways and upstream effectors (likely master regulatory transcription factors). Both approaches ultimately
remodel transcriptional profiles through transcription factor activity. Figure 1 highlights differences in repro-
gramming to β cell approaches and endogenous and exogenous cues involved in their programming.

Ectopic expression of master regulatory transcription
factors to induce transdifferentiation
A master regulator transcription factor is, according to coiner Susumu Ohno, a ‘gene that occupies the very top
of a regulatory hierarchy,’ which, ‘by its very definition should not be under the regulatory influence of any
other gene’ [41]. While many genes considered to be master regulators are regulated in some way by other
genes, they are generally homeotic and thus responsible for initiating the development of specific organs or
tissues. Their relatively high position in the transcriptional hierarchy means they produce attributes considered
critical in defining a particular cell type. Chan and Kyba recently attempted to update the definition of a
master regulator to accommodate new science [42]. They imagined a gene that is (i) expressed at the inception
of a developmental lineage, (ii) participates in the specification of that lineage by regulating multiple

Figure 1. β-cell programming and reprogramming. Part 2 of 2

pluripotent stem cell state using Yamanaka factors (OKSM), (2) the resulting iPSC can then be treated with small molecules,

cytokines, morphogens and growth factors. Fate is directed toward an endoderm lineage, typically through activation of the

β-catenin/Wnt and SMAD signalling pathways (3). Pancreatic progenitors are then induced, typically using retinoic acid (RA) in

combination with a range of growth factors (EGF, KGF, FGF). Finally, (4) a β-cell phenotype is induced using various maturation

factors. A recent study used a cocktail including Anaplastic Lymphoma Kinase Inhibitor II (ALKi), Triiodo-L-Thyronine (T3),

PI3-K Inhibitor (XXI), ALK inhibitor LDN193189 (LDN) and vitamin C (Vc). Ectopic expression of pancreatic transcription factors

(Pdx1, MafA, Ngn3, Tgif2, NeuroD1) can induce or contribute to transdifferentiation to a β-cell phenotype. Direct (no

intermediary stage) and indirect (a dedifferentiated intermediary stage) routes are depicted. (B) β-cells reside in the islets of

Langerhans and are subject to a specific niche involving mechanical and chemical cues. Blood borne factors (including oxygen

(O2)), extra cellular matrix (ECM) components, neighbouring acinar, endocrine (α-cells, δ-cells, PP-cells, ε-cells), endothelial and

neuronal cells all contribute to this niche.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).582

Biochemical Society Transactions (2021) 49 579–590
https://doi.org/10.1042/BST20200219

https://creativecommons.org/licenses/by/4.0/


downstream genes and (iii) specifies the fate of cells when mis-expressed [42]. In terms of Chan and Kyba’s cri-
teria, the pancreatic master transcription factor Pdx1 is expressed in the foregut endoderm of the developing
embryo and is required for the development of the pancreatic bud [43,44]. Pdx1 is also critical to the mainten-
ance of adult β-cells through binding of TAAT motifs in the promoters of downstream pancreatic transcription
factors including Hnf1β, FoxA2, Ngn3 and MafBZIP Transcription Factor A (MafA) [45–47]. Critically, mice
lacking Pdx1 expression exhibit pancreatic agenesis demonstrating a key role in pancreatic development [48].
In a landmark study in 2000 Sarah Ferber and colleagues reported that the reprogramming of mouse hepato-

cytes to a β-cell lineage could be achieved simply via ectopic expression of adenoviral-mediated delivery of
Pdx1 [37]. Ectopic Pdx1 expression induced expression of the β-cell specific Insulin genes INS1 and INS2 as
well as Prohormone Convertase (PC1/3), a protease that cleaves Proinsulin to produce mature Insulin and
C-peptide [49]. Furthermore, cells were capable of glucose-stimulated insulin secretion (GSIS), a cardinal
feature of β-cell function, and ameliorated hyperglycaemia in a streptozotocin (STZ) model of diabetes in mice.
STZ is a β-cell specific toxin used to model T1D. Despite this success, levels of mature Insulin were ∼18 fold
lower in the livers of mice exposed to adenovirus expressing Pdx1 when compared with control pancreas [37].
Subsequent experiments revealed that the endocrine markers glucagon and somatostatin, the exocrine pancre-
atic marker amylase and the exocrine transcription factor p48 were also induced in response to Pdx1 expression
in the liver of both mouse and Xenopus [38,50]. These early experiments relied solely on an in vivo transcrip-
tion factor-based approach. Though promising, several hurdles hinder the translation to bedside therapy
including overcoming the risk of inflammatory responses triggered by viral vectors [51]. Furthermore, ectopic
expression of pancreatic genes have been shown to cause hepatic dysmorphogenesis [52] and fulminant hepa-
titis [53]. Interestingly and somewhat counterintuitively, these same immune responses have been shown to
contribute to the efficiency of transdifferentiation in vivo [54]. This possibly reflects the importance of active
Wnt signalling in conferring transdifferentiation propensity [55] as Wnt/β-catenin signalling is known to be
up-regulated in hepatocytes across the lobule in response to injury [56].
Ectopic expression of master regulatory transcription factors is still critical to our ability to transdifferentiate

from liver to pancreas [57]. Candidate transcription factors (Pdx1, Ngn3, MafA, Tgif2) have been targeted due
to having been identified as important in normal pancreatic development [36,48,58]. However, screening candi-
dates is a time consuming and costly process and differences in activity in vitro further complicates the process.
Bioinformatic approaches have been applied to this problem [59,60]. One such tool (Mogrify) combines gene
expression data (FANTOM5 [61]) with regulatory network data to predict transcription factors that might be
instructive in converting cell types. By identifying which transcription factors are most responsible for tran-
scriptional profiles associated with cell type researchers successfully predicted transcription factors confirmed
to induce reprogramming such as the use of MyoD1 in the conversion of fibroblasts to myoblast and OKSM
factors in the production of iPSCs from fibroblasts [62].

Polycistronic and hierarchical transcription factors
Following the success of early in vivo experiments [37,38,50] efforts focused on producing a mature β-cell
phenotype that could meet the demands of glucose metabolism both in terms of capacity (insulin production)
and reliability i.e. GSIS in response to repeated glucose challenges. Experiments in Xenopus using the Pdx1
orthologue XlHbox8 found success when combined with a constitutive transcriptional activator VP16 transcript
[38]. This raised questions around the requirement of co-activators to enable expression of Pdx1 in ectopic
tissues where such co-activators might be absent. Conversely, using transcriptional repressors for a particular
cell phenotype in combination with ectopic expression of transcription factors might aid in enhancing the
reprogramming process.
Researchers hypothesised that expression of transcription factors downstream of Pdx1, known to be present

in maturing β-cells, might more closely recapitulate normal development. Taking a combinatorial approach
might therefore be more effective at reprogramming. In 2003 the first study to utilise this approach investigated
the effects of Neuronal Differentiation Factor 1 (NeuroD1), a basic helix–loop–helix (bHLH) transcription
factor family member downstream of Pdx1 known to drive Insulin production in complex with Pdx1 and an
EGF family member Betacellulin (Btc), an EGF receptor ligand [63,64]. The combined expression of NeuroD1
and Btc was found to ameliorate hyperglycaemia in an STZ model with the combination outperforming
NeuroD1 or Btc alone. Pdx1 expression however was found to drive fulminant hepatitis, possibly as a result of
the broad and sustained expression of Pdx1 throughout the liver. This overexpression of Pdx1 repressed the
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hepatic phenotype causing fulminant hepatitis and hepatic agenesis [53]. This effect was not observed with
NeuroD1 or Ngn3 alone [10]. NeuroD1/Btc induced expression of upstream and downstream genes including
Pdx1, Ngn3, Pax4, Pax6, Nkx2.2, Nkx6.1 and Isl-1 and corroborated Ber’s observation of autoinduction, a
finding later confirmed by Banga et al. [65].
Ngn3 is a bHLH transcription factor downstream of Pdx1 which promotes exit from the cell cycle and is

critical for specification and differentiation of endocrine pancreas [2,66]. Transient expression of Ngn3 occurs
during the secondary transition (between mouse embryonic day (E)12.5–E15.5) of pancreatic development and
functions as a gatekeeper for endocrine fated cells [67]. Ablation of Ngn3 results in a failure to produce endo-
crine cells [58]. In 2009 the Chan lab [68] used ectopic Ngn3 in combination with Btc to induce production of
Insulin in vivo in the liver of a murine STZ model. Conversion towards a β-cell phenotype was observed in two
distinct cell populations — hepatocytes and putative bipotent progenitors (termed ‘oval’ cells). There was a
transient lineage switch in hepatocytes whereas oval cells exhibited a more prolonged lineage switch. This dif-
ference in potential perhaps reflects an insufficiency of transcription factors downstream of Pdx1 to bring
about a stable change in phenotype. Long term reprogramming had previously been noted following transient
expression using Pdx1 [50].
The combination of Pdx1, Ngn3 and MafA converts pancreatic exocrine tissue to an endocrine phenotype

[69]. MafA is a transcription factor known to be critical to the maturation of β-cells [46]. The same combin-
ation in vivo in mouse liver converted a Sox9 positive sub-population of hepatocytes to a β-cell phenotype [65].
Though suggested as likely ductular in origin, Sox9 has subsequently been reported to be expressed at low
levels in some periportal hepatocytes (representing ∼4.53% of the total hepatocyte population) [70]. This is in
conflict with the perivenous transdifferentiation pattern seen in many studies [55].
Important to normal development is the hierarchical and temporal context within which transcription

factors are expressed [46,58]. Berneman-Zeitouni and colleagues conducted a screen of sequentially expressed
combinations of Pdx1, Pax4 and MafA. They found that the order in which genes are expressed influences mat-
uration with the Pdx1–Pax4–MafA producing the highest number of mature phenotype β-cells determined by
GSIS and production of mature Insulin [71].
Tgif2 is expressed in the definitive endoderm progenitor pool where its expression is subsequently

up-regulated in pancreatic progenitors and down-regulated in hepatic progenitors [72,73]. Cerda-Esteban and
colleagues induced transdifferentiation of hepatocytes to a β-cell phenotype through ectopic expression of Tgif2
resulting in expression of a range of pancreatic genes including Pdx1 [36]. Ma and colleagues recently tested
the sequential lipid-based transfection of Tgif2, Pdx1, NeuroD1 and MafA mRNAs in primary mouse hepato-
cytes over four days. The authors compared results from protocols expressing Tgif2 alone and different combi-
nations of Pdx1, NeuroD1 and MafA [36]. They reported significant increases in Insulin production and GSIS
in particular when transcription factors were expressed sequentially and hierarchically. The authors suggest the
increased efficiency was in part due to increased plasticity in response to up-regulation of various Wnt signal-
ling pathway associated genes including the Wnt/Planar-Cell-Polarity pathway (PCP) genes VANGL and
CELSR as well the β-catenin dependent canonical Wnt signalling pathway suppressor Tle3. Interestingly Tcf7, a
β-catenin co-activator and Jnk (a protein downstream of the Wnt/PCP signalling pathway) were found to be
up-regulated in transfected cells. The authors suggest that remodelling of cell polarity may have contributed to
transdifferentiation efficiency. Given the known role of the canonical Wnt pathway in liver to pancreas transdif-
ferentiation [55] and known positive regulation of canonical Wnt by Tgif2 [74] as well as the conflicting data
with respect to Wnt pathway activation, it is possible that up-regulation of β-catenin dependent transcription
endowed these cells with increased plasticity.

Soluble factors and directed differentiation in vitro
In 2005 Sapir and colleagues were the first to demonstrate the in vitro transdifferentiation of human hepato-
cytes to a β-cell phenotype [39]. In vitro reprogramming presents new challenges as the extracellular milieu
containing endogenous survival factors is lacking. However, it does allow for greater control of the microenvir-
onment and identification of dependent variables. Hepatocytes were cultured with EGF and soluble vitamin B3
(nicotinamide). Each soluble factor had previously been shown to promote the β-cell phenotype [75,76]. The
effects of Pdx1 transfection were compared alone and in combination with soluble factors and revealed that
Insulin production in transdifferentiated β-cells increased by two orders of magnitude when co-treated with
EGF and nicotinamide [39]. Furthermore, the cells were capable of GSIS as well as containing dense core
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Insulin granules and the capacity to ameliorate an STZ model of diabetes when transplanted into mice compar-
able with previous in vivo transdifferentiation attempts [50]. By demonstrating the utility of soluble factors and
of autologous transplantation of ex vivo generated β-cells the authors paved the way for future ex vivo protocols
[39]. Later, the same group demonstrated that a Glucagon-Like Peptide (GLP) receptor agonist Exendin-4 similarly
enhanced the efficiency of the transdifferentiation process as well as maturation of β-cells [77].
Recently, Motoyama et al., screened a number of soluble factors in an effort to further improve the efficiency

of liver to pancreas transdifferentiation. This approach had been relatively underexplored within the context
of liver to pancreas transdifferentiation whilst extensively explored in stem cell differentiation protocols
[21,78–80]. Administration of eight soluble factors (N2 (human Transferrin, human Insulin, Progesterone,
Putrescine, sodium selenite), Exendin-4, L0685,485 (a Notch inhibitor) and Noggin (a TGFβ inhibitor) in
mouse bipotent hepatic progenitor cells promoted β-cell maturation, increasing intracellular C-peptide by
12-fold and INS gene transcription 1.5–2 fold when compared with β-cells produced using transcription factors
alone [78].
The canonical Wnt/β-catenin pathway activity in perivenous hepatocytes confers an increased capability to

transdifferentiate to a β-cell phenotype when compared with hepatocytes of the mid-lobular or periportal
regions [55]. The canonical Wnt/β-catenin pathway is known to be involved in the homeostatic renewal and
regeneration in response to injury across the liver [56]. Cohen et al. hypothesised that gene activity, down-
stream of Wnt signalling, serves to model chromatin in such a way as to confer plasticity in perivenous hepa-
tocytes and restrict plasticity in Wnt inactive hepatocytes. They utilised the histone deacetylase inhibitors
(HDACi) suberoylanilide hydroxamic acid and sodium butyrate to make available Wnt target genes and pan-
creatic genes through chromatin opening that would otherwise be repressed. An increase in the transdifferen-
tiation efficiency in HDACi treated cells in response to sequential adenovirus delivered Pdx1, MafA and
NeuroD1 was observed [55].

The 3D environment
The maintenance of cellular identity is contingent on the presence and integration of numerous factors
[81,82]. The cellular phenotype may in part be determined by cell–cell interactions and through interactions
with components of the ECM. Molecular and mechanical signals generated by the physical environment
influence transcription of genes and thus help to determine cellular identity. This chorus of signals evolves
synergistically with the developing embryo. Differentiating cells express and secrete different ECM proteins
(proteoglycans, glycoproteins, laminins and collagens) at different times during development. ECMs are
therefore at once a product and determinant of cell type. In the pancreas, these signals guide differentiation
from pancreatic precursors to β-cell [81]. Within the context of liver-pancreas transdifferentiation the role
of the 3D environment has been underexplored. Studies in the directed differentiation of stem cells
routinely use cell clustering and 3D culture techniques to enhance the maturation of iPSCs to a β-cell
phenotype [21,79,80]. Building on the success of their iPSC to β-cell differentiation regime [79] the Hebrok
lab explored how recapitulation of the in vivo situation may promote maturation in vitro. Hypothesising
that cell reorganisation and endocrine cell clustering are key features driving pancreatic development they
added a β-cell enrichment step prior to cell clustering. scRNA-seq and gene set enrichment analysis revealed
enhanced expression of metabolically mature β-cell genes associated with oxidative metabolic pathways
including oxidative phosphorylation, electron transport chain, TCA cycle and ATP biosynthesis when com-
pared with non-enriched clusters [21]. A recent study examined the ability of transdifferentiated β-cells to
form clusters on a 3D gelatin culture medium though ability to form clusters was used as a measure of
phenotype rather than as a treatment [57].
Proteomic analyses have compared hepatocytes cultured in 3D spheroid culture and ‘sandwich’ culture

(where cells are cultured between two layers of ECM (in this case a Collagen I substratum overlaid with a
Matrigel gel matrix) with traditional monolayer culture on an ECM substratum. 3D culture was superior in
maintaining the hepatic phenotype, while sandwich culture was superior to monolayer culture [84]. In vitro
liver-pancreas transdifferentiation studies have occasionally made use of ECMs in monolayer culture notably
fibronectin [39] and collagen 1 [36] while others used no ECM [57,78]. Avoiding ECM components that might
maintain a hepatic phenotype may benefit transdifferentiation protocols through promoting a degree of dedif-
ferentiation and plasticity. It is also important to consider attempts to recapitulate the ECM environment of the
pancreas.
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O2
O2 is essential to the survival of the developing embryo. Beyond its role in ATP production, low O2 tension
(PO2), or hypoxia, is sensed by cells via the pleiotropic hypoxia-inducible factor (HIF) pathway. Low PO₂ in
early embryonic pancreas inhibits proliferation in embryonic stem cells through regulation of cyclin-dependent
kinases inhibitors p21 and p27 [82,85,86]. Hypoxia permits the cytoplasmic dimerisation of bHLH HIF alpha
subunits (HIF1α, HIF2α, HIF3α) with constitutively expressed bHLH beta-subunits. The heterodimers subse-
quently translocate to the nucleus where they complex with CBP/p300 to bind HIF response elements within
gene promotors to directly affect transcription of target genes. These include Vascular Endothelial Growth
Factor A (VegfA) leading to pancreatic vascularisation at ∼E13.5 [87]. At ∼E13.5 the pancreas begins to
become vascularised leading to a negative feedback loop and the suppression of HIF target gene transcription
[87,88]. High PO2 after E13.5 promotes proliferation of pancreatic exocrine precursors and the differentiation
of endocrine cells [88–90]. Ngn3, whose expression is inversely regulated by HIF signalling, is up-regulated
during this period through repression of Hes1 [88]. In adult pancreas the endocrine compartment is well vas-
cularised and receives 10-fold the O2 of the surrounding exocrine pancreas [91]. The role of pO2 in β-cell dif-
ferentiation has been explored in vitro using iPSCs and demonstrated to contribute to the differentiation to a
β-cell phenotype including metabolic maturation (up-regulation of mitochondrial respiration) and the concur-
rent increases in insulin production and improved glycaemic control when transplanted to an STZ model of
murine diabetes [90,92]. Together these studies suggest a key role in the induction and subsequent maintenance
of endocrine function.
Given its instructive role in pancreatic development, the manipulation of O2 as a programming tool is histor-

ically conspicuous by its absence from nearly all liver-pancreas transdifferentiation protocols [82]. Only recently
have efforts addressed the role of O2 in β-cell differentiation. Meivar-Levy et al. explored the idea that the vas-
culature may contribute to the in vivo maturation of the transdifferentiated β-cell phenotype. By transplanting
transdifferentiated β-cells co-cultured with human bone marrow mesenchymal stem cells and endothelial
colony-forming cells they found that co-cultured cells exhibited enhanced maturation marker expression,
increased vascularisation of transplants and improved glycaemic control in an STZ model [93].

Conclusion
Advances in technology, genetic engineering and cell culture techniques have greatly enhanced our ability to
reprogram cells. Data from scRNA-Seq, epigenomic and proteomic projects, combined with advances in bio-
informatic modelling are able to reveal, with ever greater detail, factors that may contribute to cellular repro-
gramming [60,62]. Improvements in the resolution with which we can interrogate cell function are challenging
old assumptions while dogmas around the permanence of cellular identity have given way to a recognition of
the fundamental roles epigenetics and plasticity play in determining cell identity [37]. The field of regenerative
medicine continues to draw inspiration from nature to find ways to refine our ability to direct cell differenti-
ation and transdifferentiation. By paying close attention to the environment in which β-cells exist in nature we
may continue to enhance the maturation of β-cells in the laboratory. Future research should focus on pursuing
this approach and consider the impact of hitherto underexplored aspects of the pancreatic environment has on
β-cell identity including the roles of O2, the 3D environment and soluble factors.
Transcription factor-based approaches have yielded early success in the reprogramming of hepatocytes to

β-cells. The present challenge is to discover how to maintain β-cells along the correct trajectory as they descend
(or traverse) Waddington’s landscape to their mature state [94]. A more holistic approach to cell culture, taking
lessons from directed differentiation protocols, may help greatly in this. The combination of high-resolution
high content technologies and faithful recapitulation of the healthy human pancreas will likely continue to
yield improvements in the generation of β-cell as we edge closer to a clinically relevant therapy for T1D.

Perspectives
• Type 1 diabetes represents a growing global healthcare burden. Current treatments fail to miti-

gate many of the complications. This unmet clinical need requires more effective treatment
options. Transdifferentiation of liver to pancreas is one such option.
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• The last 20 years has seen steady progress in the reprogramming of hepatocytes to β-cells for
use as a therapy in type 1 diabetes. Improvements in our ability to recapitulate the in vivo
environment has led to greater efficiency and functionality in generated β-cells.

• Future research should seek to even more accurately recreate the internal milieu of the pan-
creas in order to generate a mature cellular phenotype. Factors to be considered include the
extra cellular matrix composition, oxygen tension, addition of soluble factors as well as the
temporal expression of appropriate transcription factors.
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