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Abstract: Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes,
hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty
liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated
that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD
was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we
analyzed the significant metabolites of microbiota against AFLD via the network pharmacology
concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially,
AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized
for protein–protein interaction (PPI) networks and signaling pathway analyses. Then, we performed
a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing
the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-
signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost
six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network
analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4);
however, CYP1A2 had no associations with the other targets. The bubble chart showed that the
PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism
with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising
agent to bind stably to RELA (known as NF-Kb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt
signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM
networks. In conclusion, we showed that the Icaritin–RELA complex on the PI3K-Akt signaling
pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing
crucial evidence for further research.

Keywords: alcoholic liver disease (ALD); network pharmacology concept; PI3K-Akt signaling
pathway; bacterium MRG-PMF-1; RELA; Icaritin

1. Introduction

Alcoholic liver disease (ALD) has a causal relationship with the excess consumption
of alcohol, which can be accumulated as excessive fats in the liver [1]. The liver is the
primary organ that metabolizes alcohol, the damage of which can lead to the loss of liver
function [2,3]. Excessive alcohol intake can cause alcoholic fatty liver disease (AFLD),
hepatitis, fibrosis, cirrhosis, and even hepatocelluar carcinoma, which is the most severe
liver damage associated with alcohol consumption [4].
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Steatosis is an initial response to overdrinking, and it is expressed by the accumulation
of fat in hepatocytes [5]. Steatosis can develop steatohepatitis, which gives birth to severe
inflammatory liver injury [6].

Then, steatohepatitis can progress to fibrosis due to the deposition of an excessive
extracellular matrix [7]. Fibrosis is defined as the inceptive stage of liver scarring, the ag-
gravation of which can develope into cirrhosis [8]. To be specific, cirrhosis is a pathological
stage exposed highly to hepatocellular carcinoma [9]. Thus, the progressive development of
AFLD results in liver failure as an irreversible condition. Commonly, liver damage induced
by alcohol may be recovered if abstinence is maintained persistently; as it were, alcohol
cessation might be an optimal treatment against AFLD [10]. Currently, as an alternative
therapy, metadoxine with potent alcohol-clearing effects from the blood has been utilized
to treat alcohol-related liver disease, which is given through intravenous formulation [11].

In recent years, gut microbiota treatments have been considered as another alternative
medicine that provides favorable therapeutic efficacy for fatty liver patients [12]. Previous
studies demonstrated that diverse metabolites produced from gut microbiota might be
agents to ameliorate fatty liver disorders, particularly by regulating the pharmacologi-
cal mechanism(s) related to the immune system [13,14]. The polyphenolic metabolites
converted by the gut microbiota might have beneficial effects on the host: antidiabetic,
antiobesitic, and antiatherosclerotic effects [15].

Noticeably, flavonoids dampen reactive oxygen species (ROS), cholesterol synthesis,
and apoptosis in hepatocytes [16]. The gut–liver axis is a crosstalk passage among the gut,
its microbiota community, and the liver, generating the integration of signaling transduced
by nutritional, hereditary, and environmental causes [17]. Therefore, we suggest that the
exploration of metabolites from the gut microbiota can be a significant process to obtain
promising therapeutic agents against ALD. In addition, the application of networks is
an insightful frame for merging complex biological information such as protein–protein
interactions (PPIs), metabolic networks, and functions of metabolites [18]. PPI network
analysis is an effective methodology for drug repurposing, suggesting evidence about
causal factors between targets that perform particular functions [19]. More importantly,
we constructed microbiota-signaling pathways-targets-metabolites (MSTM) networks to
identify the relative importance of each node. We conducted this study based on AFLD,
because AFLD in ALD is the first alarming effect induced by excessive alcohol consumption.
Therefore, this research aims to pioneer pharmacological mechanism(s) of gut microbiota
metabolites in AFLD.

2. Hypothesis

The metabolites from the gut microbiota were identified by the gutMGene database,
indicating that targets related directly to the metabolites were meta-analyzed by the Simi-
larity Ensemble Approach (SEA) and SwissTargetPrediction (STP). The overlapping targets
between gutMGene and AFLD associated with the meta-analyzed targets were considered
the core targets against AFLD. We hypothesize that the core targets are important thera-
peutic elements to confirm the function on a key metabolite. Based on this hypothesis, we
performed MDT to identify the most stable metabolite(s)–target(s) complex in a hub signal-
ing pathway. Thus, we postulated that the gut microbiota-produced metabolite(s) bound
most stably to a target on a hub signaling pathway are crucial indicators in treating AFLD.

3. Methods and Materials

The metabolites from the gut microbiota were retrieved by gutMGene (http://bio-
annotation.cn/gutmgene/) (accessed on 21 May 2022). We utilized the Similarity En-
semble Approach (SEA) (https://sea.bkslab.org/) (accessed on 21 May 2022) [20] and
SwissTargetPrediction (STP) (http://www.swisstargetprediction.ch/) (accessed on 22 May
2022) [21] to conduct the meta-analysis on the metabolites. AFLD targets were obtained
by DisGeNET (https://www.disgenet.org/) (accessed on 23 May 2022) and OMIM (https:
//www.omim.org/) (accessed on 24 May 2022). The core targets were analyzed by STRING

http://bio-annotation.cn/gutmgene/
http://bio-annotation.cn/gutmgene/
https://sea.bkslab.org/
http://www.swisstargetprediction.ch/
https://www.disgenet.org/
https://www.omim.org/
https://www.omim.org/
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bioinformatics platform (https://string-db.org/) (accessed on 25 May 2022). We performed
PPI network and MSTM analyses via R Package. The workflow of this study is as follows.

Step 1: Identification of metabolites from the gut microbiota via gutMGene.
Steps 2 and 3: Identification of targets related to the metabolites via the SEA and STP

databases. The metabolites were input into the SEA and STP databases in SMILES format.
Step 4: Identification of AFLD targets via DisGeNET and OMIM.
Step 5: Identification of overlapping targets between Steps 2 and 3 and Step 4. The

overlapping targets were identified by VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/) (accessed on 25 May 2022) [22].

Step 6: Identification of core targets between Step 4 and targets via gutMGene.
Step 7: The construction of PPI networks from the core targets. Information on the

target networks was identified by STRING (https://string-db.org/) (accessed on 25 May
2022) [23].

The PPI networks were visualized by the R package.
Step 8: The construction of a bubble chart to identify a hub-signaling pathway against

AFLD. Based on the expressed gene ratio, the bubble chart was constructed by R Package.
Step 9: The first screening of the significant metabolites was based on Topological Polar

Surface Area (TPSA) < 140 Å2 or Lipinski’s rule. SwissADME (http://www.swissadme.ch/)
(accessed on 25 May 2022) was utilized to identify the physicochemical properties of drug-
likeness about metabolite(s). The toxicological evaluation was confirmed by the ADMETlab
2.0 platform (accessed on 25 May 2022) [24].

Step 10: The second screening via MDT based on the threshold (<—6.0 kcal/mol) or
the lowest Gibbs energy (the greatest negative value) of each metabolite. The metabolites
were downloaded as. Sdf format from PubChem, which were converted into.pdb format
via PyMOL. The .pdb format was converted into .pdbqt format to prepare for MDT via the
AutoDockTools-1.5.6 tool. Then, the PDB IDs of the target(s) were identified by RCSB PDB
(https://www.rcsb.org/) (accessed on 26 May 2022). MDT was performed to evaluate the
affinity of metabolite(s)-target(s) by utilizing AutoDockTools-1.5.6.

The docking site was set up with a cubic box on the center: RELA (known as NF-Kb)
(x = 23.285, y = 12.431, z = 86.636). The grid box size of the active site was set to x = 40 Å,
y = 40 Å, and z = 40 Å. The identification of 2D binding interactions was performed by
LigPlot+2.2. (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html)
(accessed on 27 May 2022) [25].

Step 11: Construction of the MSTM. The MSTM networks were visualized by R
Package. The most significant components against AFLD were based on the degree of
value.

The degree value of the microbiota, signaling pathway, target, or metabolite represents
the edge numbers of the microbiota, signaling pathway, target, or metabolite in the MSTM
network.

Taken together, the relationships of microbiota, signaling pathways, targets, and
metabolites were constructed with Microsoft Excel and then incorporated into R Package
to assemble the network of metabolites related to AFLD.

The workflow of this study is displayed in Figure 1.

https://string-db.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
http://www.swissadme.ch/
https://www.rcsb.org/
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html
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Figure 1. The workflow of this study. 

4. Results 
A total of 208 (metabolites) were retrieved from the gutMGene database, targets of 

which were identified by the SEA (1256) and STP (947) databases (Supplementary Table 
S1). The number of 668 overlapping targets was identified by the SEA (1256) and STP (947) 
databases (Figure 2A) (Supplementary Table S1). The overlapping targets (24) were ob-
tained between the overlapping 668 targets and the targets (94) related directly to AFLD, 
and then the final overlapping targets (6) were identified between targets (223) from gut-
MGene and 24 targets (Figure 2B,C) (Supplementary Table S1). 
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A total of 208 (metabolites) were retrieved from the gutMGene database, targets of
which were identified by the SEA (1256) and STP (947) databases (Supplementary Table S1).
The number of 668 overlapping targets was identified by the SEA (1256) and STP (947)
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database. (B) The number of overlapping 24 targets between the 668 targets and AFLD-related targets
(94 targets). (C) The number of the final overlapping 6 targets between the 24 targets and gut human
targets (223 targets).

In the PPI networks, CYP1A2 did not interact with the other five targets (PPARA,
TLR4, COX-2, IL6, and RELA) and comprised five nodes and 10 edges (Figure 3).

The nine signaling pathways were directly associated with the progression of AFLD,
suggesting that these signaling pathways might be the modes of action against AFLD.
Additionally, RELA (the key target) in the MSTM network was directly enriched in all nine
signaling pathways by the PI3K-Akt signaling pathway as a hub signaling pathway against
AFLD. Three metabolites (Icaritin, lacto-N-tetraose, and quercimeritrin) which bound
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stably to the PI3K-Akt signaling pathway were identified; however, we removed two
metabolites (lacto-N-tetraose and quercimeritrin) due to a violation of Lipinski’s rule. Thus,
we confirmed that Icaritin (Figure 5) is a promising metabolite based on physicochemical
properties and toxicity via the SwissADME and ADMETlab platforms (Table 1).
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Figure 5. The structure of Icaritin.

Table 1. The toxicity parameters of Icaritin.

Parameters Metabolite

Icaritin

hERG (hERG blockers) Non-blockers
Rat oral Acute Toxicity Negative

Carcinogenecity Negative
Eye corrosion Negative

Respiratory toxicity Negative
LD50 (LD50 of acute toxicity) 5.914 mg/kg

Additionally, MDT demonstrated that Icaritin (Gibbs energy: −10.0 kcal/mol) bound
stably to RELA, which is associated with the PI3K-Akt signaling pathway (Table 2) (Figure 6).
MSTM network analysis showed that Bacterium MRG-PMF-1, the PI3K-Akt signaling path-
way, RELA, and Icaritin were the most significant components in treating AFLD (Figure 7)
(Table 3).

Table 2. The binding energy and amino acid residues interacted with Icaritin–RELA (known as
NF-Kb) complex.

Grid Box
Hydrogen

Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem
ID

Binding
Energy

(kcal/mol)
Center Dimension Amino Acid

Residue
Amino Acid

Residue

RELA (PDB
ID: 2O61) Icaritin 5318980 −10.0 x = 15.616 size_x = 40 Arg305 Val248, Lys218,

Gln306

y = −22.641 size_y = 40 Lys272, Arg33,
Arg187

z = −18.824 size_z = 40

Baohuoside I 5488822 −9.7 x = 15.616 size_x = 40 Arg1011 Glu222, Lys221,
Gln241

y = −22.641 size_y = 40
z = −18.824 size_z = 40

8-Prenylnaringenin 480764 −9.5 x = 15.616 size_x = 40 Lys272, Lys218,
Arg187

Gln306,
Arg246, Phe307
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Table 2. Cont.

Grid Box
Hydrogen

Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem
ID

Binding
Energy

(kcal/mol)
Center Dimension Amino Acid

Residue
Amino Acid

Residue

y = −22.641 size_y = 40
Val248,
Arg305,
Asp217

z = −18.824 size_z = 40

Equol 91469 −8.4 x = 15.616 size_x = 40
Asn186,
Arg305,
Gln306

Ala192,
Asp217,
Lys218

y = −22.641 size_y = 40
Val248,
Phe307,
Arg187

z = −18.824 size_z = 40

Secoisolariciresinol 65373 −8.4 x = 15.616 size_x = 40 Arg305,
Gln306

Arg33,
Arg187,
Lys218

y = −22.641 size_y = 40
Arg246,
Phe307,
Gln247

z = −18.824 size_z = 40 Val248

Naringenin
chalcone 5280960 −8.3 x = 15.616 size_x = 40 Arg33,

Asn186

Phe307,
Gln306,
Arg305

y = −22.641 size_y = 40 Arg187
z = −18.824 size_z = 40

3,4-Dihydroxy-
trans-stilbene 10176710 −7.5 x = 15.616 size_x = 40 Gln306

Phe307,
Val248,
Lys218

y = −22.641 size_y = 40
Asn186,
Ala192,
Asp217

z = −18.824 size_z = 40 Arg305
2,3-

Dihydroxypropyl
(E)-3-(3,4-

dihydroxyphenyl)prop-
2-enoate

5315606 −7.2 x = 15.616 size_x = 40 Arg246
Gln306,
Lys272,
Lys241

y = −22.641 size_y = 40 Phe307
z = −18.824 size_z = 40

Caffeic acid 689043 −6.6 x = 15.616 size_x = 40
Gln306,
Arg305,
Arg33

Val248,
Phe307

y = −22.641 size_y = 40
z = −18.824 size_z = 40
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Figure 6. The 3D and 2D diagram of Icaritin (PubChem ID: 5318980) on RELA (PDB ID: 2O61). 
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9 hsa04933: AGE-RAGE signaling pathway in diabetic com-
plications 
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2 IL6 8 
3 TLR4 5 
4 COX-2 4 
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1 Phenylacetic acid 2 
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naling pathway drives anti-inflammatory effects by inhibiting NF-κB [31]. (7) Hypoxia-
inducible factor-1 (HIF-1) signaling pathway: HIF-1 aggravates lipid droplet buildup, 

Figure 7. MSTM networks (75 nodes and 181 edges). Blue circle: gut microbiota; red circle: signaling
pathway; orange circle: target; green circle: metabolite.
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Table 3. The degree of value on the MSTM network.

No. Microbiota Degree of Value

1 Bacterium MRG-PMF-1 97
2 Lactobacillus paracasei JS1 97
3 Lactobacillus acidophilus ATCC 4357 97
4 Eubacterium limosum 97
5 Enterococcus durans EP1 93
6 Enterococcus durans EP2 93
7 Enterococcus durans EP3 93
8 Enterococcus durans M4-5 93
9 Bacteroides fragilis ATCC 23745 82

10 Akkermansia muciniphila ATCC
BAA-835 82

11 Lactobacillus rhamnosus GG 82

12 Faecalibacterium prausnitzii
A2<U+2013>165 82

13 Akkermansia muciniphila 82

No. Signaling pathways Degree of Value

1 hsa04151: PI3K-Akt signaling
pathway 13

2 hsa04621: NOD-like receptor
signaling pathway 13

3 hsa04066: HIF-1 signaling pathway 13

4 has04620: Toll-like receptor signaling
pathway 13

5 hsa04064: NF-kappa B signaling
pathway 9

6 hsa04657:IL-17 signaling pathway 8

7 hsa04625: C-type lectin receptor
signaling pathway 8

8 hsa04668: TNF signaling pathway 8

9 hsa04933: AGE-RAGE signaling
pathway in diabetic complications 8

No. Targets Degree of Value

1 RELA 9
2 IL6 8
3 TLR4 5
4 COX-2 4

No. Metabolites Degree of Value

1 Phenylacetic acid 2
2 3,4-DHS 2
3 1,3-Diphenylpropan-2-ol 2
4 Baohuoside I 2
5 Isoquercitrin 2
6 Quercimeritrin 2
7 Naringenin chalcone 2
8 (20S)-Protopanaxadiol 2
9 Protopanaxadiol 2

10 10-Oxo-11-octadecenoic acid 2
11 Enterodiol 2
12 Equol 2
13 Caffeic acid 2
14 AC3350 1
15 Apigenin 1
16 Ethyl phenyllactate, (-)- 1
17 p-Cresol sulfate 1
18 5-HIAA 1
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Table 3. Cont.

19 Norathyriol 1
20 Baicalin 1
21 4-Hydroxyphenylacetic acid 1
22 Dihydroresveratrol 1
23 Hydroxyquercitrin 1
24 Quercitrin 1
25 Lunularin 1
26 Phenylacetylglutamine 1
27 Acifran 1
28 Phloretic acid 1
29 Acetic 1
30 LMFA02000055 1
31 Baicalein 1
32 A50644 1
33 Phloretin 1
34 Chrysin 1
35 Acacetin 1
36 Demethyltexasin 1
37 Luteolin 1
38 Genistein 1
39 Tretinoin 1
40 Diosmetin 1
41 Ponciretin 1
42 Kaempferol 1
43 8-Prenylnaringenin 1
44 Icaritin 1
45 1-Caffeoylglycerol 1
46 Secoisolariciresinol 1
47 D-Mannose 1
48 Diosgenin 1
49 Lacto-N-tetraose 1

5. Discussion

The results of the bubble chart suggested that the nine signaling pathways might be
therapeutic mechanisms that ameliorate AFLD. The relationships of the nine signaling path-
ways with AFLD are concisely expounded as follows. (1) AGE-RAGE signaling pathway in
diabetic complications: The AGE-RAGE interaction accelerates the accumulation of fat in
the liver, which causes inflammation, fibrosis, and other disorders of fatty liver disease [26].
It follows that the inhibition of the AGE-RAGE signaling pathway might be a therapeutic
strategy against AFLD. (2) Tumor necrosis factor (TNF) signaling pathway: TNFα can
stimulate the liver inflammation that generates liver fibrosis; however, the function of
TNFα in liver disease has not been completely elucidated [27]. (3) Interleukin 17 (IL-17)
signaling pathway: IL-17A significantly regulates alcohol-induced hepatic steatosis linked
directly to inflammatory responses [28]. (4) C-type lectin receptor (CLR) signaling path-
way: C-type lectin receptors such as Dectin-1, Dectin-2, and Dectin-3 are signal receptors
that recognize pathogen-associated molecular patterns (PAMPs); in particular, Dectin-1 is
overexpressed in hepatic fibrosis [29]. (5) NOD-like receptor signaling pathway: NOD-like
receptor proteins are known to control innate immune responses against cellular dam-
age [30]. (6) PI3K-Akt signaling pathway: The inhibition of the PI3K-Akt signaling pathway
drives anti-inflammatory effects by inhibiting NF-κB [31]. (7) Hypoxia-inducible factor-1
(HIF-1) signaling pathway: HIF-1 aggravates lipid droplet buildup, which can boost the
metabolism of fatty acids [32]. (8) NF-κB signaling pathway: NF-κB effectors stimulate
lipogenesis in hepatocytes, which is activated in AFLD [33,34]. (9) Toll-like receptor (TLR)
signaling pathway: TLRs are implicated in hepatic inflammation, and an understanding of
the mechanism might be manifested as a new therapeutic target [35].
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The MSTM network suggested that the components directly related to therapeutic
effects on AFLD consist of 13 microbiota, 9 signaling pathways, 4 targets, and 49 metabolites.
Based on their degrees of value, Bacterium MRG-PMF-1 (97), PI3K-Akt signaling pathway
(12), RELA (9), and Icaritin (1) were the most significant elements for alleviating AFLD.

Additionally, Lactobacillus paracasei JS1 and Lactobacillus acidophilus ATCC 4357
with the same degree of value as Bacterium MRG-PMF-1 can produce equol with anti-
inflammatory effects and function as alleviators of digestive disorders, respectively [36–38].
Notably, a study demonstrated that PI3K/Akt inhibitors might be a therapeutic strategy
for the alleviation of fatty liver damage induced by ethanol, suppressing autophagic
degradation of lipid bodies [39]. RELA (known as NF-κB) has a characteristic relevance
in the inflammatory pathways such as alcoholic-driven liver stress [33,40]. Icaritin is a
metabolite that is produced via Bacterium MRG-PMF-1, and has potent antioxidant and
anti-inflammatory properties to prevent liver damage [41,42].

From a systemic viewpoint via network pharmacology, this study initially elaborates
on the key microbiota, critical signaling pathways, significant targets, and crucial metabo-
lites against AFLD. Comprehensively, we have analyzed the uppermost components by
integrating networks to expound the therapeutic elements against AFLD. Given the limi-
tations of the database, the indicated four factors are based on data mining; however, the
MSTM network represents crosstalk between the host and microbiota. Finally, this study
requires further clinical trials to verify its therapeutic benefits based on scientific evidence
from this research.

6. Conclusions

In summary, this study provides promising components for treating AFLD via microbiota-
based analysis of the network pharmacology concept. In this analysis, we revealed that
Bacterium MRG-PMF-1, which produces Icaritin, bound stably to RELA to inhibit PI3K-
Akt signaling pathway. Our findings also contribute to revealing the therapeutic value of
metabolites from microbiota, which needs further validation in clinical trials.
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