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Abstract: In this article, we study activity recognition in the context of sensor-rich environments. In
these environments, many different constraints arise at various levels during the data generation
process, such as the intrinsic characteristics of the sensing devices, their energy and computational
constraints, and their collective (collaborative) dimension. These constraints have a fundamental im-
pact on the final activity recognition models as the quality of the data, its availability, and its reliability,
among other things, are not ensured during model deployment in real-world configurations. Current
approaches for activity recognition rely on the activity recognition chain which defines several steps
that the sensed data undergo: This is an inductive process that involves exploring a hypothesis
space to find a theory able to explain the observations. For activity recognition to be effective and
robust, this inductive process must consider the constraints at all levels and model them explicitly.
Whether it is a bias related to sensor measurement, transmission protocol, sensor deployment topol-
ogy, heterogeneity, dynamicity, or stochastic effects, it is essential to understand their substantial
impact on the quality of the data and ultimately on activity recognition models. This study highlights
the need to exhibit the different types of biases arising in real situations so that machine learning
models, e.g., can adapt to the dynamicity of these environments, resist sensor failures, and follow the
evolution of the sensors’ topology. We propose a metamodeling approach in which these biases are
specified as hyperparameters that can control the structure of the activity recognition models. Via
these hyperparameters, it becomes easier to optimize the inductive processes, reason about them,
and incorporate additional knowledge. It also provides a principled strategy to adapt the models to
the evolutions of the environment. We illustrate our approach on the SHL dataset, which features
motion sensor data for a set of human activities collected in real conditions. The obtained results
make a case for the proposed metamodeling approach; noticeably, the robustness gains achieved
when the deployed models are confronted with the evolution of the initial sensing configurations.
The trade-offs exhibited and the broader implications of the proposed approach are discussed with
alternative techniques to encode and incorporate knowledge into activity recognition models.

Keywords: human activity recognition; inductive bias; meta-learning; hyperparameter optimization;
sensor-rich environments; sensor characteristics; sensor deployments; body sensor networks

1. Introduction

Activity recognition aims to provide accurate and opportune information based on
people’s activities and behaviors [1]. It is of utmost importance in many applications
ranging from patient monitoring systems [2], ambient assisted living [3], etc. Tracking daily
activities and providing, for example, real-time feedback to patients with obesity, diabetes,
or cardiovascular diseases as well as up-to-date reports to clinicians has the potential to
enhance the health system [4–7]. Similarly, energy consumption in large infrastructures
and housings could be monitored and regulated based on the real-time tracking relative to
human activities [8].

Sensor rich environments. A growing number of domains is witnessing the development
of sensor-rich environments powered by the ever-increasing pervasiveness of sensing devices.
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An important notion that characterizes these environments is that of coverage provided by
the sensing nodes encompassing the deployment. This notion is essential for allowing the
capture of user movements in an unambiguous manner. In this sense, integration of the
diverse sensing modalities plays a key role via three broad goals: increasing completeness,
conciseness, and correctness of data [9]. This notion of coverage is linked to (i) the intrinsic
capabilities of each sensor to cover a surface and the way this is performed. It is then
linked to (ii) the way different sensing nodes are placed on the body (in the case of body
deployments) and in the environment in which the user has to evolve (in the case of non-
corporeal deployments). This poses roughly two challenges: the first one is related to the
sensors’ placement (and displacement from an initial configuration) [10], and the second
is related to the heterogeneity of the sensors deployments [11], i.e., the proprietary and
non-proprietary solutions (both in on-body and non-corporeal deployments) that hinder
the process of integration. Both issues have an important impact on the notion of coverage
which determines the quality and robustness of the final activity recognition models.

Constraints related to the sensing devices. In addition to coverage issues, many kinds
of constraints related to sensing devices have to be taken into account when designing
activity recognition models. These constraints fall generally into three major parts, which
can be organized in a bottom-up fashion. The first includes sensing constraints related to
the intrinsic characteristics of the sensing devices (precision, sensitivity, dynamic range,
thermal drift, etc.) [12]. The second includes energy and computational constraints that are
related to the individual sensing nodes and the way they modulate the measurement (sam-
pling frequency, wake-up/sleep modes, etc.) in order to comply with these constraints [13].
The third includes the collective dimension of the sensor deployments where many dif-
ferent challenges related to transmissions arise including power, computation, security
and interference, material constraints, robustness, continuous operation, and regulatory
requirements [14,15]. Along with the coverage issues, these constraints have an important
impact on the final activity recognition models as the quality of the data, its availability,
and its reliability, among other things, are not ensured.

Dynamic selection of inductive biases. Current approaches for activity recognition are
based on the activity recognition chain [16], which defines several steps that the sensed
signals undergo. This is an inductive process that involves exploring a hypothesis space to
find a hypothesis (or theory) able to explain the observations. Often, the hardest problem
in this process is how to choose the hypothesis space in such a manner that it contains a
satisfactory hypothesis towards which we can converge rapidly, i.e., using a small number
of examples [17]. The choice of inductive biases, e.g., preprocessing filter, segment size,
feature set, etc., has a significant impact on this problem. In addition to the challenges of
coverage and the constraints related to detection devices, environments rich in sensors
and the phenomena to be detected are subject to change during the actual deployment of
activity recognition models in real situations. While setting inductive biases that apply to
specific problems may be of benefit in controlled environments, performing this operation
during the early stages of the activity recognition chain in real-world environments will
inevitably result in inefficient exploration of the hypotheses space. Worse yet, the final
hypothesis that will be chosen may not explain the learning examples. A natural solution is
to delay the selection of the inductive biases as late as possible and to maintain competing
hypotheses able to quickly adapt to new situations by means of a dynamic selection of the
inductive biases. This results in different implications from an operational point of view,
namely, maintaining a set of inductive bias alternative candidates (the domain) and rapidly
exploring the space in order to elect the appropriate hypothesis (amount of supervision
with learning examples). In other words, in order to be efficient, the exploration of the
hypothesis space must be structured by exploiting a priori knowledge on the deployments
of sensors and the phenomenon itself.

Use-case and evaluation. In order to illustrate the advantages of the dynamic selection
of inductive biases, we present a use-case pertaining to the SHL dataset [18], one of the most
recent and featured datasets in human activity recognition literature. This dataset is a highly
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versatile and is a precisely annotated dataset dedicated to mobility-related human activity
recognition (3000 h of locomotion data). In contrast to related representative datasets such
as [19–22], the SHL dataset provides a sensor-rich environment featuring, simultaneously,
multimodal and multilocation locomotion data recorded in real-life settings. We evaluate a
first model based on the traditional activity recognition chain instantiated by using neural
networks-based architectures. We then illustrate the dynamic inductive bias selection using
the proposed approach based on the optimization of architecture’s hyperparameters [23].
Extensive experiments make the case for the proposed meta-modeling approach and show
the robustness gains achieved when the deployed models are confronted with evolution
of the initial sensing configurations (ablation of an increasing number of sensors from
the initial deployment). In particular,the incorporation of derived knowledge about the
sensors’ deployment allows easy adaptation using little or no supervision at all.

Organization of the paper. This paper builds upon and extends our previous work on
human activity recognition [23–25] and is organized as follows. In Section 2, we introduce
the context of human activity recognition, the activity recognition chain, and we clarify the
scope of our work. Section 3 focuses on the notion of coverage characterizing the sensor
deployments and their topologies. In Section 4, we describe the proposed metamodeling
approach. Section 5 describes the case study and the used dataset while the evaluation
results are presented in Section 6. Detailed discussions of the proposed approach and
future directions are provided in Sections 7, and Section 8 concludes this manuscript.

2. Human Activity Recognition

There are various types of human activities. Depending on their complexity, the
authors in [26] categorized human activities into four different levels: gestures, actions,
interactions, and group activities. In this paper, we focus on the two first levels. Gestures,
e.g., stretching an arm and raising a leg, are elementary movements of a user’s body part,
while actions, e.g., walking and waving, are a sequence of multiple gestures organized
temporally. Interactions and group activities involve multiple users and objects and can be
tackled via the composition of models describing the former two levels.

Many different approaches have been introduced in the literature to tackle human
activity recognition. These approaches differ in terms of the type of sensing strategies
that are used to capture body movements. These approaches can be categorized into
(i) radio-frequency/device-free, (ii) vision and depth images, and (iii) inertial sensors.
Device-free activity recognition refers to the use of the signals generated by standard
wireless equipment to capture users’ movements in a non-invasive manner [27]. Vision
and depth images-based methods utilize spatio-temporal characteristics extracted from
video sequences and the 3D motion feature to describe the action [28]. In the case of inertial
sensor-based approaches, on-body sensors placed in different parts of the body generate
streams of observations, such as acceleration, which describe similarly the performed
actions. In this paper, we are mainly interested in the latter approach, but the proposed
perspective can apply similarly for the two other ones.

For example, Figure 1 illustrates a body area network dedicated to patient monitoring
and encompassing various sensing nodes responsible for capturing the vital signs as well
as the patient’s activities. This figure also illustrates a set of wearables for biomedical
sensing, including activity trackers, smartwatches, smart clothing, patches/tattoos, and in-
gestibles/smart implants. In addition to medical applications, many different applications
observe the opportunity of leveraging the context provided by human activity recognition
models including assisted living and home monitoring, and sports and leisure applications.
We refer the reader to the literature review performed in [29].
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Figure 1. Examples of concrete wearable devices, along with their typical on-body location, can be
found in body area networks dedicated to patient monitoring. Both vital signs and body movements
can be captured by these kinds of devices.

2.1. Background on Activity Recognition Chain

The activity recognition chain [16] is a widely used machine learning-based inductive
process in the literature that is used to model human activities (our phenomenon of interest).
It is composed of five different steps: data acquisition, preprocessing, segmentation, feature
extraction, and classification. Figure 2 illustrates the steps of the activity recognition chain as
defined in [16]. As presented in the following, the goal of these steps is to build a model
capable of recognizing human activities (outputs) from the streams of observations (inputs).

Data acquisition Data pre-processing Segmentation Feature extraction Classification

Figure 2. Activity recognition chain defined in [16] which includes the following (from left to right): data acquisition, signal
preprocessing, segmentation, feature extraction, classification, and evaluation stages. From [30].

2.1.1. Data Acquisition

Given a collection S = {s1, . . . , sM} of M sensors (also referred to as data generators,
data sources, or data acquisition systems) carried by the user during daily activities to
capture the body movements, each sensor si generates a stream xi = (xi

1, xi
2, . . .) of obser-

vations of a certain modality, which can comprise several channels, e.g., the accelerometer
modality contains three channels corresponding to x, y, and z axes. The data acquisition
step encompasses many aspects, including the following: (1) The intrinsic characteristics of
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the sensors, which are determined by their various components involved in transforming
the sensed phenomenon into an electrical signal (See Figure 3). In particular, as depicted
in Figure 4, the design of analog-to-digital (ADC) converters obeys a trade-off involving
simultaneously conversion accuracy, transformation speed, and power, which ultimately
results in mitigating some hard-coded inductive biases in the activity recognition chain.

The spatial structure of the sensors deployment and the induced views and the
phenomena being monitored (human activities in our case) are accentuated by the sensors’
capabilities and the perspectives (views) through which the data are collected (position in
space, position on the body, video capture modalities, acceleration, gravity, etc.) [23,31–33].
Moreover, the incomplete and redundant perspectives can confuse the concepts between
them and reduce the performance of the learning independently of the algorithm used. This
aspect is further detailed in Section 3; (3) Often, in addition to being involved in sensing
the phenomenon, the data acquisition systems, in their extended definition as computing
platforms, also take part in the subsequent computations of the activity recognition chain.
This brings in questions related to the orchestration and optimal deployment of these
computations [34].
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Figure 3. Schematic of the typical units that compose a sensor (from left to right): transducer,
amplifier, analog-to-digital converter (ADC), ADC postcorrection, and digital signal processing (DSP)
units. The measurement of a phenomenon (measurand) as simple as temperature by a sensor is in
and of itself an inductive process involving many biases. The action of the physico-electrical process
of the sensor (via the units it encompasses) generates an electrical signal proportional to the physical
phenomenon being measured. We, actually, do not have access to the physical phenomenon itself but
to a representation provided through a transfer function deduced mathematically and that is specific
to the physico-electrical process of the sensor. The choice of this process constitutes a bias similar to
the elaboration of the transfer function.

2.1.2. Preprocessing

In this step, the streams of observations generated by each sensor are “enhanced” in
the perspective of the features extraction step that follows in the activity recognition chain.
The preprocessing step renders the features extraction step more robust by, e.g., removing
outliers, boosting frequencies or portions of the spectrogram, canceling noise components
of the signal, etc. In the case of device-free activity recognition approaches, the authors
in [35,36], for example, provide a comprehensive list of preprocessing methods widely
used in the literature, each of which can be suitable in different situations and involves
trade-offs. Some of these methods include High-pass filter (pre-emphasizing), Hampel
filter [37], Phase sanitization [38], phase calibration [39], Butterworth low-pass filter [40],
STFT (Heisenberg uncertainty principle [41]), Savitzky–Golay filter [42], and Birge–Massart
filter [43].

2.1.3. Segmentation

During this step, the preprocessed observations streams are divided into segments
that will likely contain the activities in its entirety or in part depending on the segmentation
procedure and its hyperparameters.

Figure 3. Schematic of the typical units that compose a sensor (from left to right): transducer,
amplifier, analog-to-digital converter (ADC), ADC postcorrection, and digital signal processing (DSP)
units. The measurement of a phenomenon (measurand) as simple as temperature by a sensor is in
and of itself an inductive process involving many biases. The action of the physico-electrical process
of the sensor (via the units it encompasses) generates an electrical signal proportional to the physical
phenomenon being measured. We, actually, do not have access to the physical phenomenon itself but
to a representation provided through a transfer function deduced mathematically and that is specific
to the physico-electrical process of the sensor. The choice of this process constitutes a bias similar to
the elaboration of the transfer function.

2.1.2. Preprocessing

In this step, the streams of observations generated by each sensor are “enhanced” in
the perspective of the features extraction step that follows in the activity recognition chain.
The preprocessing step renders the features extraction step more robust by, e.g., removing
outliers, boosting frequencies or portions of the spectrogram, canceling noise components
of the signal, etc. In the case of device-free activity recognition approaches, the authors
in [35,36], for example, provide a comprehensive list of preprocessing methods widely
used in the literature, each of which can be suitable in different situations and involves
trade-offs. Some of these methods include High-pass filter (pre-emphasizing), Hampel
filter [37], Phase sanitization [38], phase calibration [39], Butterworth low-pass filter [40],
STFT (Heisenberg uncertainty principle [41]), Savitzky–Golay filter [42], and Birge–Massart
filter [43].

2.1.3. Segmentation

During this step, the preprocessed observations streams are divided into segments
that will likely contain the activities in its entirety or in part depending on the segmentation
procedure and its hyperparameters.

Many different types of segmentation procedures exist in the literature around ac-
tivity recognition and beyond, including time-based, event-based, and energy-based [44].
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Various works studied the effects of different segment lengths on the recognition perfor-
mances empirically [45,46]. For example, Figure 5 shows the effect of window size on the
performances (f-measure) of activity recognition models.

Issues with time-based segmentation are not circumscribed to the choice of the seg-
ment’s length but are also tightly linked to the feature extraction step. Activities that last
for variable time constitute a critical issue. For example, fixing the segment path can result
in spectral leakage that impacts the subsequent steps, which noticeably includes the feature
extraction step from the spectral representation of the signal. Indeed, spectral leakage
causes the spectrum to be noisy, impacting the correct determination of frequencies, etc.
Issues go beyond the impact of the segment’s length on the extracted features. Many
studies showed the impact related to the overlap of windows on the classification and
evaluation steps [47,48]. A growing line of research considers the issues that stem from the
dynamic nature of the sensor deployments regarding segmentation.

2.1.4. Feature Extraction

Features are extracted from the preprocessed segments obtained in the previous
steps and not from the entire stream of observations. The resulting features are largely
impacted by the hyperparameters controlling the preceding steps. In [49], for example,
the authors investigated the influence of preprocessing operations on features extracted
from accelerometers in both time and frequency domains. The obtained results indicate
that the preprocessing methods have to be carefully chosen as their impact is significant
and disparate. Another example is related to the impact of segmentation on the resulting
frequency domain representation, which is obtained using the short-time Fourier transform.
Indeed, two effects at least can be mentioned: on the one hand, the trade-off between
resolution and the Heisenberg uncertainty principle and, on the other hand, spectral
leakage [50].

Figure 4. The analog-to-digital converter is one of the units encompassing the sensors. Its design
accounts for various trade-offs which ultimately impact generated measurements and performances.
Trade-offs in conventional analog-to-digital converter architectures between (a) speed and accuracy,
(b) speed and power, and (c) accuracy and energy, as reported in [51]. (d) Spider diagram of analog-
to-digital architectures (different color lines), design trade-off, and associated applications (in blue).
From [52].

2.1.5. Classification and Evaluation

The final step of the activity recognition chain consists of the classification of each
individual segment of features, obtained before, into its correct class. With regards to
the inductive process evoked in the introduction, this step corresponds to electing a
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hypothesis that best explains the learning examples (or the segments of features) that are
supplied along with the hypotheses space, i.e., the set of inductive biases ranging from
the sensing and deployment models to the learning algorithm that we chose including
the preprocessing, segmentation, and feature extraction steps (See Section 4.2 for further
details). As stated, setting the hypothesis space in advance and electing a unique hypothesis,
which is supposed to hold during the entire model deployment in real-world environments,
are not suitable procedures. For example, the authors in [53] were interested in the highly
dynamic nature of wearable sensor deployments in the case of health monitoring, where
changes in the data acquisition step, i.e., sensing platform (e.g., sensor upgrade) and
platform settings (e.g., sampling frequency and on-body sensor location), cause activity
recognition models to degrade in terms of performances.

In order to confront these aspects, we take a metamodeling approach where the
aforementioned inductive biases are exhibited and handled by using suitable methods,
which are detailed in the following sections. We focus particularly on metamodeling the
data acquisition part of the activity recognition pipeline. The following section will describe
aspects related to the sensors deployments: their topology, structure of interactions, sensor
coverage, heterogeneity, etc.

Figure 5. Effect of window size (in seconds) on the recognition performances (F-measure) of an
activity recognition model trained on various daily activities such as walk, stand, and jog. Depending
on the activity being monitored, the effect of the window size on the final model’s performances
varies to a large extent. From [45].

3. Sensor-Rich Environments

The coverage problem in wireless sensor networks can be broadly defined as a measure
of how efficiently a phenomenon is monitored by the sensor nodes. This issue has generated
much interest over the years and resulted in the definition of many coverage protocols [54].
The notion of coverage is linked to (i) the intrinsic capacities of each sensor to cover a
surface and how this is conducted. It is also linked to (ii) the way in which the various
sensors are placed on the body, in the case of on-body deployments, or with respect to
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the environment in which the user is supposed to operate, in the case of non-corporeal
deployments. We will explore these aspects by using deployment examples.

This section illustrates some examples of sensor-rich environments, noticeably on-
body sensor deployments used in the context of human activity recognition. We explore an
essential notion that defines the coverage score of a given sensor deployment, namely the
sensing capabilities of individual sensory nodes. We also explore the collective dimension
of the sensors materialized by the topology or the placement of the sensing nodes in space.
We will focus on the placement of sensors in the case of on-body deployments and the long
line of research that has studied this aspect.

3.1. Examples of on-Body Sensor Deployments

Within the framework of the recognition of human activities, sensors are generally
placed on the following body positions: waist, thigh, necklace, wrist, chest, hip, lower back,
trunk, shanks, ankle, pocket, hand, back pack, torso, ear, etc. (see Figure 6). A long line of
research work has focused on the problem of optimal placement and combination of sensors
on the body in order to achieve satisfactory levels of recognition, and many reviews report
on this, such as [10,55]. As an example, Gjoreski et al. [56] studied the optimal location
of accelerometers among waist, chest, thigh, and ankle for posture recognition and fall
detection. The authors found that several sensor configurations are sufficient to recognize
most postures and fall events correctly. More generally, several works, e.g., [10,57–62],
provided empirical evidence on the substantial improvements obtained using accelerometer
placed on the waist for the recognition of many activities such as sitting, standing, walking,
lying in various positions, running, stair ascent and descent, vacuuming, and scrubbing.
Additionally, acceleration data generated by this particular position are identified to be
invariant across positions [63].

In many empirical evaluations comparing multi-sensor versus single-sensor deploy-
ments for activity recognition, e.g., [64,65], the settings leveraging multiple sensors tend
to perform far better than their counterparts. However, different on-body locations and
their various combinations for activity recognition result in varying performances, and no
consensus tends to emerge.

Ear

Chest

Waist

Knee

Ankle

Arm

Wrist

Figure 6. Various locations of wearable devices on the body. Illustration of a subject wearing the
wearable sensors on the ear, chest, arm, wrist, waist, knee, and ankle.
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3.2. Sensor Deployment Topology

Sensor deployment topology (or the collective dimension of the sensors) is essential
for activity recognition models. It defines the coverage model for optimal data acquisi-
tion. It ensures redundancy, robustness, and data security. It is also crucial in wireless
sensor networks by its impact on node energy, communication bandwidth, and quality of
service [66].

Sensing Capabilities (Space Coverage)

Each sensor node has a limited sensing range and can only cover a limited physical
area of the network field. Sensing models are abstraction models that are used to reflect
the ability of the sensors to perceive the phenomenon of interest as well as the quality of
the generated measures. Indeed, depending on the sensing model featured by a given
sensor, the activity recognition model would have access to partial aspects of the monitored
phenomenon. For example, the sensing models can be classified into either directional or
omnidirectional sensing models based on the direction of the sensing range. Moreover,
based on the sensing ability, sensing models can be broadly classified into deterministic
and probabilistic sensing models [54].

Reconciling Various Views/Perspectives

The placement of sensors makes it possible to provide various perspectives, and the
use of several modalities makes it possible to provide several points of view. Here, the
problem is to define the appropriate locations for each modality [23]. The problem is more
complex than in the case of non-corporeal deployments because the positions of the sensors
between them change according to the movements. This can generate ambiguity and
misinterpretations if the relative movements of the sensors between them are not taken
into account.

Sensors Placement and Displacement

Even if the wearable sensors should be correctly attached to the body, vibration or
displacement (both intentional and unintentional) of those sensors cause signal interfer-
ence and, thus, the deterioration of measurement accuracy [10]. Various studies were
conducted in the literature and different approaches were proposed to cope with these
issues [10,67–71]. For example, the authors in [68] considered the robustness of activity
recognition models relative to sensor displacement and proposed a set of heuristics that
allows the implementation of displacement-tolerant activity recognition models. Simi-
larly, in [69], the authors investigated how various sensor displacement scenarios (ideal-
placement, self-placement by the user, and induced displacement) impact the performances
of activity recognition models.

Heterogeneity of Deployments

Another problem is related to the lack of interoperability among different sensor
deployments. This problem is, in particular, due to the existence of different incompat-
ible solutions (owners and non-owners). This makes it difficult both to integrate new
deployments and their constant evolution [11,72,73]. Another source of heterogeneity is
related to the incompatibility of detection solutions. In [72], the authors investigated in a
systematic manner sensor-specific, device-specific and workload-specific heterogeneities
using 36 smartphones and smartwatches consisting of 13 different device models from
four manufacturers. Their results indicate that on-device sensor and sensor handling
heterogeneities significantly impair the performances of activity recognition models.

3.3. Variety of Sensing Modalities

In addition to the on-body sensor placement, which we saw above substantially im-
pacting the performances of activity recognition models, the sensing modalities, such
as acceleration, gravity, ambient pressure, etc., are also impactful and, thus, of utmost
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importance for the design of sensor-rich environments. In a similar manner with the
on-body sensor placement, sensing modalities are found to be beneficial when sensor-
rich environments simultaneously provide them in multitudes. One of the predominant
sensing modalities used in the literature is obviously acceleration, which gained consen-
sus among the empirical studies conducted around activity recognition [69,74]. On the
other hand, various research studies investigated the impact of combining different other
modalities [75–80]. The authors in [76], for example, studied activity recognition by using
a setting that includes eight sensors: a six-degree-of-freedom accelerometer, microphones
sampling 8-bit audio at 16 kHz, IR/visible light, high-frequency light, barometric pressure,
humidity, temperature, and compass. In [75], motion sensors (accelerometers, gyroscopes,
and magnetic field sensors) have been combined with ultrasonic transmitters in order to
track hands for activity recognition in a maintenance scenario.

Performance Characteristics of Sensors

The performance characteristics of a sensor are just as (or more) important than its
basic function, which is to detect and gauge the phenomenon of interest [12]. In addition
to the type of sensing modality, the choice of an appropriate sensing device and its perfor-
mance characteristics for a given application is one of the most important issues sensor-rich
environment designers are faced with. The transfer function defines the relation between
the input of the sensing device and its output. Depending on many different factors,
sensing characteristics defined by this transfer function may vary substantially. Moreover,
depending on the application or the phenomenon being monitored, many different prop-
erties are considered with varying importance by the designers, including span, accuracy,
frequency response, sensitivity, repeatability, resolution, and reliability. Other factors such as
costs are also considered. In particular, in the case of mobile computing and applications
based on the use of smartphones, the considered sensors are often low-cost, resulting in
poor calibration in many occasions, inaccuracies, and limitations in the granularity and
range, compared to using dedicated inertial measurement units [72,72,81,82].

The aforementioned aspects are sources of uncertainty when activity recognition
models are deployed into real-world sensor-rich environments. Basic settings very often
ignore these sources of uncertainty and assume that the model will face ideal deployment
scenarios. To better cope with these real-world deployment scenarios, we propose to model
these sources of uncertainty via a surrogate (or meta) model, which will act as a proxy and
guide smaller models to learn suitable inductive biases and adapt easily to new situations.

4. Dynamic Inductive Bias Selection

Our framework is framed in a two-levels where a surrogate model or metamodel is
used to encode the data acquisition step of the learning pipeline as well as the deployment
scenarios. In contrast, simpler models, which are actually deployed, are designed with
guidance from the metamodel (Figure 7). These surrogate models have larger capacities in
terms of complexity, representativeness, richness, and flexibility in the sense of Vapnik’s
definition [83], and, more importantly, involve slower extraction of information. Framed in
the multi-level structuring of meta-learning, these (surrogate) models are used to guide
smaller models, which, on the contrary, have generally smaller capacity and can be trained
rapidly. Conceptually, the idea behind our approach is to remove the barrier that imposes
us to fix the inductive biases beforehand (and subsequently the hypothesis space to explore)
and instead leverage surrogate models that guide the selection of inductive biases.
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Figure 7. Framework of the proposed approach.

4.1. Section Organization

In the following, we will first contextualize the components of the known activity
recognition chain [16] with regard to the inductive bias learning and the need for selecting
them dynamically (Section 4.2). We then present a background on dynamic inductive bias
selection [84] and an overview of the long line of research on this paradigm (Section 4.3).
Finally, we turn to one instantiation of the dynamic selection of inductive bias paradigm,
surrogate models. In our use-case, we encode models of the deployments as well as those of
the phenomena into surrogate models (Section 4.4).

4.2. Background on Supervised Learning

According to the PAC model of machine learning and its variants [85–87], supervised
learning models typically take the following general form: the learner is supplied with a
hypothesis spaceH and training data {(x1, y1), . . . , (xm, ym)} drawn independently accord-
ing to some underlying distribution P on X × Y. Based on the information contained in
the training data, the learner’s goal is to select a hypothesis h : X −→ Y fromH minimizing
some measure erP(h) of expected loss with respect to P (for example, in the case of squared
loss erP(h) := E(x,y)∼P(h(x)− y)2). In such models, the learner’s bias is represented by
the choice ofH; ifH does not contain a good solution to the problem, then, regardless of
how much data the learner receives, it cannot learn [84]. In general, models of supervised
learning include the following: an input space X and an output space Y, a probability
distribution P on X×Y, a loss function ` : Y×Y −→ R (empirical risk minimization), and
a hypothesis spaceH which is a set of hypotheses or functions h : X −→ Y.

In the case of human activity recognition, one possible mapping is that X would be
the set of observations generated by the on-body sensor nodes, Y would be the set of target
activities (walk, run, etc.), and the distribution P would be peaked over different episodes
during which users perform one of the target activities. The learner’s hypothesis spaceH
would be a class of neural networks mapping the input space X to Y. The loss in this case

would be discrete loss: `(y, y′) :=
{ 1 if y 6= y′

0 if y = y′.
Figure 8 illustrates the basic learning setting where the learner is supplied with a fixed

set of inductive biases. These inductive biases are the set of all factors that collectively
influence hypothesis selection. In the case of human activity recognition from a stream of
observations, these factors include for example, the preprocessing, segmentation, feature
extraction, and other steps which are part of the activity recognition chain (see Section 2.1).
The biases form the ground upon which the learner can choose one hypothesis that explains
the examples it sees. In a sense, the biases guide the learner in electing one hypothesis
rather than another. Two important features of bias are strength (reduction factor of hy-
pothesis space) and correctness [88]. In addition to the definition of the space of hypothesis
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and the algorithm that searches for the optimal hypothesis, the learner is supplied with
learning examples.

In many real-world situations, however, fixing the biases has a clear disadvantage,
particularly when the topology of the sensor deployment evolves or the quality of the
sensing nodes are impacted by environmental effects. A trade-off emerges, therefore,
between fixing the inductive biases in early stages of the activity recognition models and
allowing for a loose specification of these biases, which also has clear disadvantages. One
intermediate solution would be to maintain concurrent hypotheses spaces that can be
searched for rapidly in order to find the most appropriate hypothesis and inductive biases
that apply for the encountered learning configuration.

Figure 8. Basic learning setting where the learner is supplied with a fixed set of inductive biases.
The inductive biases guide the learner in searching for the hypothesis that explain best the set of
learning examples.

4.3. Background on Dynamic Inductive Bias Selection

As mentioned, sensor-rich environments are characterized by dynamicity. For exam-
ple, in addition to constant evolution, sensors deployments are often subject to packets
loss and heterogeneity, among many other issues. While fixing inductive biases applying
to specific problems can be advantageous in controlled environments, performing this
operation during early steps of the activity recognition chain in such environments (see
Figure 9) inevitably results in inefficient hypothesis space exploration; even worse, the final
hypothesis that is elected may fail to explain the learning process. A natural solution is to
delay the selection of the inductive biases as late as possible and to maintain concurrent hy-
potheses which can cope rapidly with new situations. This results in different implications
operationally speaking, namely, maintaining a set of alternative inductive bias candidates
(the domain) and exploring the space rapidly in order to elect the appropriate hypothesis
(amount of supervision with learning examples). In other words, the exploration of the
hypothesis space should be structured by leveraging a priori knowledge about the sensor
deployments and the phenomenon itself.

In [84], the author proposed a model of bias learning where rather than fixing a
unique hypothesis space to search for a satisfactory solution, the learner is supplied with
many different hypothesis spaces and, thus, many biases, which could apply to many
different problems in the environment. This involves, for the learner, first selecting the most
appropriate hypothesis space and then searching for a solution within this space. Thus,
in order to enable the learner to learn the bias and select the most appropriate hypothesis
space, it is supplied with a family or set of hypothesis spaces H := {H}. Formally, a
learning to learn or bias learning problem consists of the following:

• An input space X and an output space Y (both of which are separable metric spaces);
• A loss function ` : Y×Y −→ R;
• An environment (P , Q) where P is the set of all probability distributions on X×Y,

and Q is a distribution on P ;
• A hypothesis space family H = {H}where eachH ∈ H is a set of functions h : X −→ Y.
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In the bias learning model proposed in [84], the learner is embedded in an environment
of related tasks, e.g., face recognition, character recognition, etc., and, thus, requires fairly
dissimilar inductive biases. Here, we rather consider learning configurations that describe
the same phenomena (a same task) which evolves itself but also in terms of the sensor
deployments used to capture it. More formally, according to the notation in [84] adapted to
the problem we are interested in, the set of learning settings that are likely encountered
in real-life deployments is represented by a pair (P , Q). P is the set of all probability
distributions on X × Y, i.e., P is the set of all possible learning problems or all possible
learning scenarios corresponding to a particular configuration of the sensor deployment,
and Q is a distribution on P . Q can control, for example, the various scenarios that the
activity recognition model will likely encounter in real-life deployment settings. In the
original framework, the distribution Q is defined to control the learning problems in the
sense of multi-task learning the system is likely to encounter.

Figure 9. (left) Sensor-rich environment depicting a deployment of sensors surrounding a phenom-
ena of interest. (center) Data repository where the fixed nature of the inductive biases used during the
data generation process is highlighted. (right) The different components of the traditional learning
processes. Learning processes in the case of sensor-rich environments deal very often with evolving
and non-fixed settings materialized by the sensor deployments as well as the phenomenon of interest.
This contrasts with the traditional setting where inductive biases are fixed beforehand and assumed
to remain relevant during the entire deployment.

The framework that we propose consists precisely in modeling the distribution Q via
a surrogate model or metamodel, which mimics the behavior of the true distribution as
closely as possible while being computationally cheaper to evaluate. In particular, we focus
on the data acquisition step and the network of interactions that arise between the sensing
nodes of the deployments. Using adequate assumptions, the surrogate model allows us to
infer the behavior of the distribution in various situations.

4.4. A Surrogate Model for the Data Acquisition Step

With the dynamic nature of sensor-rich environments, we have to delay the selection
of the inductive biases as late as possible and maintain concurrent hypotheses that can cope
rapidly with new situations or scenarios, and we need models that learn and adapt quickly
to new settings, new users, new activities, etc. Figure 10 illustrates this idea. Models of
both the deployments as well as those of the monitored phenomena are highlighted. A
subsidiary question that we may ask is whether we need to evaluate the activity recognition
model on every single scenario that it may encounter during deployment or find other
ways to make it adapt rapidly to these scenarios which, we recall, could potentially be
encountered by the model for the first time. Evaluating the learning pipeline (in particular,
the data acquisition step) for every possible situation according to the distribution Q
is unfeasible as this distribution could be very complex. Using a surrogate model has
the advantage of providing us with a fairly close sense of the true distribution while
being computationally feasible. Indeed, under suitable assumptions, sufficient exploration
budget, and appropriate sensitivity analysis, the surrogate model can inform us and
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guide the deployed learning models to better cope dynamically with the environments
where they are deployed by using appropriate inductive biases. These metamodels allow
us to capture some form of continuity in the space of inductive biases from a reduced
number of actually explored instances and extrapolate the properties of the inductive
biases to the configurations that the learners will face during actual deployment. This
notion of continuity was studied in [89] in the case of neural networks loss function. In the
following, we describe the ingredients for constructing surrogate models (Section 4.4.1). In
the subsequent sections, we present an instantiation of the proposed framework. In this
instantiation, we consider the data acquisition step of the activity recognition pipeline. In
particular, we focus on the network of interactions between the sensing devices.

Figure 10. In the proposed framework, we are no longer required to fix the inductive biases be-
forehand as in the case of the traditional setting. The models describing both the deployment of
sensors (in red) and the monitored phenomena itself (in green) serve to guide the learning process by
providing the adequate inductive biases dynamically. More formally, the distribution Q can control
the various scenarios that the activity recognition model will likely encounter in real-life deployment
settings, such as the evolution of the deployment topology, the sensing platform, etc. As illustrated,
the distribution Q can also control the evolution of the monitored phenomena.

4.4.1. Ingredients of the Surrogate Models

A surrogate model is an approximation of the original computational modelM that
is computationally cheaper for evaluation and built from a limited set of realizations of the
original model. The approximation assumes some regularity of the model and some general
functional shape [90]. Figure 11 illustrates the process of surrogate model construction.
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Figure 11. Global framework for uncertainty quantification [91]. This framework is used to model the distribution Q
controlling the various scenarios that the activity recognition model will likely encounter in real-life deployment settings.

The process of surrogate model construction consists of the following components
which are executed in sequence [90]:

• Step A consists in defining the model and associated criteria that should be used to
assess the system under consideration, which could be a concrete physical system or,
in the case of activity recognition pipeline, a cyber-physical system. In our instantia-

Figure 11. Global framework for uncertainty quantification [91]. This framework is used to model the distribution Q
controlling the various scenarios that the activity recognition model will likely encounter in real-life deployment settings.
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The process of surrogate model construction consists of the following components
which are executed in sequence [90]:

• Step A consists in defining the model and associated criteria that should be used to
assess the system under consideration, which could be a concrete physical system or,
in the case of activity recognition pipeline, a cyber-physical system. In our instantia-
tion, we compose architectural components controlled by a set of hyperparameters
to encode the activity recognition chain (learning pipeline). The quantity of interest
being the recognition performances achieved by the model (see Section 4.4.2).

• Step B consists in identifying and modeling probabilistically the input parameters
that brings uncertainty to the system under consideration. We concentrate on the data
acquisition and structure of interactions between the sensors of the deployment (see
Section 4.4.3).

• Step C consists in evaluating (the response of) the model at specific points of the
experimental design space, i.e., concrete realizations of the input parameters that
bring uncertainty and identified in Step B. The proposed architectural components
and associated hyperparameters are evaluated following a neural architecture search
fashion (see Section 4.4.4).

• Sensitivity analysis step consists in analyzing (decomposing) the sources of the
model’s response variability with respect to the variation of each individual input
parameters. To decompose the sources of variability, we use in our instantiation and
Sobol indices (see Section 4.4.5).

4.4.2. Encoding Meta-Knowledge via Neural Architectures

The first step consists in the definition of the model that should be used to assess
the aspect of the activity recognition pipeline under consideration. Here, we represent
the activity recognition models (or the learning pipelines) under consideration by using
neural architectures. The input parameters k are the set of hyperparameters of the neural
architectures, whereas the outputs ν (or quantity of interest) of the model are the recognition
performances of the neural architecture. Note that the notion of recognition performances
is linked to the data used for training and validation. However, one can evaluate an
architecture directly without performing a training phase, given that the bias related to the
architecture’s structure tailors specifically the target task (see, e.g., weight-agnostic neural
architectures [92]).

Figure 12 illustrates the four types of architectural components, including feature
extraction (FE), feature fusion (FF), decision fusion (DF), and analysis unit (AU), that we
use to construct neural architectures. These components process their inputs, which can
be raw data, features, or decisions, and outputs including either features or decisions.
The process performed by these components can involve preprocessing steps, feature
extraction, raw data or feature fusion, decision fusion, etc. Additionally, we define, for each
individual input, a hyperparameter that controls how the component processes that input
and subsequently its influence on the final performance achieved by the overall architecture
that is constructed by combining these components. The constructed architectures are
represented as a directed acyclic graph where the architectural components form the
vertices and the set of directed edges that connects them together. Each edge of the graph
is assigned with a value hv

u, which corresponds to the hyperparameter that controls how
the associated component processes the data flowing into it. The set of all hyperparameters
of a given architecture is referred to asH (Figure 13 illustrates an example of a constructed
architecture). An instantiation (or a realization) of the set of hyperparameters with actual
values for each of them produces a particular architecture, indexed as k.
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Figure 12. Architectural components used to construct the neural architectures. (a) Feature extraction
(FE), (b) feature fusion (FF), (c) decision fusion (DF), and (d) analysis unit (AU).

Internally, the sampled architectures (or the realizations of the set of hyperparametersH)
are trained on real data, e.g., in the case of human activity recognition, the architectures
are fed with pairs consisting of motion data and labeled activity. Training is framed as a
sequence classification problem, where the goal is to learn a function F : X −→ Y mapping
inputs to outputs. Note that, here, the inputs to the architecture are not the same as the
input to the model used to represent the learning pipeline under consideration. As in the
traditional classification setting, performance of the neural architecture is quantified with a
loss function ` : X×Y −→ R, and a mapping is found via the following:

f ∗ = argmin
f∈F

1
N

N

∑
j=1

`( f (xj), yj) (1)

which can be optimized by using a gradient descent algorithm over a pre-defined class of
functions F . In the example of convolutional layers provided above, F can be convolu-
tional networks parametrized by their weights and the loss function can be `( f (xi), yi) =
1{ f (xi) 6= yi}. For a particular instantiation of the hyperparameters, the weights of the
resulting architecture will be tuned during the optimization process.

C2 C3

C6

C1

C7 C8

C9

C10

output

sjsi

C5

C4

Figure 13. An example of architecture constructed using the architectural components depicted in
Figure 12. The nodes si and sj correspond to the data sources.

4.4.3. Data Acquisition and Structure of Interactions between Sensors

The aspect of the learning pipeline that we are trying to represent here is the data
acquisition step which involves quantifying the uncertainty that stems from the individual
data sources as well as their interactions. These are the sources of uncertainty to our model
and that are part of the second step of the metamodeling process.
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The data acquisition step is tightly linked to the dynamics of the body movements.
These dynamics are an important a priori knowledge that is often considered in activity
recognition models, e.g., [93–97]. To represent the data acquisition step in relation with the
neural architectures we defined in the previous section, we propose to encode two notions:
the importance of a data source and the degree of interaction between a set of data sources.
Let si be a data source attached to a given body part and y is an activity that we want to
recognize. The importance of si with regards to activity y, denoted µ

y
i ∈ [0, 1), is defined

as a quantity that represents the relative involvement of that body part in the dynamics
of the gestures pertaining to that activity. On the other hand, an interaction between a set
of data sources S ∈ S , denoted µ

y
S ∈ [0, 1), is defined as their level of dependence with

regards to the relative involvement of the body parts they are attached to in the dynamics
of the gestures.

To link these two notions with the neural architectures and their associated hyperpa-
rameters defined above, we consider the set of hyperparameters, denotedHs ( H, which
control how a given data source s is processed by an architecture to be representative of the
global impact (or importance) of that data source. The main principle is that the structure
of the architecture, which is determined by its associated hyperparameters, is critical, and
finding the right instantiation of hyperparameters can result in an optimal exploitation of
the sensory inputs.

In order to quantify these two notions, we have, first, to determine the correspon-
dence between the data sources and the hyperparameters associated with the proposed
architectural components. Indeed, we have access only to the values associated with the
hyperparameters and not the data sources directly. Let A be an architecture, the correspon-
dence between each individual data source and the hyperparameters associated with the
architecture A, denoted CorrA : S −→ ℘(H×R), is defined as follows:

CorrA(s) =
⋃

(u,v)∈s−→∗t

< hv
u, w >, (2)

where

• s −→∗ t is a subset of all the paths in the architecture that have s as a source and t as
a sink;

• hv
u denotes the hyperparameter associated with the edge (u, v);

• w = ω1·dist(s,v)+ω2·δ−(v)
ω1+ω2

is a weight that ponders the impact of the hyperparameter
hv

u according to how far is it from the input and how many edges goes into the
component v.

Note that if an edge is included in more than one path, the weights assigned to the
corresponding hyperparameter following each path are summed. Figure 14 illustrates
one of the paths, highlighted in red, that have s as a source and proceeds throughout the
architecture to the output.

4.4.4. Uncertainty Propagation via Architecture Search

After defining the sources of uncertainty to our model, the third step consists in
propagating the uncertainty of the input variables to the model’s response. This step
corresponds to evaluating the model’s response for multiple realizations of the input
variables; in our case, this is the set of hyperparameters which in turn involve specific data
sources of the deployment. More formally, let K = {k1, k2, . . .} be a set of instantiations of
the considered hyperparameters. For each instantiation, the quantity of interest, i.e., the
recognition performances of the resulting architecture, is evaluated and yields ultimately
the response surface {M(k1),M(k2), . . .}. The weights associated with a given architecture
are obtained by optimizing the individual weights of the architectural components using,
for example, a gradient descent algorithm over a predefined class of functions.



Sensors 2021, 21, 7278 18 of 42

Figure 14. Highlighted in red is one of the paths that have as source node the data source denoted
by sj and that is processed by the architectural components C2, C6, C8, and C10 before joining the
architecture’s output node.

It is worth noting that one can make use of a predefined set of experimental points (or
realizations) carefully designed to capture the model’s response. An alternative method is
to use adaptive experimental designs where one starts from a small set of experimental
points and enrich it with new points in suitable regions. After evaluating the model’s
response at a particular point of the experimental design space, another point has to
be picked where, again, the model will be evaluated. This process is repeated until the
allocated budget is exhausted. The way these points are picked is determined by the
assumed underlying model trajectory. For example, Kriging [98] (or Gaussian process
modeling) is suitable for adaptive experimental designs. Kriging assumes thatM(k) is a
trajectory of an underlying Gaussian processM(k) ≈ β> f (x) + σ2Z(x, ω), where Z is a
zero mean unit variance Gaussian process and the parameters {ω, β, and σ2} are estimated
from the experimental design by maximum likelihood estimation, cross validation or
Bayesian calibration (see Figure 15).

In our case, this outer optimization loop (which should be contrasted with the inner
optimization loop of the model’s weights) handles pairs of hyperparameters instantiation,
k, and global final performances, ν =M(k). This outer process turns out to be what is
referred to as neural architecture search. The problem of modeling the data acquisition
step is then cast as the exploration of the architecture space which is usually determined
by a search space, a performance estimation strategy, and a search strategy [99]. The
search space is defined by the type of architectural components (similar to those defined in
Section 4.4.3) and the way these are connected together (e.g., unique vs. multiple branch-
ing). The performance estimation strategy can be as simple as the classification accuracy
achieved by the architecture in a sequence classification problem, while the search strategy
is the process that decides which points (or regions) of the architecture space should be
evaluated. This last aspect is what determines the new design points (or realizations) to
pick, possibly in suitable regions of high expected reward. More formally, the selected
exploration strategy tries to find an architecture k∗ that maximizes the recognition perfor-
mances (or minimizes the validation loss) νk∗(w∗). Given an exploration budget B, the
exploration strategy yields a series of the model’s responses (recognition performances or
validation losses) {M(k1),M(k2), . . . ,M(kB)} (or {ν1, ν2 . . . , νB}). The task of uncertainty
quantification, therefore, reduces to decomposing these model’s responses into the impact
of each individual data source.
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Figure 15. An example of a Kriging (also known as Gaussian process modeling) metamodel The
observations correspond to the actual evaluations of the hyperparameter instantiations. Kriging as-
sumes that the true model is a trajectory of an underlying Gaussian process. The x-axis represents the
design space (experimental points or realizations) while the y-axis represents the model’s response.

4.4.5. Variance-Based Importance Estimation

Sensitivity analysis is defined as the process aiming at quantifying which input param-
eter (or combinations thereof), in our case the data sources featured by sensor deployments,
influences the response variability of the model the most [90]. Given the set of validation
losses (or model’s responses) obtained from the previous step, we estimate the importance
of each data source by decomposing the variation of the non-linear relationM into an
additive expansion (or Sobol indices) due to each of its inputs [100]. It is defined as follows:

M(S , y) = µ
y
0 +

M

∑
i=1

µ
y
i (si) + ∑

i 6=j
µ

y
ij(si, sj) + . . . + µ

y
1...M(si, . . . , sM), (3)

where µ
y
0 is a constant mean, µ

y
i the first-order effects, µ

y
ij the second-order effects, etc. The

lower the variance induced by a data source, the higher its influence on the non-linear
relationM.

The proposed surrogate model allows us to model the uncertainty of the data acqui-
sition step. The modeled uncertainty or meta-knowledge will be leveraged in order to
guide the exploration of the hypothesis space and the selection of the most suitable set of
inductive biases.

4.5. Surrogate Model-Informed Selection of Inductive Biases

Here, we focus on the incorporation of learned (optimized) meta-knowledge in the
sense of the Vapnik and Hinton frameworks, i.e., high-capacity surrogate models that
supervise simpler (lower-capacity) models in order to accelerate their learning and adapta-
tion. Since IoT environments are characterized by evolutivity and dynamicity, the presence
of constraints related to the nodes requires much lighter models supervised with more
flexible boundaries between classes, etc.

Figure 16 illustrates the notion of selection of inductive biases which can be regarded as
keeping a meta-hypothesis that has the ability to be adapted rapidly to new configurations.
Here, the surrogate model can be leveraged in order to structure the family of hypothesis
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spaces that allows easy traversal (or navigation) between them. The incorporation of
the derived knowledge with regards to the selection of inductive biases (or hypothesis
spaces) can take many forms, including supervision with privileged information [101] and
knowledge distillation [102] ( Note that various works have been pursued to unify these
two frameworks into a more general one, e.g., [103]).

In the case of the privileged information framework, Vapnik et al. in [101] make an
analogy with the fact that humans learn much faster than machines and illustrate this
with the Japanese proverb “better than a thousand days of diligent study is one day with a great
teacher”. The proposed learning with privileged information framework consists in considering
training data formed by a collection of triplets {(x1, x∗1 , y1), . . . , (xn, x∗n, yn)} ∼ Pn(x, x∗, y),
where each (xi, yi) is a feature-label pair, and the privileged information x∗i is an additional
supervision term about the example (xi, yi) provided by an intelligent teacher (in our case,
the surrogate model) in order to support and guide the learning process. Here, guiding the
learning process can either be linked to the learning examples supplied to the learner or
the learning configurations (e.g., the topology of the sensor deployments, characteristics of
the sensing devices, etc.) that the learner encounters during deployment. The privileged
information can be, e.g., relevant features or sample-dependent relevant features [103].
The selection of the suitable hypothesis spaces can leverage the uncertainty accompanying
some configurations of the data acquisition step.

Hypotheses spaces

H1 Hn

. . .

h∗
h∗

H2

h∗

h∗

H3

Figure 16. Surrogate model-informed selection of inductive biases where, among the hypothesis
spaces family H, a set of concurrent hypothesis spaces (each of which containing a possibly suitable
optimal hypothesis) is maintained throughout the learning process and model deployment.

On the other hand, the distillation framework introduced in [102] tries to incorporate
knowledge, in the form of class-probability predictions, from high-capacity models into
low-capacity models. Rather than training low-capacity, deployment-ready models using
the raw (hard) labels, class-probability predictions (soft labels) generated by the high-
capacity models are used instead. In contrast to a boosting training strategy where the
hard-to-classify examples are weighted so that the learner can focus on them, in this
framework, the easy-to-classify examples, in the sense of smooth class membership, are
supplied during model training instead. This smoothness in class membership (or class
probability predictions) is controlled by using an additional parameter (temperature ∈]0, 1[)
which decides how to soften the class membership.

In our approach, we leverage the dynamics of the body movements and the fact that
each activity is defined by a specific set of gestures which in turn involves specific body
parts equipped with data sources. We train simpler models by selecting subsets of data
sources that are highly confident and informative regarding these dynamics in order to
create a curated training set for model training. In this manner, the constructed models
will be able to cope with the evolution of the sensor deployments.

5. Case Study: Shl Dataset Deployment

Here, we describe the SHL dataset, which is the main dataset used in our empirical
evaluation [18] (the preview of the SHL dataset can be downloaded from: http://www.shl-
dataset.org/download/ (accessed on 30 October 2021)).We chose to experiment primarily
on this dataset as it features multi-modal data generated from sources located on various
body locations and recorded in real-life settings over a period of 7 months in the United

http://www.shl-dataset.org/download/
http://www.shl-dataset.org/download/
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Kingdom. Among the 16 modalities of the dataset, we focus in this study on the body-
motion modalities including accelerometer, gyroscope, magnetometer, linear acceleration,
orientation, gravity, and ambient pressure in addition. Data were collected from a set of four
sensor-enabled smartphones, all of which are synchronized and function simultaneously.
Each smartphone is placed on one of the following body locations: Hand, Torso, Hips,
and Bag. These four positions define the topology of the sensors deployment that allows
capturing the dynamics of the body movements. In total, eight activities are considered in
the dataset including Still, Walk, Run, Bike, Car, Bus, Train, and Subway. Figure 17 shows the
on-body sensors deployment used during data collection. Note that we make use in our
experiments of other datasets, namely, USC-HAD [20], HTC-TMD [21], and US-TMD [22],
which are described in more detail in Section 6.3.

Backpack
phone

Torso
phone

Hand
phone

Pocket/Hips
phone

Figure 17. Topology of the on-body sensors deployment featured by the SHL dataset, which is used
in the experimental part of this paper. Data collection was performed by each participant using
four smartphones simultaneously placed in different body locations: Hand, Torso, Hips, and Bag.

6. Evaluations

We conduct in this section an empirical evaluation of the dynamic inductive bias
selection via two main axes: (i) analysis of a surrogate model based on Gaussian processes
(Section 6.2) and (ii) incorporation of the derived privileged information via adaptive
sampling (Section 6.3). For reference, we evaluate a basic activity recognition chain which
features a set of fixed set of inductive biases (Section 6.1).

6.1. Basic Activity Recognition Chain

In this first set of evaluations, we consider a basic activity recognition chain. Here,
the basic activity recognition chain illustrates the effects of fixing the inductive biases in
advance on recognition performances.

For this set of experiments, we constructed the baseline activity recognition chain
by using neural network-based layers. Neural networks are often used in the context
of human activity recognition yielding good performances in general, e.g., [78,104–106]
which is primarily due to their ability to efficiently aggregate heterogeneous data which
is the case in activity recognition from wearable sensors. For us, the principle is to model
the entire activity recognition chain including each of its constituting steps (described in
Section 2.1) as a unique neural architecture that global behavior will emulate the work
conducted by every single step. Indeed, neural network, and convolutional-based layers,
in particular, have the advantage of learning in an automatic fashion the hierarchies of
abstract features as well as adapted processes that fit our modeling needs (e.g., setting
the suitable segmentation parameters and the right combination of features capable of
separating the different activities correctly). This would be particularly advantageous
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for modeling the data acquisition step and capturing the uncertainty that stems from the
sensor-rich environment featured by the SHL dataset.

More precisely, the basic activity recognition chain is constructed by stacking Conv1d
/ReLU/MaxPool blocks. The output layer is formed by full connected (or dense) layers.
Regarding the input layer, we define three convolutional modes: grouped modalities,
split modalities, and split channels. These modes determine how the inputs are being
processed by the architecture’s front-end. Regarding the input signals, these are taken as
they are without any additional segmentation process other than the one induced by the
convolutional layers. The inputs to the activity recognition chain are, therefore, of the order
of 1 min, i.e., 6000 time-steps, given a sampling rate of 100 Hz.

Figure 18 shows the confusion matrix of the basic activity recognition chain. The
overall recognition performance of this model is 70.86% measured by the f1-score. Note
that this score corresponds to the best model obtained after performing an optimization of
its hyperparameters. Additionally, as no privileged information is incorporated into this
baseline, data generated from each one of the data sources featured in the SHL dataset and
those we consider are used to train the model. In the following, these results will be used
as reference for comparison to assess the proposed approach.

6.2. Surrogate Model Based on Gaussian Processes

In this set of experiments, we detail the construction of the surrogate model for the
data acquisition step. We first provide the experimental setup including the architectural
components (and their hyperparameters) used to represent the activity recognition chain.
The surrogate model’s response surface is then analyzed following different levels of
granularity (realizations, hyperparameters, and data sources). The experimental setup is
presented in more detail in [24].
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Figure 18. Confusion matrix of the best model trained on all body locations fused together yielding
70.86% recognition performance measured by the f1-score. Best model among the set of models
evaluated as part of a Bayesian optimization process involving the hyperparameters of the activity
recognition chain.

6.2.1. Experimental Setup

In Section 4.4.2, these architectural components were described in a high-level fashion.
Here, we provide concrete instantiations of the architectural components and their accom-
panying hyperparameters. We use similar architectural constructions as those used for the
baseline activity recognition in Section 6.1, i.e., the set of Conv1d/ReLU/MaxPool blocks
along with the three convolutional modes. As explained in Section 4.4.2, the architectural
components are parameterized by hyperparameters that control how they process their
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inputs. The blocks we use here are parameterized by the number of filters (or kernels) (n f )
they encompass as well as their respective sizes (ks, for kernel size). These, among others,
form the set of hyperparameters being directly involved in the process of uncertainty quan-
tification. Additionally, we experiment with two types of output layers: fully connected (or
dense) and recurrent layers. The fully connected layers are parameterized by the number of
units (nu) they encompass, while the recurrent, precisely LSTMs, layers are parameterized
by the number of hidden units (nhu). Of course, depending on the depth at which the
block (or layer) is positioned within the neural architecture, we use an integer subscript
that corresponds to the depth. We use a sequential (pre-defined) stacking strategy to place
the various architectural components ( note that more complex stacking and branching
strategies are available for constructing the neural architectures [107,108]). Table 1 provides
a summary of the architectural components’ hyperparameters and their respective ranges
that were explored in our experimental evaluations.

Table 1. Hyperparameters of the architectural components and their associated ranges used for the
construction of the surrogate model. From [109].

Hyperparameter Low High Prior

Learning rate (lr) 0.001 0.1 log

Kernel size 1st (ks1) 9 15 -
Kernel size 2nd (ks2) 9 15 -
Kernel size 3rd (ks3) 9 12 -
Number of filters (n f ) 16 28 -
Stride (s) 0.5 0.6 log

Number of units dense layer (nu) 64 2048 -
Number of hidden units 1 (nhu1) 64 384 -
Number of hidden units 2 (nhu2) 64 384 -

Inputs dropout probability (pin) 0.5 1 log
Outputs dropout probability (pou) 0.5 1 log
States dropout probability (pst) 0.5 1 log

In the proposed framework, the uncertainty propagation step is performed via a
neural architecture search where the experimental points (or concrete realizations) are
discovered progressively. Depending on the search strategy used to pick these experimental
points, the final surrogate model will result in different privileged information. In order
to investigate this aspect, we instantiate the uncertainty propagation step using various
exploration strategies. Various tools exists in the literature that provide a comprehensive list
of exploration strategies. Among these tools, Microsoft-NNI (Neural Network Intelligence)
(https://github.com/microsoft/nni (accessed on 30 October 2021)) constitutes one of the
most complete tool. In the following, we enumerate the exploration strategies being
investigated and that are organized into their respective categories:

(1) Exhaustive search:

– Random search [110];
– Grid search [110];

(2) Heuristic search:

– Naive evolution [111];
– Anneal [112];
– Hyperband [113];

(3) Sequential model-based optimization:

– Bayesian optimization hyperband [114];
– Tree-structured Parzen estimator [112];
– Gaussian process tuner [112].

https://github.com/microsoft/nni
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Concerning the uncertainty quantification step, the decomposition of the non-linear
relation defined by the surrogate model can be computed by using the efficient imple-
mentation proposed in [115], which is based on a linear-time algorithm for computing the
marginals of random forest predictions. The visualizations of the structure of interactions
between data sources are produced by using the fanova-graph [116].

6.2.2. Analysis of the Surrogate Model’s Response Surface

In this part, we (1) perform an analysis of the low-level aspects of the surrogate
model’s response surface related directly to the hyperparameters being optimized at each
layer of the neural architectures; (2) we move to the higher levels of the analysis where
we focus on the most important and interacting data sources which capture ultimately the
network of interactions and the uncertainty accompanying the data acquisition step.

Table 2 provides a summary of the hyperparameters’ importance obtained using the
fANOVA analysis of the model’s responses at specific realizations of the experimental
design space. Figure 19 illustrates the pairwise marginal plots of a set of hyperparameters
obtained also via the fANOVA framework.

Table 2. Summary of the results obtained with the fANOVA analysis showing the importance
of the individual importance of the hyperparameters associated with the architectures defined in
Section 6.2.1. Architectures with recurrent output layers are referred to as Hybrid while those with
dense output layers are referred to as Convolutional. From [109].

Individual Importance
Hyperparameter

Convolutional Hybrid

Learning rate (lr) 0.10423 0.19815

Kernel size 1st (ks1) 0.01410 0.00874
Kernel size 2nd (ks2) 0.00916 0.023105
Kernel size 3rd (ks3) 0.04373 0.01788
Number of filters (n f ) 0.02810 0.01845
Stride (s) 0.08092 0.06236

Number of units dense layer (nu) 0.16748 -
Number of hidden units 1 (nhu1) - 0.06324
Number of hidden units 2 (nhu2) - 0.02478

Inputs dropout probability (pin) - 0.04047
Outputs dropout probability (pou) - 0.01056
States dropout probability (pst) - 0.01991
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Figure 19. Pairwise marginal plots produced via the fANOVA framework [115]. These plots illustrate the interplay (or the
mutual impact influence) between some of the hyperparameters being optimized in (a) interplay between kernel sizes 2
(ks2) and (ks3) (b) interplay between the number of units of the dense layer (nu) and kernel size 2 (ks2).
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Figure 20 illustrates the realizations that have been evaluated during the construction
of the surrogate model. It highlights in particular the distribution of the experimental
design points (or realizations) that are explored throughout the construction of the surrogate
model: some realizations are sparse while others are spread and span all over the space of
experimental designs.

Figure 20. Summary of the hyperparameters instantiations (or realizations) that have been evaluated during the construction
of the surrogate model. For example, the highlighted plot (red box) shows the joint instantiations of the hyperparameter
overlap (or stride) (s) and the kernel size (ks5). The realizations are illustrated with graduated colors representing the
quantity of interest (recognition performance) of the model at this location of the space. The figure zooms on the rightmost
part of the diagram for better readability. The plots on the diagonal show the distribution of the realizations for each
individual hyperparameter. For example, the highlighted plot (green box) describes the distribution of the instantiations in
the case of kernel size (ks5).

While the discussion above was related to the behavior of the individual sets of
hyperparameters, here we provide some high-level insights linked directly to the data
sources. Figure 21 illustrates the estimated interaction structure (or fANOVA graph [116])
of the data sources for three different activities and highlights the most important and
interacting data sources with circles with larger circumference. The data sources located
on the hips are overall more informative in the case of a large number of activities, while
in the case of the activities involving “bus” and “run”, the data sources located on the
hips yield more important variability and, thus, more pronounced uncertainty. In the
case of the activities “walk”, “bike”, and “car”, these same data sources seem to provide
sustainable elements to recognize these activities. The prominence of the data sources
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located on the hips regarding the recognition of human activities is confirmed by empirical
results obtained in various studies [22].

Hips

Hand

Bag Torso

Bike

Bag

Torso

Hips

Hand

Run

Bag

Torso

Hand

Hips

Walk

Figure 21. Estimated interaction structure of the data sources for 3 different activities (bike, run,
and walk), using the fANOVA graph [116]. Data sources are grouped by their respective positions.
The circumference of the circles represents main effects (importance), and the thickness of the edges
represents total interaction effects. From [23].

Here, we investigate the effects of the space exploration strategy used to determine the
experimental points of the space to be evaluated. We take a look specifically at the derived
knowledge and to what extent it differs from the human expertise aggregated into what
we refer to as human expertise-based model (HExp). To assess this, we use Cohen’s kappa
coefficient [117]. This coefficient is often used to measure the level of agreement between
two experts or raters. Additionally, we investigate the partial recognition performances
obtained while exploring the space, i.e., training and evaluation of the selected architec-
tures. This can be a good indicator of, for example, the concentration of good performing
architectures in some regions of the space and, thus, much more exploitable knowledge.

The obtained results using the different exploration strategies listed in 6.2.1 are sum-
marized in Table 3. We can see that, in terms of the categories of exploration strategies, the
derived knowledge from the sequential model-based strategies agree more with human
expertise than their heuristic search-derived counterpart. Knowledge derived using the
search-based strategies is the one that agrees the least with human expertise, with a level of
agreement measured by Cohen’s kappa coefficient that is less than 0.3, even with a larger
exploration budget. Among the sequential model-based strategies, the GP tuner allows us
to derive knowledge with the highest level of agreement with human expertise; as such,
we will focus, in the following, primarily on it in order to investigate the effectiveness of
incorporating privileged information into the activity recognition models.

6.3. Incorporation via Sample Selection

Given the surrogate model, the task now is to incorporate the derived knowledge
into low-capacity, data-efficient, and deployment-ready models. Here, we describe the
experimental setup used to incorporate the dynamics of body movements derived from
the surrogate model. The SHL dataset is used to derive the surrogate model of the data
acquisition step. We incorporate the derived information into the activity recognition
models constructed with the SHL dataset and three additional datasets including USC-
HAD [20], HTC-TMD [21], and US-TMD [22]. Table 4 provides some important details
about these datasets.

In the following experiment, we incorporate the knowledge derived from the sur-
rogate model into the deployed activity recognition models by selecting the appropriate
combination of data sources for each individual activity. Indeed, the dynamics of the
gestures, which involve particular parts of the body, characterize to a large extent the
activities we are interested in. When the data sources are attached to these body parts,
their contribution to the recognition of a given activity is proportional to the involvement
of the body parts these are attached to. This is why we ponder the data according to
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the data source it originates from. More precisely, the knowledge (respective importance
and interactions) derived from the surrogate model is used as an indicator function that
determines which data sources are highly confident and informative with respect to a given
activity. The data generated from these sources will form the training sets used to train the
activity recognition models. Formally, for a given activity y ∈ Y , the set of highly confident
and informative data sources Sy is defined as follows:

Sy := {si ∈ S|M({si}, y) = µ
y
si ≥ τimp} ∪ {S ( S|M(S, y) = µ

y
S ≥ τint}, (4)

where τint and τimp (int for interaction and imp for importance) are thresholds above which
a given set of data sources S ⊂ S is considered to by highly confident and informative. In
particular, for τimp = τint = 0, Sy = S , i.e., the data generated from every single data source
are considered in the training set.

Table 3. Level of agreement between privileged information (or knowledge) derived from the
surrogate model and human expertise by using different space exploration strategies. The level
of agreement with the human expertise-based model (HExp) is measured using Cohen’s kappa
coefficient [117]. The partial recognition performances νk obtained while exploring the space are
averaged and illustrated. From [23].

Exploration Strategy Agreement νk on Average

Exhaustive search
Random Search 0.156 ± 0.04 67.12%
Grid Search 0.251 ± 0.05 66.78%

Heuristic search
Naïve evolution 0.347 ± 0.12 73.35%
Anneal 0.481 ± 0.05 75.47%
Hyperband 0.395 ± 0.08 74.2%

Sequential Model-Based
BOHB 0.734 ± 0.03 84.25%
TPE 0.645 ± 0.1 83.87%
GP Tuner 0.865 ± 0.02 84.95%

As stated previously, the deployed activity recognition models are of much lower
capacity in order to comply with the various constraints surrounding the actual nodes
where the models will be deployed (see Section 7 for a deeper discussion on these aspects).
The deployment-ready activity recognition models we consider in the following are based
on convolution layers, i.e., Conv1d/ReLU/MaxPool blocks, but restricted to only three
layers followed by a Fully Connected/ReLU layers.

Using the constructed training set which is fed into the activity recognition models,
we constrain the models to concentrate on highly informative data sources; subsequently,
they are insensitive to the uninformative ones. The constraints are specified via sample-
dependent relevant data sources. Training data are formed by a collection of triplets
(xi, x∗i , yi) sampled as follows: xi ← xi,x∗i

, x∗i ← Syi , and yi ← yi. The sets of data sources Si

are a subset of the collection of sensors S = {s1, . . . , sM} derived from the surrogate model
previously constructed. The input vector xi,x∗i

contains the relevant data sources Syi which
depends on the corresponding activity yi assigned to the original sample xi. The remaining
parts of the input vector xi,x∗i

, i.e., the unimportant data sources, are assigned values drawn
from a normal distribution. The privileged setting is referred to as w-prvlg. For a matter
of comparison, we make use of training sets constructed by using all data sources to train
activity recognition models, i.e., without incorporation of privileged information from the
surrogate model nor from human expertise. These models constitute our baselines, and
we refer to this setting as wo-prvlg. In addition, we compare the impact of incorporating
privileged information originating from human expertise (HExp). This setting is referred
to as w-HExp. Table 5 compares the recognition performances obtained, on each dataset,
using these settings.



Sensors 2021, 21, 7278 28 of 42

Table 4. Details of the datasets used to evaluate the impact of incorporating the derived surrogate model of the data acqui-
sition step into activity recognition models. Illustrated details include the availability of multiple modalities in multiple
locations simultaneously. Motion-based modalities, which are referred to with the following abbreviations: acc (accelerome-
ter), gyr (gyroscope), mag (magnetometer), lac (linear accelerometer) gra (gravity) ori (orientation), and pre (pressure). In
addition, GPS refers to global positioning system, GSR to galvanic skin response, and ECG to electrocardiogram.

Dataset/Study Multi- Multi-
Modality Location Modality Location Activity

USC-HAD [20] 4 7

acc, gyr, mag, GPS,
WiFi, ECG, GSR,
etc.

hip

walking forward,
walking left,
walking right,
walking upstairs,
walking
downstairs,
running forward,
jumping, sitting,
standing, sleeping,
elevator up, and
elevator down

HTC-TMD [21] 4 7
acc, gyr, mag, GPS,
WiFi -

Still, Walk, Run,
Bike, (riding)
Motorcycle, Car,
Bus, Metro, Train,
and high speed rail
(HSR)

US-TMD [22] 4 7 acc, gyr, sound - Walking, Car, Still,
Train, and Bus

w-HAR [118] 4 4

IMU
(accelerometer and
gyroscope) and
stretch sensor

ankle, knee
jump, lie down, sit,
stand, stairs down,
stairs up, and walk

SHL [18] 4 4
acc, gyr, mag, lacc,
ori, gra, etc.

hand, hips, bag,
torso

Still, Walk, Run,
Bike, Car, Bus,
Train, and Subway

Table 5. Comparison of different privileged settings in terms of recognition performances on four
different datasets USC-HAD, HTC-TMD, US-TMD, and SHL. Privileged information are derived
from the surrogate model constructed by using the data featured in the SHL dataset. Scores of
column w-prvlg correspond to top-performing models selected while varying the data source im-
portance threshold τimp. Recognition performance means and variances are reported on a total of
10 experiments repetitions.

Dataset
Recognition Performances

wo-Prvlg w-HExp w-Prvlg

USC-HAD 72.1% ± 0.009 75.38% ± 0.33 89.33% ± 0.14

HTC-TMD 74.4% ± 0.03 77.16% ± 0.5 78.9% ± 0.067

US-TMD 71.32% ± 0.2 80.28% ± 0.008 83.64% ± 0.04

SHL 70.86% ± 0.12 77.18% ± 0.044 88.7% ± 0.6

Overall, incorporation of privileged information either derived from the surrogate
model or human expertise allowed us to obtain substantial improvements for all the
considered datasets (e.g., 70.86% ± 0.12 −→ 88.7% ± 0.6 in the case of the SHL dataset).

Becoming closer to the derived privileged information and the subsets of highly
informative data sources, Figure 22 illustrates how the number of data sources impacts
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the performances of the activity recognition models. As the direct action of incorporating
the privileged information is to shrink (depending on the thresholds τint and τimp defined
earlier) the number of data sources considered during the training phase, here we assess
the obtained recognition performances as we vary the two thresholds and consequently
the number of considered data sources. Overall, the activity recognition models trained
on smaller subsets of data sources outperform the baseline counterpart which we recall is
trained on all the data sources featured by the SHL dataset. Noticeably, the best recognition
score, measured by the f1-score, obtained in this set of experiments was 88.7% ± 0.6. More
importantly, this score is obtained by using a subset containing solely 12 data sources on
average. This constitutes an improvement of approximately 17% compared to the baseline
using half of the available data sources.
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Figure 22. Recognition performances, measured by the f1-score, as a function of the number of data
sources (the cardinality on average of the subsets |Sy|) used to train the deployed activity recognition
models. The configuration with 25 data sources corresponds to subsets where all data sources are
used, i.e., no privileged information provided.

Additionally, even in the interval between 5 and 15 data sources, we still obtain good
recognition rates while in some configurations (e.g., |Sy| = 13) the performances drop
drastically (less than 40% ± 0.16 f1-score). On the contrary, for smaller subsets (|Sy| ≤ 5),
trained models obtain high recognition performances (more than 80% ± 0.05 f1-score). A
deeper inspection of these configurations reveals that the location of selected data sources
plays an important role; in particular, the latter subsets are mainly composed of hips
data sources.

6.3.1. Impact of Knowledge Derived Using Alternative Exploration Strategies

In the previous experiment, we used the surrogate model based on the Gaussian
process tuner in order to provide deployed activity recognition models with privileged
information. The reason is that this surrogate model had the highest degree of agreement
with domain experts. Depending on the exploration strategy used to select the exper-
imental designs or hyperparameter instantiations to be evaluated, different regions of
the architecture space will be favored, which will subsequently impact the knowledge
that is derived from the surrogate model. That being said, even if the derived privileged
information using these exploration strategies vary to larger extents, it will still capture the
highly confident and informative data sources pertaining to each considered activity. For
this, the effectiveness of privileged information derived using the exploration strategies
listed in Section 6.2.1 is evaluated by using the same experimental setting used above for
the Gaussian process exploration strategy. Figure 23 illustrates the obtained results for the
four datasets which are considered here.
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Figure 23. Impact of the architecture space exploration strategy used to derive privileged information
incorporated into activity recognition models. Results obtained with the exploration strategies are
listed in Section 6.2.1 are illustrated. Recognition performances, measured by the f1-score, of models
trained with human expertise (w-HExp) and without any privileged information (wo-prvlg) are
also illustrated.

What we can observe is that in the case of the HTC-TMD and US-TMD datasets, the
derived privileged information obtained using the tree-Parzen estimator (TPE) exploration
strategy yields better activity recognition models than using Gaussian process, which,
we recall, was the closest to human expertise. In that matter, it is worth observing that
while the privileged information derived via exhaustive search strategies is the farthest
from human expertise in terms of agreement, their incorporation into activity recognition
models yields competitive results both on the HTC-TMD and USC-HAD datasets.

6.3.2. Evaluation of the Robustness Using Dynamic Inductive Bias Selection

In this part, we evaluate the robustness of the learned models relative to the evolution
of the sensing environments where these are deployed. We first evaluate the learned models
in a continual setting (or 0-shot adaptation) and in a few-shot adaptation setting [119]. The
scenarios featuring the evolution of the sensing environments correspond to the ablation
of two or more sensors from the original set of sensors used in the SHL dataset.

Evaluation in a Continual Setting (0-Shot Adaptation)

The continual or zero-shot adaptation setting corresponds to the scenarios where no
additional supervision is used to adapt or train the learning model in order to better cope
with the new sensing configuration it is confronted with. We evaluate the behavior of the
learned model from the perspective of robustness with regard to the phases encompassing
transitions between activities. We assess the number of trials carried out by the model until
the new activity, which we transitioned to, is recognized correctly. An additional parameter,
referred to as the confidence threshold τcon f idence, is considered in the analysis and defines
the value of the model’s predictions entropy under which the predicted activity with
the highest probability is considered to be correct ( the higher the entropy, the lower the
model is confident about its predictions). Figure 24 illustrates one of the activity transition
scenarios being evaluated.

Evaluation in a Few-Shot Adaptation Setting

Contrary to the previous setting, here we evaluate the model’s ability to adapt to
the new sensing configurations with additional supervision consisting in fine-tuning the
models using one (1-shot), five (5-shot), and ten (10-shot) additional learning example(s).
Figure 25 illustrates the process of few-shots adaptation from a meta-hypothesis towards a
more appropriate hypothesis that matches the sensing configuration encountered by the
deployed activity recognition model.
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Figure 24. Timeline showing a real scenario of activity transition from Still (in red) to Walk (in blue).
In addition to the true transition , a false alarm is triggered by the model during the
walking activity. At the top of the timeline, the subsets of data sources are consecutively leveraged
when the model detects a transition (true or false). At the bottom of the timeline, the two graphs show
the evolution of the model’s predictions entropy monitored continuously against the confidence
threshold (τcon f idence). Figure adapted from [25].
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Figure 25. Illustration of the process of adaptation from the meta-hypothesis H∗ towards a more
appropriate hypothesis h∗ (among those derived from the surrogate model) that matches the sensing
configuration encountered by the deployed learning system.

Table 6 summarizes the obtained recognition performances by using the few-shot
adaptation setting in various sensing configurations. In particular, the deployed activity
recognition models built with help of the privileged information derived from the surrogate
model are able to cope with extremely adverse sensing environments. We can observe that
the 5-shot adaptation setting is able to cope with up to the ablation of nine sensors from
the original sensor deployment.
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Table 6. Few-shot recognition performances on various sensing configurations featuring the ablation of 2, 5, 9, and
12 sensors from the original sensor deployment of the SHL dataset. For reference, the baseline evaluated on the sensor
ablation configurations is also shown.

Configuration Baseline
Surrogate-Informed

1-Shot 5-Shot 10-Shot

2-sensor ablation 69.56% ± 0.074 88.09% ± 0.01 88.51% ± 0.081 89.55% ± 0.09
5-sensor ablation 62.17.4% ± 0.08 86.12% ± 0.047 87.92% ± 0.07 87.88% ± 0.16
9-sensor ablation 51.22% ± 0.026 81.27% ± 0.204 85.23% ± 0.14 86.08% ± 0.097
12-sensor ablation 41.02 % ± 0.84 75.74 % ± 0.51 82.17% ± 0.37 82.32% ± 0.64

7. Discussion

The dynamic inductive bias selection perspective that we propose to apply to human
activity recognition could be framed into two levels: (1) making explicit the inductive
biases related to the complete activity recognition chain (domain knowledge) in the form
of surrogate models and (2) maintaining alternative or competing learning configurations
(inductive biases) by allowing easy and rapid adaptation relative to new configurations.
The discussion here is framed around the importance of domain knowledge and the three
pillars of our proposed approach which can be stated as questions: (i) which knowledge to
encode; (ii) how to encode it; and (iii) how do we incorporate it into deployed models? To
make the analysis complete, throughout the discussion, we provide concrete and detailed
examples of domain knowledge and the way these could be represented and incorporated
into learning models.

7.1. Which Knowledge to Encode?

In the proposed instantiation of the framework, we investigated how the dynamics
of body movements encoded in an explicit manner can be incorporated into activity
recognition models in order to improve recognition performances. The incorporation of
prior knowledge, particularly the topology of the on-body sensor deployments into activity
recognition models, holds an important place in the literature. Long lines of research
proposed, for example, to leverage 3D body skeleton-based representations exist [93–97],
ontologies [120,121], etc. That being said, other aspects can be modeled and incorporated
into activity recognition models and can affect virtually every step in the recognition chain
from the measurement process to the topology of the sensor deployment as well as the
transmission mechanisms used between the nodes of the sensor deployments.

Regarding these transmission mechanisms, the on-body placement of the sensing
nodes has two visible and important interests: the first, as we saw, is related to global
structure (or topology) that these nodes form and that we considered above to help us
capture and leverage the dynamics of the body movements. The second is related to the
physical layers of the radio-frequency (RF) communication components used to connect,
in a wireless fashion, the various on-body sensors together and that are highly impacted
by the placement of the sensing nodes. In particular, among these components, the radio
channel forms the medium responsible for propagating raw data between the sensing
nodes. This component is impacted by noise and interference which additionally evolves
with time as a result, in the case of on-body sensor deployments, of the body movements
and the environment (e.g., reflections of the radio waves on the walls) leading eventually
to path loss and the impossibility to transmit data [122]. Various studies have been carried
using different models of transceivers and showed a lack of communications among
nodes depending on their on-body locations [123]. For examples, in [124,125], the authors
experimented with 802.15.4-based CC2420 transceivers placed in different parts of the body
including chest, ankle, and back of patients, etc. The results showed a lot of variations
in terms of communication among the nodes. Figure 26 illustrates the impact of the
transceivers’ on-body locations on the path loss. Furthermore, the authors in [126] studied
the problem of path loss with respect to the underlying network topology, noticeably star
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vs. multi-hope mesh, where a reduction in the emitter-receiver distance could counteract
this problem.

(a) (b)

(c)

Figure 26. On-body placement of the sensing nodes (a) along the torso and (b) around the torso.
(c) Measurement of the path loss (dB) as a function of the distance (m) between the sensing nodes
around the torso (top line) and along the torso (bottom line). From [127].

In addition to the impact of the on-body sensors placement on the path loss, the
body movements as well as the surrounding environment have a big influence on signal
propagation and subsequently on the packets transmissions. The authors in [127], for
example, studied the influence of arm motions, while the authors in [128] considered the
impact of various types of activities (still, walking, and running) on the path loss depending
on the location of the transceivers. On this matter, Table 7 illustrates the shadowing
standard deviation depending on the respective position of transmitters and receivers.

Similarly, the impact of the surrounding environment has been studied by the authors
in [127] who studied signal propagation by taking into account factors related to the
environment in which the user operates. These include, for example, the influence of
ground reflections, which are considered more reliable in terms of being exploited during
transmission, as well as reflections from surrounding environments on received signals.

As observed in Section 6.2.2 for the case of segmentation, the exhibition of hyperpa-
rameters can be extended to aspects other than the importance and interaction of data
sources. Indeed, the long-term interest would be to make explicit the biases of all the
stages of the activity recognition chain by going as far as the transfer functions which, as
illustrated in the introduction of Section 4, constitute biases in their own.
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Table 7. Measurement of the shadowing standard deviation (dB) in anechoic chamber and indoor.
Various on-body placement configuration assessed. From [128].

TX on Hip/RX on Chest Thigh R Wrist R Foot

Anechoic chamber
Still 0.61 0.41 0.95 0.41
Walking 2.15 5.27 4.31 4.97
Running 2.39 2.47 3.49 2.69

Indoor
Still 0.60 0.24 0.26 0.24
Walking 1.52 3.27 2.66 2.57
Running 2.00 1.98 2.37 1.80

TX on L Ear/RX on R Ear Hip R Wrist R Foot

Anechoic chamber
Still 0.23 0.45 1.15 0.56
Walking 0.54 2.07 3.35 4.21
Running 0.52 2.82 2.98 1.57

Indoor
Still 0.21 0.28 0.31 0.30
Walking 0.90 2.20 1.80 2.02
Running 0.70 2.19 1.88 1.24

In addition to the study of the domain knowledge, which is necessary for encoding,
there is the important problem of the available resources to perform this operation. The
sensing nodes have a limited autonomy, and storage and computational capacities, in
particular, depend on this limit.

7.2. With What Resource Constraints?

Among the specificities and requirements of sensor deployments, which result in nu-
merous constraints imposed on the operation of the applications they support, autonomy
is probably the most important. The autonomy generates trade-offs involving the capacity
of the nodes to sense and monitor (often in a continuous and near real-time fashion) the
phenomenon being considered. Even by increasing battery capacities and optimizing
components and processes, such as low-power hardware designs for the architectures, pro-
cessors, and transceivers’ improvements [118,129], the problem is only shifted. Computing
capacity constraints, backups, and direct consequences such as data sampling frequency,
transmission frequency, and local processing must be taken into account in the general
learning process and in sensor protocols [123]. For example, the authors in [130] presented
an energy efficient, thermal-aware, and power-aware routing algorithm for on-body sensor
deployments which considers the node’s temperature, energy level, and received power
from adjacent nodes in the cost function calculation. Moreover, in [131], the authors in-
vestigated the selection of network interfaces, where the radio used to transmit is selected
depending on the environment opportunities (bandwidth, link quality, and energy).

Another important problem is related to the heat generated by the sensors which
sometimes modify the collected data by increasing the temperature of the body, for example.
In [123], the authors investigated methods to restrict energy consumption and consequently
to save the battery resources. In [132], the authors presented a temperature sensitive routing
protocol in wireless body sensor networks for which temperature and heat production are
fundamental. These routing protocols take the temperature of the node as a metric in the
decision of the routing path. The purpose is to keep the temperature of the node below
the safe level and to slow down the rate of temperature rise so that it does not harm the
human body [132].
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Although these trade-offs have a direct impact on the learning phase, they are often
solely considered at the specific level where they arise. This makes it necessary to propa-
gate these trade-offs, linked to material and IT aspects, to the level of learning processes.
Some investigations [13,131,133] considered the direct link between energy/computational
constraints with the performances of the activity recognition models. The authors in [13]
investigated the trade-offs between classification accuracy and energy efficiency by com-
paring on-node and off-node schemes. An empirical energy model was presented and
used to evaluate the energy efficiency of both systems, and a practical case study (mon-
itoring the physical activities of office workers) was developed to evaluate the effect of
classification accuracy. The results show that 40% energy saving can be obtained with
a limited 13% reduction in classification accuracy. Similarly, with the goal of analyzing
the trade-off between recognition accuracy and computational complexity, the authors
in [133] investigated the impact of different sampling rates and other parameters on the
performance of activity recognition models.

7.3. How to Encode (Represent) the Constraints and Knowledge?

The surrogate model is used as a proxy for the inductive biases of the activity recogni-
tion pipeline and particularly the data acquisition step. The proposed instantiation of the
framework is based on neural architectures and the exploration of the space induced by
the hyperparameters associated with these architectures. Making explicit these biases via
hyperparameters is motivated by several aspects, the most important being their capacity
to play the role of inductive biases far more than the parameters of a model. Indeed,
the biases of the architecture (e.g., CNN for vision, LSTM for time-dependent sequences,
etc.) are decisive for the tasks for which they were originally designed. More importantly,
several empirical results are backing the fact that the hyperparameters are playing a more
important role in the final recognition performances than the models’ parameters [92].
These results are also coherent with the direction of rapid adaptation and the use of
few learning steps since the weights (parameters) of the models are less influential than
the hyperparameters.

As we observed, the exploration of the architecture space is often based on an ac-
quisition function (responsible of choosing the next configuration to explore); the entire
issue is to design good acquisition functions that both have a good compromise between
exploration and exploitation (which gives a fairly meaningful picture of the space of ar-
chitectures) and at the same time reflect the targeted domain knowledge (the exploration
must have the information that, for example, the targeted aspect is the bias related to
segmentation, data sources, preprocessing, etc.). Concerning this point, the multi-modal
architecture presented in Section 4.4.2 proceeds in this direction (the hyperparameters have
been designed to reflect the impact of the data sources and their interactions).

7.4. How to Incorporate Knowledge into Deployed Models?

The method of incorporating knowledge, in a principled fashion, into deployed
models remains also an open question as it is the case for the other aspects that we are
investigating. Indeed, in the approach we proposed, it was not the best architecture that
we have been interested in (and which would have been deployed directly without going
through models of lower capacity) but rather the overall behavior of the architectures
explored. This behavior was then incorporated into models that were more restricted
in terms of capacity and, therefore, easy to train and adapt. That said, other methods
of achieving this, by leveraging on existing techniques, could be implemented. In what
follows, we present some avenues that can be investigated in this sense.

Regularization techniques where additional terms are plugged into the objective functions
being optimized during model training have been investigated in the literature [134–136]. The
principle is to train the model in a regular manner, i.e., minimize the objective function on
learning examples, and additionally constrain the model to stay in some bounds defined by
additional knowledge such as certain conditions, physical equation or laws, or first-order
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logic formulas. These techniques introduce new challenges for enforcing the simultaneous
satisfaction of the terms of the objective function, i.e., the main term based on the learning
examples and the additional regularization term, during the optimization process.

Attention mechanisms are additional computational levels that help neural networks
to concentrate on the more important parts of the inputs in order to make predictions.
These are widely used in natural language processing [137] and also in human activity
recognition where, for example, the authors in [138] leveraged both temporal and sensor
attention layers in order to help the recognition model to focus on more informative time
steps of the inputs as well as on more important sensing modalities. These insights are
learned simultaneously by the neural networks. These additional computational levels act
on the structure of the neural networks by privileging the circuits that are attached to the
data sources that are found to be the most informative with regard to the task of interest.

Sparsifying neural networks via pruning is also a method for incorporating accumu-
lated knowledge. In [139], for example, the authors exploited sensitivity between inputs
and outputs in order to eliminate model’s weights, which are not responsive enough to the
input-output pairs stimulus during training. The pruning mechanism is widely used in
neural networks training as a method of preventing the model from privileging a restricted
number of its circuits, which could be more responsive to the input–output stimulus, and
encouraging it to pursue diverse and alternative circuits. This again is a method of acting
on the structure of the neural networks.

Neuromodulation in neural networks is concerned with the techniques that allow
the structure of the neural networks to adapt according to certain high-level knowledge.
For example, in [140], the authors proposed a neural architecture composed of two neural
networks: a main network which processes ordinary data such as sensor data and a
neuromodulatory network that is in charge of processing contextual data and feedback from
the environment. Again, the idea here is that the neuromodulatory network, depending
on the contextual data it processes, acts on the structure of the main neural networks in a
manner that makes it more adapted to the environment it is confronted with.

8. Conclusions

We have shown in this paper that the study of data in the Internet of Things deploy-
ment should absolutely not be limited to the data generated by the sensors themselves at
the risk of losing a significant amount of information resulting from the various biases and
transformations that the data undergoes before arriving in the places where it is stored and
processed. Therefore, it is necessary to consider all the transformations and distortions
(biases) that the data undergoes and the context in which data collection takes place in order
to build a representative learning or recognition framework. Moreover, other constraints
related to energy consumption, waste heat generation, sensor topology, possible failures,
and weak local resources add further biases and limit the types of solutions to consider. We
have listed several constraints raised in sensor-rich environments, particularly with respect
to on-body sensor deployments for activity recognition. We proposed a meta-modeling
approach in which these constraints are specified as hyperparameters that can control
the structure of the learning models. By using these hyperparameters, it was possible to
optimize and reason about the various constraints that arise in these deployments, as well
as incorporating prior knowledge into the learning processes. In particular, the exploration
of the hyperparameter’s space and the analysis step conducted using the uncertainty quan-
tification framework (Section 6.2) allowed drawing some links between environmental
constraints and the structure of the learning models. These links are leveraged during
model deployment to cope with noticeably the evolution of the sensing configurations. Ex-
tensive experiments on a use-case pertaining to the SHL dataset illustrated the advantages
of the proposed approach. These results make the case for the proposed meta-modeling ap-
proach and show the robustness gains achieved when the deployed models are confronted
with evolution of the initial sensing configurations (ablation of an increasing number of
sensors from the initial deployment). In particular, incorporation of the derived knowledge
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about the sensors deployment allows easy adaptation using little or no supervision at all.
This work opens-up perspectives for developing more robust and reliable learning systems
in the Internet of things.
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