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SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has evolved many variants with stronger infectivity and immune
evasion than the original strain, including Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Iota, Lambda, and 21H strains. Amino acid
mutations are enriched in the spike protein of SARS-CoV-2, which plays a crucial role in cell infection. However, the impact of
these mutations on protein structure and function is unclear. Understanding the pathophysiology and pandemic features of these
SARS-CoV-2 variants requires knowledge of the spike protein structures. Here, we obtained the spike protein structures of 10
main globally endemic SARS-CoV-2 strains using AlphaFold2. The clustering analysis based on structural similarity revealed
the unique features of the mainly pandemic SARS-CoV-2 Delta variants, indicating that structural clusters can reflect the
current characteristics of the epidemic more accurately than those based on the protein sequence. The analysis of the binding
affinities of ACE2-RBD, antibody-NTD, and antibody-RBD complexes in the different variants revealed that the recognition of
antibodies against S1 NTD and RBD was decreased in the variants, especially the Delta variant compared with the original
strain, which may induce the immune evasion of SARS-CoV-2 variants. Furthermore, by virtual screening the ZINC database
against a high-accuracy predicted structure of Delta spike protein and experimental validation, we identified multiple
compounds that target S1 NTD and RBD, which might contribute towards the development of clinical anti-SARS-CoV-2
medicines. Our findings provided a basic foundation for future in vitro and in vivo investigations that might speed up the
development of potential therapies for the SARS-CoV-2 variants.

1. Introduction

Coronavirus disease 2019 (COVID-19) outbreak began in
December 2019 and has caused more than 4.8 million
deaths, according to the statistics of the World Health Orga-
nization (WHO), as of October 15, 2021 (https://www.who
.int/). COVID-19 is caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), a positive-sense RNA
betacoronavirus belonging to the family Coronaviridae [1,
2]. SARS-CoV-2 possesses a large genome of approximately
30kb [3], which encodes for four structural proteins, spike
(S), envelope (E), membrane (M), and nucleocapsid (N) pro-
teins, and sixteen nonstructural proteins (Nsp 1-16) [4-6].
Among these proteins, the S protein plays an important role
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in binding the angiotensin-converting enzyme 2 (ACE2) of
the host cell, which helps the virus to enter the host cell
[7]. The S protein can be recognized by and bond with the
cell surface toll-like receptor 4 (TLR4), as well as antibodies,
so it is a target for immunological recognition [8, 9].

All viruses, including SARS-CoV-2, change over time.
Although the evolutionary rate of SARS-CoV-2 is low,
which displays a change of 1 or 2 nucleotides per month
per lineage in the 30kb pairs [10], a long-time and exten-
sive spread of SARS-CoV-2 have induced some unex-
pected mutations that can increase virus transmission
and disease severity [11-13]. So far, the worldwide
spreading variants of SARS-CoV-2 are Alpha, Beta,
Gamma, Delta, Epsilon, Kappa, Iota, Lambda, and Mu
(21H) named by the WHO. The WHO classifies the var-
iants of Alpha, Beta, Gamma, and Delta to variants of
concern (VOC) [14-18]. Previous studies demonstrated
that the Delta variant decreased the effectiveness of vac-
cines and increased the breakthrough infection rates [19,
20]. Many researchers have focused on developing anti-
SARS-CoV-2 drugs and found some potential drugs, such
as Azvudine [21], Molnupiravir [22], Paxlovid, and anti-
bodies [23, 24].

The mutations on the S proteins have been reported to
affect both the binding affinity with ACE2 and the efficacy
of antibodies [12, 25-27]. Moreover, the S protein and its
parts are important for designing most approved vaccines,
and thus, the mutations on the S protein raised much more
concern about the vaccine effectiveness of SARS-CoV-2 [12,
28-31]. Many researchers have focused on exploring the S
protein structures of different SARS-CoV-2 variants by
experimental and modeling methods, which has contributed
immensely to our understanding of how the mutations alter
the structure and function of the S protein [32-35]. How-
ever, due to rapidly increasing variants, it is still a challenge
to reveal the S protein structures of all SARS-CoV-2 vari-
ants. AlphaFold2 (AlphaFold) is a computational approach
capable of predicting protein structures with high accuracy,
which provides us with a new method to quickly predict
protein structures according to their genetic sequences. Uti-
lization of this powerful approach can help us to solve the
challenge of revealing the S protein structures of different
SARS-CoV-2 variants.

In this study, we used the AlphaFold to model the spike
protein structures of ten SARS-CoV-2 variants. The high-
accuracy structures were verified by the comparison with
experimental structures and the pLDDT (the predicted
local-distance difference test) of the AlphaFold built-in algo-
rithm. To classify the SARS-CoV-2 strains, we performed
phylogenetic analyses based on the genomic and protein
sequences of all strains. Moreover, we analyzed the binding
affinities of ACE2 and antibodies to S1 RBD and NTD,
revealing that the mutations on the Delta variant S protein
could affect the recognition of antibodies with S1 RBD and
NTD, which might increase the immune evasion. Further-
more, we identified multiple compounds that target Sl
NTD and RBD by virtual screening the ZINC database and
experimental validation, which might contribute towards
the development of clinical anti-SARS-CoV-2 medicines.
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Our results provided abundant basic data for further
research related to preventing and curing COVID-19.

2. Results

2.1. Analyses of the Sequence Mutations on Different SARS-
CoV-2 Strains. SARS-CoV-2 has changed as it has spread
across the globe and has evolved many variants, such as
Alpha, Beta, Gamma, Delta, Kappa, Lambda, Gamma, Iota,
and 21H variants. To comprehensively understand the char-
acteristics of these SARS-CoV-2 variants, we analyzed nucle-
otide mutations on all SARS-CoV-2 variants. The results
showed that the nucleotide mutations occur across the whole
genome, including open reading frames (ORFs), spike (S)
glycoprotein, nucleocapsid phosphoprotein (N), envelope
(E) protein, and membrane (M) protein (Figure S1). The
frequency of mutations on S protein is higher than other
parts in different SARS-CoV-2 variants.

The S protein of SARS-CoV-2 consists of 1273 amino
acids containing subunits S1 and S2 (Figure S2A). The
subunit S1 is divided into N-terminal domain (NTD), C-
terminal domain (CTD), and receptor-binding domain
(RBD) that binds with angiotensin-converting enzyme 2
(ACE2). To analyze the similarities and mutations of S
protein in different SARS-CoV-2 variants, we aligned the S
proteins’ sequences in eleven SARS-CoV-2 strains, including
original, D614G, Alpha, Beta, Gamma, Delta, Kappa,
Lambda, Gamma, Iota, and 21H variants. The results
showed that the S proteins’ sequences have a mean
homology of 99.51%, and the common amino acid
mutations among these SARS-CoV-2 strains are mainly
enriched at S1 NTD and RBD (Figure S2B). The D614G
mutation is most common and occurs in ten SARS-CoV-2
variants (Figure S2B), while the E484K and N501Y
mutations appear 4 times.

2.2. The Spike Protein Structure Prediction of Ten SARS-
CoV-2 Strains. The alterations of S protein in different
SARS-CoV-2 variants have been reported to affect virulence,
transmissibility, disease severity, and immune escape [12, 13,
18]. However, the influence of amino acid mutations on S
protein structure is not yet clear. To acquire the spike struc-
tures of different SARS-CoV-2 strains, we used AlphaFold to
predict their spike protein structures based on the mutated
protein sequences. The spike proteins of ten major world-
wide spread SARS-CoV-2 strains were successfully pre-
dicted, including original, alpha, beta, gamma, delta,
epsilon, iota, kappa, lambda, and 21H strains. The full-
length spike protein monomers are presented, and the
RBD and NTD of the S1 protein are marked by different
colors (Figure 1). To compare the structural difference
among the ten SARS-CoV-2 strains, we performed the pair-
wise structural alignment based on full-length S (Figure S2),
NTD (Figure S3), and RBD (Figure S4), respectively. The
comparison of the full-length spike protein structures
shows that the parts of S1 RBD and NTD are significantly
changed whereas the S1 C-terminal domain and S2
domain are hardly affected (Figure S3). The comparison of
S1 NTD and RBD structures predicted based on their
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FiGurek 1: Spike structure prediction of ten SARS-CoV-2 strains. The structures of full length, receptor-binding domain (RBD), and S1 N-
terminal domain (NTD) of spike protein were shown, respectively. Monomer spike proteins were displayed in the cartoon model. RBD and
NTD were shown in the electrostatic surface. Red and blue indicate negative and positive charges, respectively. Red arrows indicate the
significantly changed sites on RBD and NTD among ten strains. Red boxes indicate the major different parts of RBD and NTD in the

Delta variant compared with the original spike protein.

sequences shows that NTD structures are diverse in different
strains, and especially the N-terminal structures of NTD are
significantly changed (Figure S4). The N-terminal and
receptor-binding motif (RBM) in RBD structure domains
display significant changes (Figure S5). These observations
indicate that S1 RBD and NTD of spike proteins have
significant structural changes between different SARS-CoV-
2 strains. We further compared the electrical property on
the structures of RBD and S1 NTD of ten major SARS-
CoV-2 strains. The results showed that amino acid
mutations could change the electrical property on the RBD
and S1 NTD surfaces (Figure 1). Particularly, compared
with the original S protein, RBD and SI NTD of SARS-
CoV-2 Delta variants were notably different structures and
electrostatic surfaces (Figure 1 red box and S3-S5).

2.3. Validation of the Predicted S Protein Structures of SARS-
CoV-2. To evaluate the predicted S protein structures of
SARS-CoV-2 variants, we analyzed the values of the pre-
dicted Local Distance Difference Test (pLDDT) calculated
by AlphaFold since this value represents the domain accu-
racy [36]. The pLDDT value above 70 indicates the struc-

tures have been considered as confidently predicted
structures [37]. Our results show that mean pLDDT values
of full-length S, S1 NTD, and S1 RBD in different SARS-
CoV-2 strains are all above 75 (Figures 2(a)-2(c)). We also
found that percentages of amino acid residues whose
pLDDT values are above 70 in all residues of different full-
length S are all higher than 76%, and the percentages of dif-
ferent S1 NTD, and S1 RBD are above 82%, and 89%,
respectively (Figure S6). These results of pLDDT indicate
the predicted structures are highly accurate.

Furthermore, we compared the AlphaFold-predicted S
protein structure of the original strain with five experimental
S proteins, including PDB ID: 7DDD, 7DDN, 7BNM, 6VSB,
and 7BNN to evaluate the validity of the predicted struc-
tures. We calculated Template Modelling (TM) score [38],
maximal subset (MaxSub) score [39], and Global Distance
Test (GDT)-TS score [40] between the AlphaFold-
predicted and experimental S proteins (Figure 2(a)). The
resulting TM scores were >0.88, the MaxSub scores > 0.5,
and the GDT — TS score > 0.6 (Figure 2(d)), which indicated
the predicated S proteins were of high confidence. We fur-
ther analyzed the 3D structure similarities between the



4 Research
Full-length S SINTD S1RBD
111 S o o 100 4 - e e e -
75 75 75 i i 1
70 70 70
= = | | | |
[a)
8 50 8 50 A 50
= 3 o |
o o ]
25 4 25 25
0 - - O | I [ (i SO N v N e e 0 4 -
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
TE2E9ZEEZESE HERE EE2§E525 L3
IEDN:CCQSQEEHQ’E :°:°N<%m .aEHﬁE Eomzmo-gg._ga
5 8 &S 3 5 a8 M3 S & 38 5
(a)
07 m, v,
[} v v
0.8
", m
* A o
0.6 ° °
0.4 4
0.2 4
0.0 T T T
L i) L
— — —
8 3 3
Z : ;
S B
% g
= 3
Spike-AlphaFold: 1-1273 Spike-7DDN: 14-1147
® Svs7DDD v Svs6VSB GDT-TS score = 0.7411 MaxSub score = 0.7797
W Svs 7DDN ¢ Svs 7BNN TMscore = 0.9668
A Svs 7BNM

(d)

(e)

FIGURE 2: Validation of the predicted S protein structures. (a—-c) The mean pLDDT values of full-length S proteins (a), S1 NTD (b), and S1
RBD (c) in different SARS-CoV-2 variants. (d) Comparison of spike protein between AlphaFold predicted and experimental structures. The
experimental structures were downloaded from the protein data bank (PDB), and their accession numbers were labeled. (e) Alignment of
AlphaFold prediction and experimental structure (PDB: 7DDN). The prediction and experimental structures are colored in green and

red, respectively.

predicated original S protein with 7DDN that is at an open
state of S protein. The aligned structure showed the predi-
cated original S protein and 7DDN were highly similar
(Figure 2(e)). We find that the S1 NTD and RBD structures
are also similar to the experimental structure of 7DDN.
Overall, these results validate the high accuracy and reliabil-
ity of AlphaFold at predicting the S protein of SARS-CoV-2.

2.4. Classification of SARS-CoV-2 Strains Based on the
Genomic Sequences and Protein Structures. Successful classi-
fication of SARS-CoV-2 strains is important to explore the
development of the virus and predict its evolution. To clas-
sify the SARS-CoV-2 strains, we performed phylogenetic
analyses based on the genomic and protein sequences of all
strains. The results showed that SARS-CoV-2 Delta and
kappa variants are highly homologous in four sequence-
based clusters (Figure 3(a)). Clusters based on the spike pro-
tein, S1 RBD, and S1 NTD showed SARS-CoV-2 gamma
and beta variants are highly homologous (Figure 3(a)). The
cluster trees of spike protein RBD and full-length spike pro-

teins are highly similar, which indicates the spike variances
could be mainly from mutations on the spike RBD domains.
Next, we further performed clustering analyses based on the
similarities of the full-length spike protein, S1 NTD, and S1
RBD structures. Notably, clusters based on S1 NTD and
RBD revealed that the SARS-CoV-2 Delta variant is signifi-
cantly different from other variants (Figure 3(b) and
Table S1). The root means square deviation (RMSD) values
of S1 RBD and NTD on the SARS-CoV-2 Delta variant are
higher than that of other variants, indicating that the S1
and RBD structure of the Delta variant has changed
significantly more when compared with the other strains.
Overall, the clusters based on structures and sequences of
full-length spike protein are different, and the sequence
could not well reflect the structures of these SARS-CoV-2.
These results suggest that the structure of Delta S1 RBD
and NTD are unique compared to other variants.
Currently, the SARS-CoV-2 Delta variant is spreading
quickly across the world and possesses high virulence and
resistance to available vaccines. Thus, the unique structures
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F1GURE 3: Cluster analysis of SARS-CoV-2 strains based on protein sequences and structures. (a) Four kinds of clusters of SARS-CoV-2
strains are based on protein sequences. The genome cluster is based on the genome sequences. The spike, spike RBD, and spike NTD
clusters are based on their protein sequences. (b) Three kinds of clusters of SARS-CoV-2 strains are based on protein structures.

Structural similarities are evaluated by RMSD related to Table S1.

of SARS-CoV-2 Delta S1 RBD and NTD could play
important roles in increasing the detrimental change in
COVID-19 epidemiology.

2.5. The Comparison of SI NTD Structure between SARS-
CoV-2 Delta and Original Strains. To explore the structural
difference of S1 NTD between Delta and original (wild-type)
strains, we analyzed the effects of amino acid (AA) muta-
tions on the S1 NTD structure of the Delta strain. The result
shows that six amino acids are mutated on the S1 NTD
structure of Delta strain compared with the original strain,
including T19R, T95I, G142D, E156G, and deletions of
F157 and R158 (Figure 4(a)). These mutations have changed
the molecular orientation and electrical properties of the
protein, such as uncharged T19 is mutated to positively
charged R19, aliphatic G142 is mutated to negatively
charged D142, and negatively charged E156 is mutated to
aliphatic G156 (Figures 1 and 4(a)). Meanwhile, we observed
the effects of these AA mutations on S1 NTD structures. The
results showed that the domains enriched AA mutations are
significantly changed compared with the original strain
(Figure 4(b) black arrows), while the no mutated domains

of Delta S1 NTD have high similarities with the original
strain (Figure 4(b) black box).

The S1 NTD has been confirmed as an epitope that
could be bound with several antibodies [34, 41]. To further
investigate the effects of structural changes on binding anti-
bodies, we calculated the RMSD values of five loops of S1
NTD between Delta and original strains, including N1 loop
(residues 14-26), N2 loop (residues 67-79), N3 loop (resi-
dues 141-156), N4 loop (residues 177-186), and N5 loop
(residues 246-260). The results show that RMSD values of
N3 and N5 are greater than 4.8, and RMSD values of N1,
N2, and N4 are 0.406, 1.376, and 0.273, respectively
(Figure 4(c)). The comparison of structures also shows N3
and N5 are significantly different (Figure 4(d)). Given that
the N3 and N5 loops mediate the interaction with antibody
[41], we observed the interaction between S1 NTD and anti-
body 4A8 (PDB: 7C2L). Compared with the original strain,
N3 and N5 of Delta S1 NTD are significantly different, and
the pivotal hydrophilic interaction domain constructed with
Delta NTD loops of N3 and N5 and three complementarity-
determining regions (CDRs) are much more open than that
of the original strain (Figure 4(e)).
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F1GURE 4: Comparison of spike protein substrate 1 NTD between SARS-CoV-2 Delta and original strains. (a) Structural changes of Delta
strain S1 NTD compared to the original strain. Black arrows and boxes indicate the structures with and without changes, respectively.
(b) Mutations of amino acids on Delta S1 NTD. Triangle represents deletion of amino acid. (¢, d) Comparison of five loops of S1 NTD.
The RMSD values are shown in (c). The structural comparisons are shown in (d). (e) The interaction between NTD and 4A8 antibody
(PDB: 7C2L). (f) The differences of three sites on loop N3 and N5 between Delta and original NTD. Yellow lines indicate the distance
between corresponding amino acids.
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TaBLE 1: The HADDOCK and HDOCK predicted docking scores for wild type-NTD-4A8 and Delta-NTD-4A8 complexes.

Docking parameter

Wild type-NTD-4A8 Delta-NTD-4A8

HADDOCK score

Cluster size

RMSD from the overall lowest-energy structure
Van der Waals energy

Electrostatic energy

Desolvation energy

Restraints violation energy

Buried surface area

Z-score
HDOCK docking score

-84.4+8.2 -65.0+5.7
11 9
0.5+04 204+2.4
-60.3+5.1 -47.1+4.3
-163.1+£9.1 -172.4+£24.3
-38.8+1.1 -23.2+3.5
473.3+£42.2 397.4+65.7
1724.4+£44.2 1643.9 £47.6
-2.6 -2.1
-237.21 -237.07

Notes: additional parameters, including cluster size, RMSD from the overall lowest-energy structure, van der Waals energy, electrostatic energy, desolvation
energy, restraints violation energy, buried surface area, and Z-score, are presented. The scores for other mutant complexes are shown in Table S2.

Meanwhile, skewings of K147, K150, and R246 responsi-
ble for forming salt bridges and hydrogen (H)-bonded with
4A8 between Delta and original NTD are 10.8, 17.5, and 5.5
angstroms, respectively (Figure 4(f)). We evaluated the
interactions between NTD and antibody 4A8 by HAD-
DOCK and HDOCK prediction. The HADDOCK score,
van der Waals energy, desolvation energy, and RMSD from
the overall lowest-energy structure of the original-NTD-
4A8 complexes are much lower than that of the Delta-
NTD-4A8 complexes, while the electrostatic energy, Z
-score, and HDOCK docking score of the complexes are
hardly influenced (Table 1 and S2). These results indicate
that AA mutations on Delta S1 NTD significantly affect
the structure and alter the interactions between NTD and
antibodies.

2.6. The Comparison of SI RBD Structure between SARS-
CoV-2 Delta and Original Strains. In addition to AA muta-
tions on S1 NTD, two AA mutations-L452R and T478K
occur on the Delta S1 RBD domain, which could change
AA’s electrical properties; the aliphatic 1452 and polar
uncharged T478 are mutated to positively charged R452
and K478, respectively (Figure 1). To explore the structural
difference of S1 RBD between Delta and original strains,
we compared the S1 RBD domains. The S1 RBD could be
divided into three parts, including N1 (residues 333 to 438),
receptor-binding motif (RBM, residues 438 to 506), and N3
(residues 507 to 539), based on the structure. The RMSD
values of N1, RBM, and N3 between Delta and original
strains are 0.69, 8.28, and 0.61, respectively (Figure 5(a)).
Consistently, the structural comparisons show that RBM
domains are significantly different between Delta and origi-
nal strains, while domains of N1 and N3 are highly similar
(Figure 5(b)). Given that the RBM domain plays an impor-
tant role in binding with ACE2, we explored the interactions
between ACE2 and Delta S1 RBD domain by aligning struc-
tures based on their homologous sequence. Compared with
the original strain, Delta S1 RBD displays a close interaction
with ACE2 (Figure 5(c)).

Moreover, we performed docking simulations to quan-
tify the interactions between ACE2 and RBD structures of
all mutants. The results show that AA mutations could affect
the docking scores between ACE2 and RBD in all SARS-
CoV-2 mutants, indicating that interactions between ACE2
and RBD are changed (Table 2 and S3). Comparison
between original and Delta strains shows that electrostatic
energy, desolvation energy, Z-score, and RMSD from the
overall lowest-energy structure are low while van der Waals
energy and HADDOCK score are high in Delta-RBD-ACE2
complexes (Table 2). Most notably, significant differences in
electrostatic energy between the original and Delta com-
plexes are observed. The electrostatic energy of the original
strain is —221.5 + 11.0, whereas that of the Delta variant is
—-264.5+23.9 (Table 2), which suggests that the mutated
positively charged R452 and K478 on Delta RBD decrease
electrostatic energy. Overall, these results indicate that AA
mutations on the Delta RBD domain could significantly alter
the RBD structure and its interactions with ACE2.

2.7. The Effects of AA Mutations on Interactions between S1
RBD and Antibodies. The structural comparison of S1 RBD
between Delta and original strains shows that mutations
on T478 and L452 induce significant skewing of AAs and
alteration of the structures (Figure 6(a)). The structural dif-
ference occurs on RBM where AA mutations are enriched
(Figure 6(a)), which is consistent with the results of RMSD
values (Figure 5(a)). Distances between T478 and L1452 of
the original and the corresponding K476 and R450 of the
Delta are 29.8 and 5.3 angstrom, respectively (Figure 6(a)).
Given that three epitopes of S1 RBD could be recognized
and bound by antibodies, we analyzed interactions between
S1 RBD and antibodies. The results show that the structures
of two of three epitopes are slightly changed, and the bind-
ings with S304 and S309 antibodies are almost not influ-
enced (Figure 6B2 and B3), whereas the epitope bound
with S2H14 antibody, also involved in binding with ACE2,
is significantly changed indicating that the capacity of this
epitope bound with antibodies is decreased. To evaluate
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Figure 5: Comparison of spike protein RBD between SARS-CoV-2 Delta and original strains. (a, b) Comparison of three loops of spike
RBD. The RMSD values are shown in (a). The structural comparisons are shown in panel (b). Red arrows indicate the structures with
significant changes. (c) Interactions between spike RBD and ACE2. Spike RBD and ACE2 are downloaded from PDB (6LZG).

the interactions between the antibody S2H14 and S1 RBD of
original and Delta strains, we performed docking simula-
tions based on the interactions between the heavy chain of
the S2H14 antibody and S1 RBD. The results showed that
the original-RBD-S2H14 complex has a higher binding
affinity than the Delta-RBD-S2H14 complex (Table 3 and
S4). The values of the HADDOCK score, electrostatic
energy, desolvation energy, and RMSD from the overall

lowest-energy structure in the original-RBD-S2H14 complex
are much lower than those in the Delta-RBD-S2H14 com-
plex, while Van der Waals energy in the original-RBD-
S2H14 complex is higher than that in the Delta-RBD-
S2H14 complex (Table 3). These results indicated that the
structural changes of Delta S1 RBD induced by amino acid
mutations altered the epitope and reduced antibody
recognition.



Research 9

TaBLE 2: The HADDOCK and HDOCK predicted docking scores for wild type-RBD-ACE2 and Delta-RBD-ACE2 complexes.

Docking parameter Wild type-RBD-ACE2 Delta-RBD-ACE2
HADDOCK score -116.1£1.6 -102.7 £4.3
Cluster size 119 55
RMSD from the overall lowest-energy structure 6.5+0.2 1.7+1.4
Van der Waals energy -56.4+3.0 -35.6+4.8
Electrostatic energy -221.5+11.0 -264.5+23.9
Desolvation energy -17.7+£2.5 -18.6 £5.0
Restraints violation energy 22.1+16.6 44.0+19.0
Buried surface area 1710.8 £ 41.9 1553.8 £ 106.5
Z-score -1.3 -1.8
HDOCK docking score -310.19 -240.73

Notes: additional parameters, including cluster size, RMSD from the overall lowest-energy structure, van der Waals energy, electrostatic energy, desolvation
energy, restraints violation energy, buried surface area, and Z-score, are presented. The scores for other mutant complexes are shown in Table S3.

(b)
FIGURE 6: The effects of Delta strain mutations on interactions between RBD and antibodies. (a) Comparison of two mutated amino acids on
RBD. (b) The interactions between RBD and antibodies. Antibodies and original RBD are downloaded from PDB (7]X3).

2.8. Virtual Screening of Potential Drugs Targeting Delta S1 credible models for screening potential compounds targeting
NTD. The high accurate structural prediction of SARS-  these proteins. Given that the SARS-CoV-2 Delta variant has
CoV-2 spike protein based on AlphaFold provides us with ~ been a major threat worldwide, we performed the virtual
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TaBLE 3: The HADDOCK predicted docking scores for wild type-RBD-S2H14 and Delta-RBD-S2H14 complexes.

Docking parameter

Wild type-RBD-S2H14 Delta-RBD-S2H14

HADDOCK score

Cluster size

RMSD from the overall lowest-energy structure
Van der Waals energy

Electrostatic energy

Desolvation energy

Restraints violation energy

Buried surface area

Z-score

-79.4+3.7 -72.8+14
16 24
8.8+1.4 21.1+0.4
-40.7+£2.5 -449+24
-141.0 £22.6 -136.6 £13.0
-11.4+7.3 -1.2+2.6
9.6 +15.6 70+£11.8
1186.3 £ 105.6 1182.4+42.8
-1.8 -1.8

Notes: the scores for other mutant complexes are shown in Table S4. The protein-protein docking is based on the interactions between the heavy chain of the

S2H14 antibody and S1 RBD.

screening technique to identify potential drugs. To identify
chemicals that can be applied in the clinic, we selected a data-
base consisting of 5903 approved drugs worldwide (Table S5).
We utilized the screening approach to calculate the binding
affinity of the compounds targeting Delta S1 NTD distinct
from other variants. The results revealed 40 kinds of drugs
targeting S1 NTD that display high binding affinity,
whose binding energies are less than -9 kcal/mol (Table S5).
The top 10 best docking drugs targeting S1 NTD are
cepharanthine, midostaurin, targretin, zinc000014880001,
dihydroergotoxine, trypan blue, vorapaxar, ergotamine,
lomitapide, and lestaurtinib (Figure 7(a) and Table 4). These
10 drugs are enriched at two pharmacophores on the Delta
NTD (Figure 7(b)). Pharmacophore 1 is a cavity displaying a
positive charge, while pharmacophore 2 shows a negative
charge (Figure 7(b)). Trypan blue among the ten drugs is
targeted pharmacophore 2, and the other nine drugs are
targeting pharmacophore 1 (Figure 7). The main interactions
between trypan blue and pharmacophore 2 are hydrophobic,
hydrogen bonds, and salt bridges through binding with
PRO39, ASP40, LYS41, VAL42, PHE43, ARG44, LYS195,
ASN196, ILE197, GLY199, TYR200, PHE201, LYS202,
ASP228, and LEU229 (Figure 8). The nine drugs interact
with ASN188, ARG190, HIS207, THR208, and PRO209 on
the pharmacophore 1 through hydrophobic interactions,
hydrogen bonds, pi-cation, and salt bridge (Figure 8).

2.9. Virtual Screening of Potential Drugs Targeting Delta SI
RBD and RBM. Given that the Delta S1 RBD and RBM play
important roles in entering the host cells through binding
with ACE2, Delta S1 RBD, and RBM have great potential
as new drug targets. To further search potential drugs target-
ing the SARS-CoV-2 Delta strain, we performed the virtual
screening methods on the Delta S1 RBD and RBM, with
RBM used for cross-validation. The results showed that
14 and 16 kinds of drugs showed a high binding affinity
with the Delta S1 RBD and RBM, respectively (Table S5).
Nine of the top 10 best docking drugs are significantly
overlapped in targeting S1 RBD and RBM while the
binding energies are different, which include trypan blue,
sn38 glucuronide, dihydroergotoxine, zinc000014880001,
irinotecan, avodart, tubocurarin, dihydroergotamine, and

tasosartan (Figures 9(a) and 10 and Table 4). ZINC95618827
uniquely interacts with ARG37, TYR78, PRO108, and
GLU198 on Delta S1 RBM by hydrophobic interactions,
hydrogen bonds, and salt bridge (Figure 10A11).
Naldemedine interacts with VAL23, ALA26, ALA30,
ASN36, LYS38, ASN132, and THR152 on the Delta S1
RBM by hydrophobic interactions and hydrogen bonds
(Figure 10A10). The identified drugs are enriched at three
pharmacophores on Delta RBD (Figure 9(b)). Sn38
glucuronide, naldemedine, and zinc95618827 are enriched
at pharmacophore 1 (Figure 9 B1), while trypan blue,
tubocurarin, and dihydroergotamine are enriched at
pharmacophore 2 forming hydrophobic interactions,
hydrogen bonds, and salt bridge (Figures 9B2 and 10).
Dihydroergotoxine, zinc000014880001, irinotecan,
tasosartan, and avodart are enriched at pharmacophore 3
forming hydrophobic interactions, hydrogen bonds, salt
bridge, and pi-stacking (Figures 9B3 and 10).

To validate the binding affinity of the screened com-
pounds to Delta S1 RBD, we used surface plasmon reso-
nance technology (BIAcore 8K, GE Healthcare) to analyze
the binding energy which is a frequently used instrument
to detect the binding energy between proteins and small
molecule compounds [42, 43]. We detected the binding
energy between S1 RBD of Delta variant and the 8 screened
compounds, including dihydroergotoxine, trypan blue, iri-
notecan, biosone, cepharanthine, avodart, tasosartan, and
conivaptan. Five of the compounds exhibited high binding
affinity to S1 RBD of the Delta variant, and the estimated
binding affinity values (KD) of dihydroergotoxine, trypan
blue, irinotecan, biosone, and cepharanthine were 49.9,
10.8, 243.5, 77.3, and 271.4uM, respectively (Figure 11).
The results indicated that these compounds could have anti-
viral activity and that the drugs predicted by bioinformatics
methods were highly confident.

3. Discussion

AlphaFold v1 has been used to predict the structures of
many SARS-CoV-2 proteins, such as SARS-CoV-2 ORF 6,
8, 10 and NSP 2, 3, 4, 6 [44, 45], which with high accuracy.
In this study, we focused on predicting the S protein
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F1gUre 7: Complexes of top 10 drugs targeting Delta S1 NTD domain. (a) Structures of top ten drugs combined with Delta NTD. (B1 and
B2) Two major pharmacophores on Delta NTD. Red and blue colors on the surface indicate negative and positive charges, respectively.
Yellow circles indicate the pharmacophores. Drugs used for virtual screening are downloaded from the ZINC database and filtered by

“world subset.” The values are related to table S5.

structure of ten SARS-CoV-2 strains, including original,
Alpha, Beta, Gamma, Delta, Kappa, Lambda, Gamma, Iota,
and 21H variants with high accuracy by applying the
machine learning method, AlphaFold [37]. The reliability
of the predicted S protein structures was validated in two
ways, firstly by use of the pLDDT value calculated by Alpha-
Fold and the comparison between AlphaFold-predicted and
experimental S protein structures (Figure 2). To the best of
our knowledge, this is the first study to present the S protein
structures of so many SARS-CoV-2 strains, which helps lay a
foundation for further SARS-COV-2 research and supple-

ment experimental structural biology. Moreover, this effec-
tive utilization of AlphaFold may help the developers to
update and optimize the algorithm.

How to correctly classify the different SARS-CoV-2
strains is an important question; the main method used to
classify the SARS-CoV-2 strains so far has been phylogenetic
analysis, which is based on the genomic sequence [12, 15, 27,
46, 47]. While phylogenetic analyses do a good job of reflect-
ing the evolutionary trajectory of the virus to some extent, it
cannot account for differences in virulence of the strains and
is not able to substantially differentiate between the Delta
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TaBLE 4: Virtual screening of potential drugs targeting Delta NTD, RBD, and RBM domains based on zinc database. Affinitive values of the

top 10 best drugs are presented related to Table S5.

Targeted domains ZINC ID Drug name Mwt Values (kcal/Mol)
ZINC30726863 Cepharanthine 606.719 -10.6
ZINC100013130 Midostaurin 570.649 -10
ZINC1539579 Targretin 348.486 -9.9
ZINC14880001 ZINC14880001 528.537 -9.9
ZINC14880002 Dihydroergotoxine 583.689 -9.8
Delta NTD
ZINC169289767 Trypan blue 872.894 -9.8
ZINC3925861 Vorapaxar 492.591 -9.8
ZINC52955754 Ergotamine 581.673 -9.7
ZINC27990463 Lomitapide 693.732 -9.7
ZINC3781738 Lestaurtinib 439.471 -9.6
ZINC169289767 Trypan blue 872.894 -9.9
ZINC4099104 Sn38 glucuronide 568.535 -9.6
ZINC14880002 Dihydroergotoxine 583.689 -9.6
ZINC1612996 Irinotecan 586.689 -94
ZINC3932831 Avodart 528.537 -9.4
Delta RBM
ZINC14880001 ZINC14880001 528.537 -9.4
ZINC3978005 Dihydroergotamine 583.689 -9.3
ZINC95618827 ZINC95618827 721.646 -9.1
ZINC13444037 Tasosartan 411.469 9.1
ZINC3978083 Tubocurarin 609.743 -9.1
ZINC169289767 Trypan blue 872.894 -9.8
ZINC4099104 Sn38 glucuronide 568.535 -9.5
ZINC14880002 Dihydroergotoxine 583.689 -9.5
ZINC14880001 ZINC14880001 528.537 -9.4
Delta RBD ZINC1612996 Irinotecan 586.689 -9.3
ZINC3932831 Avodart 528.537 -9.3
ZINC3978083 Tubocurarin 609.743 -9.2
ZINC3978005 Dihydroergotamine 583.689 -9.2
ZINC13444037 Tasosartan 411.469 9.1
ZINC100378061 Naldemedine 570.646 -9

and other strains. Trying to solve this problem, we
attempted to classify the SARS-CoV-2 strains by using struc-
tural similarity. Interestingly, our classifications showed the
unique cluster of the Delta strain based on the structural
similarity of both S1 NTD and RBD, which was different
from that based on the sequences (Figure 3). This result
can be interpreted as that the structural difference can reflect
the functional variation more directly. This study suggests
that structural similarity can be a new way to classify
SARS-CoV-2 strains under the novel conditions that Alpha-
Fold can provide high accuracy protein structures.
SARS-CoV-2 Delta (B.1.617.2) strain was first identified
in India in December 2020, which has become a major epi-
demic strain worldwide accounting for more than 80% of
new cases (nextstrain/ncov) [47]. The SARS-CoV-2 Delta
strain has been confirmed to be less sensitive to serum neu-
tralizing antibodies and vaccine-elicited antibodies, com-
pared with wild-type strain [48, 49]. Here, we predicted the
high-accuracy spike protein structure of SARS-CoV-2 Delta

strain with powerful tool-AlphaFold and demonstrated that
the structures of S1 NTD and RBD of SARS-CoV-2 Delta
strain were significantly changed. They displayed lower
binding affinities with the corresponding antibodies, 4A8
and S2H14 antibodies, compared with the original stain
(Figures 4 and 6). The lower binding affinities with anti-
bodies can reduce the neutralization ability to the spike pro-
tein of SARS-CoV-2 Delta strain and then induce immune
evasion. Our results provided a bioinformatic and computa-
tional insight into explaining how the SARS-CoV-2 Delta
variant causes immune evasion from spike protein structure,
and it could provide a reference for the follow-up research.
These methods presented in our research can also be used
to continuously monitor the mutation and structural varia-
tion of SARS-CoV-2 strains.

Effective drugs against SARS-CoV-2, especially the Delta
strain, have not yet been developed. Virtual screening com-
bined with structural biology has been a useful assistant
method for drug discovery [50-52]. The high-accuracy
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FIGURE 8: Chemical structures of top 10 drugs targeting Delta S1 NTD. The drug interacts with the red amino acids on the Delta S1 NTD
domain based on the blue interactions, including hydrophobic interaction, hydrogen bond, pi-stacking, pi-cation, and salt bridge related to

Figure 7 and Table S5.

predicted structures of spike proteins provide us a basis for
the virtual screening. The S1 NTD and RBD are crucial parts
for binding host cells [53, 54], and thus, the binding of the
drug with these parts could play important roles in inhibit-
ing the infection of SARS-CoV-2. Given the unique structure
and pandemic of the Delta strain, we selected 5903 world-
wide approved drugs that can be used in the clinic rapidly
from the ZINC database (https://zincl5.docking.org/) for
virtual screening of targeting S1 NTD and RBD of Delta
strain. After a strict filter at binding energy less than
-9kcal/mol, 40 and 14 kinds of drugs targeting S1 NTD
and RBD were identified. These drugs can form hydropho-

bic interactions, hydrogen bonds, salt bridges, Pi-cation,
and Pi-stacking with key amino acids on S1 NTD and
RBD. Some of these drugs, including Dihydroergotoxine,
Avodart, Tubocurarine, and Irinotecan, have been evaluated
to potentially affect SARS-CoV-2 towards proteases, and
NSP9 [55-58]. Our results indicated that these drugs indi-
vidually or in combinations may be used as potential inhib-
itors of S1 NTD and RBD of SARS-CoV-2 after verifying
their in vivo and in vitro antiviral ability.

A limitation of this study is that we only focused on the S
protein structures of SARS-CoV-2. Besides the S protein,
other parts, including nucleocapsid protein, envelope
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F1GUre 9: Complexes of top 10 drugs targeting Delta S1 RBD domain. (a) Structures of top ten drugs combined with Delta S1 RBD and
RBM. The top nine drugs are commonly identified in S1 RBD and RBM. Red and blue boxes indicate the unique drugs screened in S1
RBD and RBM, respectively. (B1-3) Three major pharmacophores on Delta SI RBD and RBM. Red and blue colors on the surface
indicate negative and positive charges, respectively. Yellow circles indicate the pharmacal cavities. Drugs used for virtual screening are
the same as Figure 7.
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F1GurE 10: Chemical structures of drugs targeting Delta S1 RBD and RBM. Chemicals Al to A9 are common drugs in S1 RBD and RBM.
Chemicals A10 and A1l are unique for RBD and RBM, respectively. The drug interacts with the red amino acids on the Delta S1 NTD
domain based on the blue interactions, including hydrophobic interaction, hydrogen bond, pi-stacking, pi-cation, and salt bridge related

to Figure 9 and Table S5.

protein, and RNA-dependent RNA polymerase of SARS-
CoV-2, are also not well known, while they can play impor-
tant roles in SARS-CoV-2 replication and infection. These
proteins should be explored in future works following our
methods. Moreover, the availability of screened drugs target-
ing the Delta strain SI1 NTD and RBD should be verified by
the strict experiments before applying to the clinic. We
would like to highlight that the current study is mainly based
on computation and simulation providing essential data;

however, some structures and results should be evaluated
by further experiments.

In conclusion, our study acquired the high-accuracy
spike protein structures of ten SARS-CoV-2 variants by
using the AlphaFold model. The complementary methods,
containing the comparison with experimental structures
and the validation of pLDDT of the AlphaFold built-in algo-
rithm, verified the structures were highly accurate. We found
that the clustering analysis based on structural similarity
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Ficure 11: The five compounds exhibit high binding affinity to S1 RBD of the Delta variant. The estimated KD constants of
dihydroergotoxine (a), trypan blue (b), irinotecan (c), biosone (d), and cepharanthine (e) are 49.9, 10.8, 243.5, 77.3, and 271.4 uM,

respectively.

could reflect the current characteristics of the epidemic more
accurately than those based on the protein sequence, such as
the mainly pandemic SARS-CoV-2 Delta variants displayed
the unique features in the cluster based on the structural
similarity. Moreover, the analysis of the binding affinities
of ACE2-RBD, antibody-NTD, and antibody-RBD com-
plexes in the different variants revealed that the recognition
of antibodies against S1 NTD and RBD was decreased in the
variants, especially the Delta variant compared with the orig-
inal strain, which may induce the immune evasion of SARS-
CoV-2 variants. Furthermore, we identified multiple com-

pounds that target S1 NTD and RBD by virtual screening
the ZINC database against a high-accuracy predicted struc-
ture of Delta spike protein, which might contribute towards
the development of clinical anti-SARS-CoV-2 medicines.
Our study provided abundant basic data for further research
related to curing COVID-19.

4. Material and Methods

4.1. Structure Modeling with AlphaFold. The structural pre-
diction of spike protein was based on the model of
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AlphaFold v2.0 entered in CASP14 and published in Nature
[37]. The inference pipeline and source code of AlphaFold
are available under an open-source license at https://github
.com/deepmind/alphafold. The parameter of preset is the
same as that used in CASP14, which runs with all genetic
databases and with 8 ensembles. The mirrored databases
used in our study include BFD [59], MGnify clusters [60],
UniRef90 [61], Uniclust30 [62], protein data bank (PDB),
and PDB70 [63]. The spike protein sequences of different
SARS-CoV-2 variants downloaded from GISAID (http://
gisaid.org) were used as inputs. The graphics processing unit
(GPU) used in this study was NVIDIA Tesla V100 on the
2.0 cluster supported by the Center for High-Performance
Computing at Shanghai Jiao Tong University.

4.2. Calculation of Similarity between Experimental and
Predicted Structures. The experimental structures of spike
protein were downloaded from PDB, including 7DDD,
7DDN, 7BNM, 6VSB, and 7BNN. The 3D protein structures
were visualized by the software PyMol. The similarity
between experimental and predicted structures was evalu-
ated by template modelling (TM) score, maximal subset
(MaxSub) score, global distance test (GDT)-TS score, root-
mean-square deviation (RMSD), and the predicted local-
distance difference test (pLDDT). TM-score [38], MaxSub
score [39], and GDT-TS score [40] were calculated based
on the online service of TM-align (https://zhanggroup.org/
) [64, 65]. The RMSD and pLDDT between experimental
and predicted structures were calculated by the software
PyMol and AlphaFold, respectively [36, 66].

4.3. Cluster Analyses of Different SARS-CoV-2 Strains. The
cluster analyses were performed based on both protein
sequences and structures. The software Molecular Evolu-
tionary Genetics Analysis-X (MEGA-X) was used for phylo-
genetic analyses based on protein sequences. The ClustalW
alignment algorithms were used to align the multiple
sequences, and evolutionary tree was generated using the
maximum likelihood method [67]. The structural cluster
analyses were based on the matrix of RMSD values between
different SARS-CoV-2 strains, and the method used to clus-
ter these strains was based on the built-in algorithm of R
packages “pheatmap.” The data were visualized by the R
packages of “pheatmap” and “ggplot2.”

4.4. Consensus Docking of S1 NTD and Antibody 4A8. The
relaxed-predicted S1 NTD structures of different SARS-
CoV-2 strains were selected for the modeling of biomolecu-
lar complexes between S1 NTD and antibody 4A8 [41] based
on high ambiguity-driven protein-protein docking (HAD-
DOCK) [68, 69]. The interface residues at 25 to 32, 51 to
58, 100 to 116 for antibody 4A8 M chain, and at 145 to
150 for S1 NTD were determined for restraint docking in
an online HADDOCK server. The other docking parameters
were set as default. The algorithm of HDOCK combined
both template-based and free approaches were deployed
for cross-validation [70, 71].

4.5. Consensus Docking of S1I RBD with ACE2 and
Antibodies. Similarly, the docking analyses of ACE2 and
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antibodies with S1 RBD have followed the same method as
described in Section 2.4. Briefly, for antibody S2H14 [9]
docking against the S1 RBD, the interface residues at 52,
56, 107, and 108 on the heavy chain of the antibody
S2H14, and 449, 498, 500, and 505 (131,180,182, and 187)
on S1 RBD were determined for restraint docking. For
ACE2 docking against S1 RBD, the interface residues at 21,
24, 27, 28, 30, 35, 38, 79, 80, 82, 83, and 353 for ACE2 and
at 449, 453, 455, 456, 486, 487, 489, 493, 496, 498,500, 501,
502, and 505 (131, 135, 137, 138, 168, 169, 171, 175, 178,
180, 182, 183, 184, and 187) for S1 RBD were determined
for restraint docking. The online HADDOCK server was
used for docking analysis, and the HDOCK was used for
cross-validation.

4.6. Virtual Screening of Potential Drugs Targeting SI NTD
and RBD. For fast use of the screened drugs in the clinic,
the 5903 chemicals used for virtual screening were down-
loaded from the ZINC database under the filter of the
world-approved drugs. The software of Autodock vina
[72] was applied to identify potential drugs binding with
S1 NTD and RBD. The S1 RBD and NTD were included
in the searching grid boxes, respectively. The binding
sites and pharmacophores were searched automatically
by the software. Moreover, for cross-validation, the S1
RBM was set as a target in the searching grid box.
Finally, based on the docking scores, the screened com-
pounds with the threshold values of binding energy fixed
less than -9.00 kcal/mol were identified as potential drugs
for S1 NTD and RBD. The binding affinity was measured
by surface plasmon resonance technology using a BIAcore
8K instrument (GE Healthcare, United States) with run-
ning buffer (PBST containing 5% DMSO) at 25°C. The
S1 RBD of Delta (Beyotime Biotechnology Co., LTD,
China, #P2341) was purchased from immobilized onto
sensor CM5 chips by a standard amine-coupling proce-
dure in 10mM sodium acetate (pH 5.5). Compounds
were serially diluted and injected into the chip at a flow
rate of 30ul/min for 120s (contact phase), followed by
120s of buffer flow (dissociation phase). The binding
affinity of KD value was calculated by the software of
Biacore Insight Evaluation V3.0 (GE Healthcare, United
States).

4.7. Interaction Analysis between Potential Drugs and Protein
Structures. The top ten screened compounds ranked by the
lowest binding energy were selected for interaction analysis
with S1 NTD and RBD. The interaction analysis was per-
formed using the online service of protein-ligand interac-
tion profiler (PLIP) [73]. The algorithm of PLIP identified
the amino acids on protein structures responsible for
forming specific interactions with the chemicals. The 3D
structures of compounds, SI NTD, and RBD were visual-
ized by the software PyMol, and the combination com-
pounds with SI NTD and RBD were generated by the
software Autodocktools.

4.8. Statistical Analysis and Data Visualization. The statisti-
cal analysis was performed using R software (Version 4.0.3)
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on Rstudio and Microsoft Excel (Version 2019). The data
visualization was performed by the R package of “ggplot2”
and GraphPad Prism (Version 8).

Data Availability

All the data is available on RCSB and UniProt, and any sim-
ulation data will be provided on demand. The protein struc-
tural files predicted by AlphaFold were submitted as
supplemental materials. The RStudio code used in this study
to perform statistical analysis and visualize data is available
upon request.
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