
R E S E A R CH A R T I C L E

CBP60-DB: An AlphaFold-predicted plant kingdom-wide
database of the CALMODULIN-BINDING PROTEIN 60 protein
family with a novel structural clustering algorithm

Keaun Amani | Vanessa Shivnauth | Christian Danve M. Castroverde

Department of Biology, Wilfrid Laurier

University, Waterloo, Ontario, Canada

Correspondence

Keaun Amani and Christian Danve

M. Castroverde, Department of Biology,

Wilfrid Laurier University, Waterloo, ON N2L

3C5, Canada.

Email: aman5230@mylaurier.ca and

dcastroverde@wlu.ca

Funding information

Natural Sciences and Engineering Research

Council of Canada (NSERC); Canada

Foundation for Innovation; Ontario Research

Fund; Laurier Faculty of Science Institutional

Start-Up Funds; Mitacs Research Training

Award

Abstract

Molecular genetic analyses in the model species Arabidopsis thaliana have demon-

strated the major roles of different CALMODULIN-BINDING PROTEIN 60 (CBP60)

proteins in growth, stress signaling, and immune responses. Prominently, CBP60g

and SARD1 are paralogous CBP60 transcription factors that regulate numerous com-

ponents of the immune system, such as cell surface and intracellular immune recep-

tors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for

immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid

(NHP). However, their function, regulation, and diversification in most species remain

unclear. Here, we have created CBP60-DB (https://cbp60db.wlu.ca/), a structural

and bioinformatic database that comprehensively characterized 1052 CBP60 gene

homologs (encoding 2376 unique transcripts and 1996 unique proteins) across

62 phylogenetically diverse genomes in the plant kingdom. We have employed deep

learning-predicted structural analyses using AlphaFold2 and then generated dedi-

cated web pages for all plant CBP60 proteins. Importantly, we have generated a

novel clustering visualization algorithm to interrogate kingdom-wide structural simi-

larities for more efficient inference of conserved functions across various plant taxa.

Because well-characterized CBP60 proteins in Arabidopsis are known to be tran-

scription factors with putative calmodulin-binding domains, we have integrated

external bioinformatic resources to analyze protein domains and motifs. Collectively,

we present a plant kingdom-wide identification of this important protein family in a

user-friendly AlphaFold-anchored database, representing a novel and significant

resource for the broader plant biology community.

1 | INTRODUCTION

Plants employ constitutive and inducible defense mechanisms to com-

bat invading pests and pathogens (Freeman & Beattie, 2008;

Wittstock & Gershenzon, 2002; Zhou & Zhang, 2020). A central

inducible defense response is the production of the plant hormone

salicylic acid (SA), which has essential roles in immunity (Ding &

Ding, 2020; Peng et al., 2021; Shields et al., 2022) and abiotic stress

tolerance (Gharbi et al., 2018; Khan et al., 2019; Saleem et al., 2021).

Thorough understanding of plant immunity and stress responses are

important in reducing global crop losses and ensuring food security

worldwide (Bailey-Serres et al., 2019; Savary et al., 2019).
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In the model plant species Arabidopsis thaliana, SA production

in response to stress is mediated by the sequential action of the

ISOCHORISMATE SYNTHASE 1 (ICS1), ENHANCED DISEASE SUS-

CEPTIBILITY 5 (EDS5), and AVRPPHB SUSCEPTIBLE 3 (PBS3) pro-

teins (Rekhter et al., 2019), which are controlled at the

transcriptional level by the master transcription factor CAM-

BINDING PROTEIN 60-LIKE G (CBP60g) and its functionally redun-

dant homolog SAR Deficient 1 (SARD1; Sun et al., 2015; Wang

et al., 2009; Wang et al., 2011; Zhang et al., 2010). Notably, it is

known that SA production and plant immunity are vulnerable to

warming temperatures (Castroverde & Dina, 2021; Huot

et al., 2017). This critical temperature vulnerability of the plant

immune system is controlled via CBP60g/SARD1 (Kim et al., 2022),

which are members of the broadly conserved plant CBP60 protein

family (Zheng et al., 2021).

Biological understanding of protein function relies on detailed

characterization of protein structures. However, accurate prediction

of protein structure from amino acid sequence alone has remained a

central problem in biology (Dill et al., 2008). Traditional methods, such

as X-ray crystallography or NMR spectroscopy, are usually very

expensive, time-consuming, and can fail to produce viable results for

complexes, membrane-bound proteins, or proteins that are unable to

crystallize (Nogales & Scheres Sjors, 2015; Shi, 2014; Tugarinov

et al., 2004). A major advance to solve this grand challenge occurred

with the launch of AlphaFold2, which is a novel deep learning

approach for accurately predicting the three-dimensional structure of

a protein from its amino acid sequence (Jumper et al., 2021). How-

ever, base AlphaFold2 also suffers from a few drawbacks, such as lack

of exposure for certain internal settings (e.g., number of recycling

steps), it is slightly unoptimized, and the default MSA generation algo-

rithms used can be slow and time-consuming (Mirdita et al., 2022).

ColabFold (Mirdita et al., 2022) is an AlphaFold2 derivative that

addresses the aforementioned issues with AlphaFold2 and is able to

generate highly accurate predictions comparable, if not superior to

those of AlphaFold2. Furthermore, ColabFold can produce more pre-

dictions within a shorter period.

Because of the biological importance of CBP60g and SARD1 pro-

teins for plant immune system resilience under changing environmen-

tal conditions (Choudhary & Senthil-Kumar, 2022; Kim et al., 2022;

Wan et al., 2012), it is critical that we fully understand their structures

and functions in other plants. This mechanistic knowledge has critical

ramifications on safeguarding plant disease resistance for a warming

climate. Although a recent study conducted a kingdom-wide phyloge-

netic analysis of the CBP60 family and potential protein neofunctio-

nalization (Zheng et al., 2021), there is little functional and molecular

information on these proteins in most plants, including agriculturally

important crop species.

To further understand the diversity of CBP60 protein structure

and function in the plant kingdom, we have created a fully curated,

AlphaFold-generated (Jumper et al., 2021) structural database called

the Plant CBP60 Protein Family Database or CBP60-DB (https://

cbp60db.wlu.ca/). Of note, this paper describes an algorithm that

to our knowledge is a novel approach to accurately clustering

proteins by structural similarity. The proposed algorithm is simple,

accurate, and can be easily reproduced on any modern device. By

building our novel visual clustering algorithm, we were able to

compare and cluster the predicted protein structures, facilitating

easier ortholog selection and inference of putative biological func-

tions. A Google Colaboratory notebook is provided, as well as a

minimal implementation for executing locally. We have showcased

a visualization for this algorithm on the index page of the

CBP60-DB web application.

2 | PLANT KINGDOM-WIDE SEQUENCE
COLLECTION AND ALPHAFOLD-BASED
PROTEIN FOLDING

We first identified CBP60 genes and proteins in plant species with

published and fully sequenced genomes. Using the Gramene compara-

tive genomics website (http://gramene.org/; Tello-Ruiz et al., 2020),

we obtained a comprehensive kingdom-wide list of representative

plant species and CBP60 gene homologs in these species. Our base

dataset consisted of species names, gene sequences, transcript/cDNA

sequences, and protein sequence data. Each protein entry’s amino

acid sequence was used as an input to ColabFold for structural predic-

tions. ColabFold (https://github.com/sokrypton/ColabFold) was used

instead of the original AlphaFold2 because the former produces a

higher number of predictions within a shorter time, while also improv-

ing prediction quality compared with base AlphaFold2. This improve-

ment is primarily due to ColabFold’s usage of the MMseqs2 algorithm

for faster homology search as well as other model optimizations

(Steinegger & Söding, 2017). Furthermore, ColabFold makes some of

AlphaFold2’s internal settings easily accessible and configurable,

allowing us to adjust settings such as the number of recycling

iterations.

3 | DATABASE IMPLEMENTATION

Prior to the development of CBP60-DB and its web application com-

ponents, we determined that an effective solution must be scalable,

responsive, simple to use, and sufficiently modular, so that the appli-

cation could easily be adapted to other protein families and similar

projects. The final version of our database contains 1996 unique pre-

dicted structures (from 2376 corresponding cDNA/transcripts and

1052 unique genes), as well as corresponding metadata, and confi-

dence metrics. The predicted structures are available in the protein

databank (PDB; Berman et al., 2000) and the newer macromolecular

Crystallographic Information File (mmCIF) file formats.

The CBP60-DB user interface was designed to be easy to navi-

gate, with an emphasis on several intuitive visualization options that

are available and assembled for best user accessibility. Additionally,

the application was written in the Go programming language without

third party dependencies, making it straightforward to redeploy across

any modern system. All database contents are either stored within the
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assets directory of the application, which is freely accessible via

HTTP(S), or stored within an internal json file that is then loaded into

memory as a hash table, where keys are the md5 hashes of the unique

transcript names. The advantage of an internal hash table over a tradi-

tional database management system (DBMS) is that the internal hash

table is faster for accessing and serving data and requires no addi-

tional dependencies. Furthermore, because the contents of the data-

base are static and the memory required to load the json file is

reasonable (6.9 Mb), there is little need for using an alternative DBMS.

However, should we decide to scale the contents of the database to

include vastly more entries, an alternative DBMS will be the prefera-

ble solution.

4 | DATA ARCHIVAL

CBP60-DB archives and provides access to the following data below.

Note that protein structures which have been updated, replaced, or

removed will not be archived.

• Predicted protein crystal structure in PDB and mmCIF file

formats.

• Protein metadata and AlphaFold2 metadata in json format.

• Generated thumbnails of the predicted structure in png format.

• AlphaFold2 scoring metrics in json format (pLDDT, PAE, and

pTM score).

• MMseqs2 MSA file used during model inference in a3m format.

• Cluster map of predicted structures in json format.

• Phylogenetic tree created within MEGA using the MUltiple

Sequence Comparison by Log-Expectation (MUSCLE) alignment

algorithm in FASTA format.

• Phylogenetic tree generated by FastTree in the Newick file

format.

• TM-Align scores between all proteins.

• Gramene web links associated with each protein structure page.

The predicted Local Distance Difference Test (pLDDT-Cα) is a per

residue metric used by AlphaFold2 to gauge the model’s confidence in

the position and orientation of each residue within a predicted struc-

ture. Values range from 0 to 100, where higher values are associated

with greater prediction accuracy and less disorder (Jumper et al., 2021).

The predicted aligned error (PAE) is a Nres � Nres matrix where

Nres corresponds to the number of residues within the input amino

acid sequence. Each element within the matrix represents the pre-

dicted distance error in Ångströms of the first residue’s position when

aligned on the second residue (Varadi et al., 2021).

The Molecular Evolutionary Genetics Analysis (Tamura

et al., 2021) application was used to produce the alignment fasta file

using the MUltiple Sequence Comparison by Log-Expectation

(MUSCLE) (Edgar, 2004) algorithm with the following parameters

(Table S1). The alignment fasta file was then used by the Fast Tree

algorithm (Price et al., 2009) to produce a phylogenetic tree in the

Newick file format.

5 | CLUSTERING PROTEINS BY
STRUCTURAL SIMILARITY

Clustering proteins by their structural similarity is an invaluable

method for finding proteins with potentially similar function but with

diverging sequences, especially for large protein families (Mai

et al., 2016; Teletin et al., 2019). Traditional sequence-based cluster

algorithms also provide simple and computationally efficient ways of

representing similar proteins but have a major drawback with regard

to proteins with similar functionality but different sequences

(Kosloff & Kolodny, 2008; Krissinel, 2007).

We have proposed a novel algorithm that is simple and effective

at clustering proteins by structural similarity, while also being easily

parallelizable. Our algorithm utilizes metrics used for protein structure

comparison (e.g., TM-Align and root mean square deviation [RMSD])

to produce a feature tensor that is then used as input to the Uniform

Manifold Approximation and Projection (UMAP; McInnes et al., 2018)

algorithm. The corresponding UMAP projection can then be used as

an intuitive visualization, where proteins that are more structurally

similar to one another will be clustered within closer proximity to each

other. The advantages of our algorithm are that it is trivial to imple-

ment, easy to utilize, and highly configurable with regards to feature

selection and UMAP hyper-parameter tuning. Furthermore, our algo-

rithm can cluster small datasets of protein with minimal hardware and

within a reasonable amount of time. However, a drawback of the

algorithm is its quadratic time complexity which does not allow it to

efficiently scale on lower end hardware.

To produce the input feature tensor pairwise structural compari-

son, metrics such as TM-Align (Zhang & Skolnick, 2005) optionally

alongside other metrics such as RMSD were used to produce a

n � n � m feature tensor, where n is the number of proteins and m is

the number of features. The feature tensor was then flattened to pro-

duce a n � (n � m) matrix, which was used as an input to UMAP.

UMAP is a powerful dimensionality reduction algorithm that can gen-

erally create more meaningful representations compared with princi-

pal component analysis, while also outperforming t-distributed

stochastic neighbor embedding (t-SNE; McInnes et al., 2018). It is also

noteworthy to mention that swapping UMAP with t-SNE produces

comparable projections; however, UMAP is significantly faster and, in

our opinion, generally produces more intuitive projections.

A Google Colaboratory notebook demo (https://colab.research.

google.com/drive/1LOZY33CSO5-PdJAdDApyPlfxUu4DHjcW) and

minimal Python implementation for the clustering algorithm are

available. Additionally, a structural cluster of all proteins available

within the CBP60-DB is available on the index page of the application

(Figure 1).

6 | NAVIGATING THE DATABASE

There are three primary web pages available on CBP60-DB (https://

cbp60db.wlu.ca/): (1) index page, (2) protein search page, and (3)

protein information page.
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6.1 | Index page

The CBP60-DB index page (Figure 2) acts as the website home

page containing general information, navigation options, database

visualizations, downloads, and API endpoint documentation. To

navigate the database, users may either search for a protein

directly via the search bar in the page header or alternatively inter-

act with the protein structural visualization cluster. By clicking a

node within the cluster, users will be redirected to that protein’s

information page. Alternatively, the aforementioned search bar

allows users to search for protein by their transcript name, gene

name, or source organism. Proteins that match the search query

will be displayed in the following search page. Another visualization

available within this page is an interactive phylogenetic tree

explorer. Note that downloads for the TM-Align Cluster, FASTA

Alignment, and Phylogenetic tree are available underneath their

respective visualizations.

6.2 | Search page

The search page (Figure 3) displays the search results from queries

made via the search bar on any page within CBP60-DB. Once a query

is submitted through the search bar, users will be redirected to this

page. If no query is provided, all database entries will be displayed

instead. Search results are unordered and in the form of card previews

containing a thumbnail of the predicted crystal structure, the tran-

script name, gene name, source organism, cDNA length, and amino

acid sequence length. Users can click on cards to visit their corre-

sponding protein information pages.

F I GU R E 1 Screenshot of the top of the protein structure cluster of the entire CBP60-DB within the Database Visualization section of the
index page.

F I GU R E 2 Screenshot of the top of the CBP60-DB index page.
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6.3 | Protein information page

The protein information page (Figure 4) is arguably the most useful page

within CBP60-DB, providing a simple interface for viewing the gene

name (including its associated Gramene webpage link), transcript name,

source organism, AlphaFold2 settings used, cDNA sequence, amino acid

sequence, structure data, redirect to DNA-Binding Residues tool

(Hwang et al., 2007), redirect to Eukaryotic Linear Motifs tool (Kumar

et al., 2020), various downloads and visualizations, and the top five most

similar structures (if available) according to the clustering algorithm.

Data visualizations available on this page include an interactive

molecular viewer of the predicted protein structure utilizing PDBe

Molstar (Sehnal et al., 2021), as well as interactive plots for the PAE

and pLDDT scores powered by the plotly.js library (Plotly Technolo-

gies Inc., 2015). Additionally, the exact same protein cluster from the

index page is also available with the current protein highlighted within

the plot. Similar to the index page, this plot is also navigable in the

same way.

Data downloads available on this page consist of the PDB file of

the predicted structure, mmCIF file of the predicted structure, PAE

json file, pLDDT json file, amino acid sequence FASTA file, and the

generated MSA used to predict protein structure. These resources are

also available for download directly via the programmatic API. Pair-

wise structural similarity scores for the top five most similar protein

hits have been added, based on the TM-Align algorithm (https://

zhanggroup.org/TM-align/; Zhang & Skolnick, 2005).

7 | CONCLUSION AND OUTLOOK

Recent in silico advances for protein structure prediction have accel-

erated molecular biology research at an unprecedented scale. Deep

F I GU R E 3 Screenshot of the top of the CBP60-DB search page.

F I GU R E 4 Screenshot of the top of the CBP60-DB protein information page for the representative protein with the transcript name
AT5G26920.1.
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learning models have now proven themselves to be effective tools for

protein folding and are made even more valuable through their ease

of use and lower costs compared with traditional techniques (Baek

et al., 2021; Jumper et al., 2021). By determining the structures of all

proteins within the CBP60 plant kingdom family, biologists can infer

putative functions, evolutionary relationships, and other meaningful

information from protein structures on a broader scale.

Overall, the CBP60-DB has generated useful and comprehensive

datasets that are foundational for further functional and molecular

studies. Because CBP60 protein family members CBP60 and SARD1

are indispensable master regulators of plant defense responses

(Kim et al., 2022; Sun et al., 2015; Wang et al., 2009, 2011;

Zhang et al., 2010), our fundamental understanding of their structural

and functional diversity has profound implications for mitigating

plant diseases. This could potentially address major challenges in

agricultural and natural ecosystems globally, especially on understand-

ing plant immune system resilience (Kim et al., 2021, 2022; Velásquez

et al., 2018) to boost worldwide crop productivity (Bailey-Serres

et al., 2019). Using a robust and rapid bioinformatic pipeline, our

comprehensive deep learning-assisted database with a novel struc-

tural clustering algorithm provides the scientific community with

easy-to-access candidate genes/proteins that can be further

engineered to strengthen plant health in a changing world.
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