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What is already known on this topic?

 ► Neurodevelopmental impairment is a common 
comorbidity in major congenital heart disease 
(CHD), affecting up to half of children.

 ► Prior imaging studies have identified brain 
lesions in newborn infants prior to surgery, with 
a prevalence that varies between 19% and 52% 
of cases.

 ► Abnormal brain development in CHD is 
observed in utero, with a derailment of normal 
growth becoming most pronounced in the third 
trimester.

What this study adds?

 ► Brain lesions were identified in 39% (95% CI 
28% to 50%) of preoperative infants with major 
CHD, in a contemporary UK cohort.

 ► White matter injury was the most common 
finding, with a widespread distribution 
throughout the brain.

AbsTrACT
Objectives Neurodevelopmental impairment has 
become the most important comorbidity in infants 
with congenital heart disease (CHD). We aimed to (1) 
investigate the burden of brain lesions in infants with 
CHD prior to surgery and (2) explore clinical factors 
associated with injury.
study design Prospective observational study.
setting Single centre UK tertiary neonatal intensive 
care unit.
Patients 70 newborn infants with critical or serious 
CHD underwent brain MRI prior to surgery.
Main outcome measures Prevalence of cerebral 
injury including arterial ischaemic strokes (AIS), white 
matter injury (WMI) and intracranial haemorrhage.
results Brain lesions were observed in 39% of subjects 
(95% CI 28% to 50%). WMI was identified in 33% 
(95% CI 23% to 45%), subdural haemorrhage without 
mass effect in 33% (95% CI 23% to 45%), cerebellar 
haemorrhage in 9% (95% CI 4% to 18%) and AIS in 
4% (95% CI 1.5% to 12%). WMI was distributed widely 
throughout the brain, particularly involving the frontal 
white matter, optic radiations and corona radiata. WMI 
exhibited restricted diffusion in 48% of cases. AIS was 
only observed in infants with transposition of the great 
arteries (TGA) who had previously undergone balloon 
atrial septostomy (BAS). AIS was identified in 23% (95% 
CI 8% to 50%) of infants with TGA who underwent BAS, 
compared with 0% (95% CI 0% to 20%) who did not.
Conclusions Cerebral injury in newborns with CHD 
prior to surgery is common.

InTrOduCTIOn
Congenital heart disease (CHD) is the most 
common congenital defect,1 affecting ~1% of 
newborns.2 Historically, few infants born with 
major CHD survived to adulthood,3 but advances 
in diagnostic, interventional and surgical techniques 
over recent decades have led to dramatic increases 
in survival.4 However, children with CHD remain 
at risk of neurodevelopmental impairment, char-
acterised by mild cognitive impairment, impaired 
social and communication skills, inattention and 
later, deficits in executive function.5–12 

The aetiology of neurodevelopmental impair-
ment in CHD remains poorly understood. It has 
become clear that neurological insult in CHD 
begins before surgery, with altered neurological 
state in the newborn period,13 population studies 

demonstrating reduced birth weight and head 
circumference,14 and in utero imaging studies 
showing a derailed trajectory of brain growth in the 
third trimester.15 16

Studies of brain injury in presurgical newborns 
have reported lesions including white matter injury 
(WMI) and stroke with a prevalence that varies 
considerably from 19% to 52% of cases.17 The 
cause for such variation between cohorts remains 
unclear, and may be due to differences in local prac-
tice, differences in cohort representation of each 
CHD diagnosis, or variability in reporting defini-
tions. This study aimed to (1) characterise brain 
lesions using MRI in a contemporary UK cohort 
of newborns with major CHD prior to surgery and 
(2) assess which clinical factors are associated with 
brain injury.

MeThOds
study design and participants
We recruited a prospective cohort of 70 infants with 
serious or critical CHD, born September 2014 to 
November 2017, from the Neonatal Intensive Care 
Unit at St Thomas’ Hospital, London. Following 
a previously published UK categorisation,18 19 
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Table 1 MRI sequence parameters

sequence
repetitiontime 
(Tr) (ms)

echo time (Te) 
(ms) Flip angle

Acquired voxel size 
(mm)

reconstructed voxel 
size (mm) Other parameters

September 2014 to November 2015 (n=18, 26%), adult 32-channel head coil

T1-weighted (magnetisation prepared rapid 
acquisition gradient echo)

17 4.6 13° 0.82×0.97×1 0.82×0.82×0.5 TI: 1465 ms

T2-weighted (fast-spin echo) 14 473 160 90° 1.15×1.18×2 0.86×0.86×2 –

Diffusion-weighted imaging 7536 49 90° 2×2×2 1.75×1.75×2 32 directions, b=0, 750 s/mm2

Susceptibility-weighted imaging (spoiled 
gradient-recalled echo)

32 25 12° 0.45×0.45×1.8 0.4×0.4×1.8 – 

Venogram 18 6.7 10° 0.9×0.9×2 0.44×0.44×1 Phase contrast velocity 15 cm/s

November 2015 to November 2017 (n=52, 74%), neonatal 32-channel head coil and positioning device20

T1-weighted (magnetisation prepared rapid 
acquisition gradient echo)

11 4.6 9° 0.81×0.8×0.8 0.76×0.76×0.8 TI: 714 ms

T2-weighted multislice turbo spin 
echo, sagittal and axial, combined in 
reconstruction

12 156 90° 0.81×0.82×1.6 0.8×0.8×0.8 – 

Diffusion-weighted imaging72 3800 90 90° 1.5×1.5×3, slice gap 
−1.5 mm

1.17×1.17×3, slice gap 
−1.5 mm

300 directions, b=0, 400, 1000, 2600

Susceptibility-weighted imaging (spoiled 
gradient-recalled echo)

32 25 12° 0.45×0.45×1.8 0.4×0.4×1.8 – 

Venogram 18 6.7 10° 0.9×0.9×2 0.44×0.44×1 Phase contrast velocity 15 cm/s

‘critical’ CHD was defined as infants with hypoplastic left heart 
syndrome (HLHS), pulmonary atresia with intact ventricular 
septum, simple transposition of the great arteries (TGA), inter-
ruption of the aortic arch and all infants dying or requiring 
surgery within the first 28 days of life with the following condi-
tions: coarctation of the aorta (CoA); aortic valve stenosis; 
pulmonary valve stenosis; tetralogy of Fallot (TOF); pulmonary 
atresia with ventricular septal defect (VSD); total anomalous 
pulmonary venous connection. ‘Serious’ CHD was defined as 
any cardiac lesion not defined as critical, which requires inter-
vention (cardiac catheterisation or surgery) or results in death 
between 1 month and 1 year of age. Infants were excluded if 
they had clinical evidence of a congenital syndrome or malfor-
mation, a suspected or confirmed major chromosomal abnor-
mality (eg, aneuploidy), any previous neonatal surgery or who 
had a suspected congenital infection. Informed written parental 
consent was obtained.

MrI
MRI was performed on a 3-Tesla system (Philips Achieva, Best, 
Netherlands), situated on the Neonatal Intensive Care Unit at 
St Thomas’ Hospital, as soon as the infant could be safely trans-
ferred to the scanner and before undergoing surgery. All exam-
inations were supervised by an experienced paediatrician, and 
scanned in natural sleep without sedation, as described previ-
ously.20 MRI sequences are described in table 1, and included 
a 5 s initial slow ramp-up in acoustic noise to avoid eliciting a 
startle response. T1-weighted and T2-weighted images were 
motion-corrected post hoc using a dedicated motion-corrected 
reconstruction.21–23

Image review
Images were reported by two neonatal neuroradiologists. All 
images were subsequently rereviewed to ensure consistency, 
and lesions classified as focal arterial ischaemic stroke (AIS), 
WMI, cerebellar haemorrhage or intraventricular haemorrhage. 
The location and properties of lesions on T1-weighted and 
T2-weighted imaging, susceptibility-weighted imaging (SWI) 
and apparent diffusion coefficient (ADC) map were recorded. 
AIS was defined as a homogeneous single area of altered signal 

occurring within the territory of a major cerebral artery, involving 
the cerebral cortical or deep nuclear grey matter, with restricted 
diffusion demonstrated as low signal on the ADC map, and/or 
hyperintensity on T2-weighted images.24 Additionally, following 
a previously published classification,25 WMI was classified into 
normal (no WMI), mild (≤3 foci and all ≤2 mm), moderate 
(>3 and ≤10 foci or any >2 mm) or severe (>10 foci). Subdural 
haemorrhage was recorded but was not considered brain injury, 
given its frequent occurrence in the healthy neonatal population.

Generation of WMI maps
White matter lesions were segmented by a single reader (CTP) 
from T1-weighted images using ITK-SNAP,26 and confirmed by 
consensus of three authors (SC, CK, CTP). WMI was defined as 
discrete areas of high signal intensity on T1-weighted imaging, 
usually accompanied by low signal intensity on T2-weighted 
imaging.27–29 T2-weighted and T1-weighted images for each 
subject were coregistered using a rigid body registration 
(FLIRT).30 A group template was then created from both modal-
ities using symmetric diffeomorphic normalisation for multivar-
iate neuroanatomy and a cross-correlation similarity metric using 
advanced normalization tools (ANTs).31 T1-weighted images 
were non-linearly registered to the template using symmetric 
diffeomorphic normalisation. These registrations were then used 
to transform individual lesion maps into template space. Finally, 
a probabilistic map was calculated from the mean of all lesion 
maps in template space, visualised using mrtrix3.32 Descriptive 
statistics were generated using MATLAB (2015b, MathWorks, 
USA). Total brain volume was calculated using a previously vali-
dated neonatal-specific segmentation pipeline.33

statistical analysis
Categorical clinical variables between those with and without 
injury of interest were compared using Fisher’s exact tests and 
CIs for the magnitude of the difference were calculated using a 
two-sample test for equality of proportions. Continuous vari-
ables were tested for normality using the Shapiro-Wilk test. For 
normally distributed continuous variables, we determined means 
and SD for those with and without injury, and compared groups 
with the Student’s t-test. For non-normal continuous and ordinal 
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Table 2 Clinical characteristics of the cohort. Data are n (%) or 
median (IQR), unless otherwise specified. Percentages are column-
wise for totals and row-wise for subgroups

Variable Total (n=70)

Sex

   Female 33 (47%)

   Male 37 (53%)

Delivery method

   Normal vaginal delivery 27 (39%)

   Forceps vaginal delivery 6 (9%)

   Ventouse vaginal delivery 6 (9%)

   Emergency caesarean 19 (27%)

   Elective caesarean 12 (17%)

Induction of labour 41 (59%)

Prenatal diagnosis 68 (97%)

Outborn 2 (3%)

Gestational age at birth (weeks) 38.3 (37.4–38.7)

Gestational age at preoperative MRI (weeks) 39.0 (38.4–39.7)

Age at scan (days) 5 (2–7)

Birth weight (kg) (mean, SD)* 2.94 (0.57)

Head circumference (cm) 33.5 (32.2–34.5)

Apgar score

   1 min 9 (7–9)

   5 min 9 (9–10)

Cord arterial pH (mean, SD)* 7.29 (0.082)

Prostaglandin E2 31 (44%)

Cardiac arrest 0 (0%)

Days mechanical ventilation 0 (0–1)

Balloon atrial septostomy 13 (19%)

   Umbilical 6 (46%)

   Femoral 7 (54%)

Heart lesion

   Transposition of the great arteries 28 (40%)

   Tetralogy of Fallot 13 (19%)

   Coarctation of the aorta 11 (16%)

   Pulmonary atresia 5 (7%)

   Hypoplastic left heart syndrome 4 (6%)

   Pulmonary stenosis 3 (4%)

   Truncus arteriosus 3 (4%)

   Tricuspid atresia 2 (3%)

   Large VSD 1 (1%)

*Normally distributed variables, summarised by mean and SD. 

variables, we determined medians and IQR for those with and 
without injury, and compared groups using the Mann-Whitney 
U test (p values were not reported for sample sizes <5), with 
CIs calculated using Wilson’s methods. Analyses were performed 
using SPSS V.24 and R V.3.5.1 ( r- project. org).

resulTs
subject data
We enrolled 70 infants, all of whom were scanned prior to 
surgery. T1-weighted and T2-weighted images were acquired in 
100% of subjects, ADC map in 99% (1 motion corrupted), SWI 
in 93% (2 motion corrupted, 3  awoke prior to sequence) and 
MRV in 80% (13 awoke before protocol end, 1 poor quality). 
The median gestational age (GA) at birth was 38.3 weeks (IQR 
37.4–38.7), and at scan was 39.0 weeks (IQR 38.4–39.7). The 
average age at scan was 5 days (IQR 2–7). The median age at 
intervention (cardiac catheterisation or surgery) was 13.0 days 
(IQR 4.0–32.8). Cardiac surgery was performed at a median 
of 10.0 days (IQR 6.0–40.0) following the scan (online supple-
mentary figure 1). Clinical variables are presented in table 2. 
No patients experienced birth asphyxia. Antenatal diagnosis of 
CHD was made in 97% (n=68), of whom all were born at our 
institution. Both postnatally diagnosed cases were outborn.

Preoperative brain injury in Chd
Cerebral lesions were identified in 39% (n=27, 95% CI 28% to 
50%) of cases, including WMI in 33% (n=23, 95% CI 23% to 
45%; figure 1A, B), cerebellar haemorrhage in 9% (n=6, 95% CI 
4% to 18%; figure 1D) and AIS in 4% (n=3, 95% CI 1.5% to 
12%; figure 1C). A summary of lesions observed in this cohort is 
presented in table 3. Mild WMI was observed in 20% (95% CI 
12 to 31), moderate WMI in 6% (95% CI 4 to 17) and severe in 
1% (95% CI 0.3 to 8) of cases. Forty-three infants (61%, 95% CI 
50% to 72%) had no evidence of lesions, while seven (10%, 
95% CI 5% to 19%) had more than one lesion type. All cases 
of AIS were clinically silent, and were located in the left middle 
cerebral artery territory. There were no cases of sinus venous 
thrombosis. Asymmetrical transverse sinus flow was noted in 
31% of infants (n=22, 95% CI 22% to 43%), with reduced 
left-sided flow in 91% of these (n=20, 95% CI 72% to 97%), 
a common anatomical variant.34 There were no cases of intra-
ventricular haemorrhage. Other intracranial findings included 
subdural haemorrhage without mass effect in 33% (n=23, 
95% CI 23% to 44.5%, figure 1E), subependymal cysts in 11% 
(n=8, 95% CI 6% to 21%), cerebellar vermis rotation in 7% 
(n=5, 95% CI 3% to 16%) and extradural haematoma in 1% 
(n=1, 95% CI 0.25% to 8%, figure 1F).

risk factors for preoperative brain injury
There were no clinical variables that were associated with 
increased risk of any cerebral lesion (online supplementary table 
1), WMI (online supplementary table 2), AIS (online supple-
mentary table 3) or cerebellar haemorrhage (online supple-
mentary table 4). However, due to the small subgroup sample 
sizes involved, potentially quite large differences cannot be 
discounted from this study alone. There were no differences in 
GA at birth between infants with and without any cerebral lesion 
(p=0.45), WMI (p=0.32), AIS (p=0.51) or cerebellar haemor-
rhage (p=0.63). There was no difference between those with and 
without WMI for GA at scan (39.0 vs 39.6 weeks; p=0.14), or 
postnatal age in days (4 vs 6; p=0.07). There were no differences 
in the proportion of cases with or without any cerebral injury 
in infants with abnormal mixing (eg, TGA; n=34), left-sided 

lesions (eg, HLHS, CoA; n=14) and right-sided lesions (eg, 
TOF, pulmonary atresia; n=22). The only arterial infarcts were 
in infants with TGA, all of which followed balloon atrial septos-
tomy (BAS). Those with TGA who underwent septostomy expe-
rienced stroke in 23% of cases (n=3/13, 95% CI 8% to 50%) 
compared with 0% of cases in those who did not undergo septos-
tomy (n=0/15, 95% CI 0% to 20%), a difference of 23% (95% 
CI 2% to 50%; online supplementary table 5). AIS occurred in 
33% (n=2/6, 95% CI 10% to 70%) of infants with septostomy 
performed via the umbilical vein, compared with 14% (n=1/7, 
95% CI 3% to 51%) via the femoral vein (online supplementary 
table 2). Subdural haemorrhage occurred more frequently with 
induction of labour (49% vs 10%; p<0.001), normal vaginal 
delivery (52% vs 21%; p=0.01), ventouse delivery (83% vs 
28%; p=0.013) and later GA at birth (p=0.005). Emergency 
caesarean was associated with reduced risk of subdural (5% 
vs 43%; p=0.003), with a similar trend observed in elective 
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https://dx.doi.org/10.1136/archdischild-2018-314822
https://dx.doi.org/10.1136/archdischild-2018-314822
https://dx.doi.org/10.1136/archdischild-2018-314822
https://dx.doi.org/10.1136/archdischild-2018-314822
https://dx.doi.org/10.1136/archdischild-2018-314822
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Figure 1 Examples of lesions identified in the congenital heart 
disease cohort. (A) Single lesion in the posterior periventricular white 
matter (TGA, scanned at 39+6); (B) larger white matter lesion in the 
centrum semiovale (pulmonary atresia, scanned at 37+2); (C) left 
middle cerebral artery infarct (TGA, scanned at 39+5); (D) cerebellar 
haemorrhage (CoA, scanned at 39+3); (E) subdural haemorrhage 
(TGA, scanned at 39+2); (F) extradural haemorrhage (CoA, scanned 
39+3). ADC, apparent diffusion coefficient; CoA, coarctation of  the  
aorta; SWI, susceptibility-weighted imaging; TGA, transposition of the 
great arteries. 

caesarean (8% vs 38%; p=0.09). Given the lack of clinical vari-
ables strongly associated with injury, we did not perform further 
logistic regression analysis to quantify joint associations.

Genetic testing was performed as part of routine clinical care in 
83% of infants (n=58). Microarray was normal in 88% (51/58), 
with benign copy variant in 7% (4/58) and 22q11 deletion in 5% 
(3/58). Of those with 22q11, cerebellar haemorrhage was noted 
in 2/3, cerebellar vermis rotation in 1/3 and WMI in 1/3.

Quantitative white matter lesion maps
Quantitative maps of WMI were generated from 22 cases 
(1 infant excluded due to slight motion). WMI was distrib-
uted widely throughout the brain, involving the frontal white 
matter, optic radiations, centrum semiovale and corona radiata 
(figure 2). White matter lesions exhibited both restricted (48%) 
and normal (52%) signal on ADC maps, with no significant 
difference in days of age at scan between groups (p=0.35). 

There were no cases of haemorrhagic WMI identified using SWI. 
White matter lesion volume was not statistically associated with 
any clinical variable, which persisted after removing two outliers 
with large WMI burdens (CoA n=1, TGA n=1). A histogram of 
the distribution of white matter volume is presented in online 
supplementary figure 2.

dIsCussIOn
To our knowledge, this is the first prospective observational 
neuroimaging study in the UK of infants with CHD prior to 
surgery. We found cerebral lesions in 39% (95% CI 28% to  
50%) of cases. WMI was the predominant lesion type, with few 
cases of AIS. WMI occurred at a rate over three times higher 
than in healthy term infants scanned contemporaneously at our 
institution using the same scanner and MRI acquisition proto-
cols,35 with a widespread distribution including frontal white 
matter, optic radiations and corona radiata.

Preoperative WMI in infants with CHD has been reported 
in a number of studies previously.36–44 However, comparisons 
between cohorts are complicated by the heterogeneity of CHD 
studies, and homogenous cohorts with individual diagnoses are 
required to truly understand the risks for injury. In a recent study 
examining exclusively infants with HLHS preoperatively, WMI 
was observed in 11/57 (19%) of infants.44 Andropoulos et al 
reported preoperative WMI, infarction or haemorrhage in 28% 
of a cohort of 69 patients with both single and two ventricle 
pathology, and observed that there was no significant difference 
in preoperative WMI between single ventricle and 2 ventricle 
patients (13% vs 19%, respectively).45 The clinical consequence 
of WMI observed prior to surgery in infants with CHD is not 
well understood but appears to be related to the severity and 
location of the lesions. Moderate to severe WMI is associated 
with reduced cognitive scores at 2 years and lower full scale IQ 
at 6 years compared with CHD infants with no to mild WMI.46

The rate of WMI in infants with TGA in this study is consistent 
with other cohorts, which range from 14% to 38%.25 36–38 42 43 47–49 
The incidence of arterial infarcts in infants with TGA has been 
reported between 5% and 29%,7 25 36 43 49–51 with our cohort 
at the lower end of this range. The relatively high prevalence 
of WMI in our cohort as a whole may be explained, at least in 
part, by a scan resolution that is higher than many comparable 
studies, potentially allowing smaller lesions to be discerned. Of 
note, most WMI in our cohort was mild or moderate, with only 
one infant having severe WMI. However, this would not explain 
our low incidence of AIS. Different local definitions of stroke, 
focal stroke, WMI, periventricular leucomalacia and punctate 
WMI may be responsible, and accurate comparisons are difficult 
without a consistent approach across institutions.

We found no cases of venous sinus thrombosis. The placement 
of central venous catheters in the internal jugular vein has been 
associated with increased risk of venous sinus thrombosis.52 In 
contrast to that study,52 our neonatal unit does not place subcla-
vian or internal jugular vein catheters preoperatively, preferring 
instead umbilical venous catheters or peripherally inserted long 
lines. The absence of venous sinus thromboses in our cohort 
supports the view that internal jugular vein lines should be 
avoided in this population. We hypothesise that similar differ-
ences in clinical practice may reveal other important potential 
modifiable factors.

On evaluation of clinical parameters associated with cerebral 
lesions, we did not find clinical variables that were associated 
with an increased risk of WMI, AIS or cerebellar haemorrhage. 
Comparison of clinical variables with published cohorts is limited 

https://dx.doi.org/10.1136/archdischild-2018-314822
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Table 3 Injury by cardiac physiology group. Numbers in brackets refer to 95% CI. Altered streaming includes infants with TGA and truncus 
arteriosus. Left-sided lesions includes CoA and HLHS. Right-sided lesions includes TOF, pulmonary atresia, pulmonary stenosis and tricuspid atresia. 
P value reflects distribution across cardiac physiology groups compared using χ2 tests 

brain injury type

Cardiac physiology group

Altered streaming left-sided lesion right-sided lesion Total 

P valuen % n % n % n %

WMI: all 11 32 (19 to 49) 5 36 (16 to 61) 7 32% (16 to 53) 23 33 (23 to 44) 0.967

WMI category 0.734

  Mild 5 15 (6 to 30) 3 21 (8 to 48) 6 27 (13 to 48) 14 20 (12 to31) – 

  Moderate 3 9 (3 to 23) 2 14 (4 to 40) 1 5 (1 to 22) 6 9 (4 to 17) – 

  Severe 1 3 (1 to 15) 0 0 (0 to 22) 0 0 (0 to 15) 1 1 (0.3 to 8) – 

  WMI with infarct 2 6 (2 to 19) 0 0 (0 to 22) 0 0 (0 to 15) 2 3 (1 to 10) – 

Arterial ischaemic stroke 3 9 (3 to 23) 0 0 (0 to 22) 0 0 (0 to 15) 3 4 (1 to 12) 0.190

Cerebellar haemorrhage 2 6 (2 to 19) 2 14 (4 to 40) 2 9 (3 to 28) 6 9 (4 to 17) 0.636

Parenchymal haemorrhage 0 0 (0 to 10) 0 0 (0 to 22) 0 0 (0 to 15) 0 0 (0 to 5) 1.000

Venous sinus thrombosis 0 0 (0 to 10) 0 0 (0 to 22) 0 0 (0  to 15) 0 0 (0 to 5) 1.000

Subdural haemorrhage 12 35 (21 to 52) 6 43 (21 to 67) 5 23 (10 to 43) 23 33 (23 to 44) 0.417

Total 34 14 22 70

CoA,  coarctation of the aorta; HLHS, hypoplastic left heart syndrome;  TOF, tetralogy of Fallot; WMI, white matter injury.

Figure 2 White matter injury probability map (n=22 included), 
superimposed onto a T1-weighted group template. WMI is 
demonstrated throughout the white matter including the frontal white 
matter, optic radiations, centrum semiovale and corona radiata. A 
three-dimensional representation of this figure is available in online 
supplementary video 1.

by detail available from previous studies. In our cohort, almost 
all infants were inborn at a tertiary cardiac centre and prena-
tally diagnosed. The true prenatal diagnosis rate in the UK is 
not currently known as there is no central registry. Around 50% 
of infants undergoing surgery in infancy in the UK have been 
diagnosed before birth, but this figure does not include termina-
tions of pregnancy or stillbirth.53 Our region is known to have 
detection rates above the national average. Infants with prenatal 
diagnoses of CHD are known to have significantly less preoper-
ative brain injury, thought to be due to improved cardiovascular 

stability following delivery,54 and may be an important factor to 
explain differences in incidences of brain injury between cohorts.

Subdural haemorrhage is common during term delivery, 
with an overall incidence of 8%–15%,35 55 and up to 28% in 
complicated instrumental deliveries.55 In our cohort, subdural 
haemorrhage occurred 5 times more frequently than reported in 
healthy normal vaginal delivery, and 10 times more frequently 
in ventouse delivery.55 At our institution, the timing of delivery 
is individualised, taking account of obstetric factors, where the 
parents live and potential requirement for early intervention. 
These factors impact on the mode of delivery and its timing. 
Induction was associated with a rate of subdural haemorrhage 
almost five times higher than in spontaneous onset of labour, 
which may partly be related to instrumental delivery being used 
over three times more frequently in this group. This association 
between induction and instrumental delivery contrasts with 
studies of healthy infants,56 and may be explained by a lower 
threshold for instrumental intervention in labours complicated 
by CHD, or potentially the use of induction at earlier GAs.

The timing of preoperative injury in CHD remains uncer-
tain. Fetal MRI studies have not yet reported arterial strokes in 
utero, and few studies have identified white matter abnormal-
ities prenatally.16 57 However, perinatal and postnatal injury is 
likely preceded by a period of abnormal brain development in 
utero, with reduced cerebral substrate58 and oxygen delivery,59 60 
altered metabolism,16 and a derailed trajectory of fetal brain 
development in the third trimester.15 16 Following birth, there 
are continued metabolic disturbances36 61 and alterations in cere-
bral oxygen delivery.62 63 This chronic impairment may increase 
susceptibility to ischaemic injury around the time of delivery, a 
timeline that is supported by the finding that half of our cases 
exhibited WMI with restricted diffusion. If ischaemic, this would 
suggest an acute insult, although other aetiologies may explain 
restricted diffusion, including clusters of activated microglia 
resulting in increased cellularity.64 65

WMI was distributed throughout the white matter, in contrast 
to preterm infants where WMI is predominantly observed in the 
centrum semiovale and corticospinal tracts.66 67 While inflam-
matory and hypoxic–ischaemic injury to susceptible premyelin-
ating oligodendrocytes68 may be responsible in both groups, it 
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is possible that spatial differences in lesion distribution reflect 
developmental differences in the regional vulnerability of premy-
elinating oligodendrocytes between preterm infants and term 
infants with CHD. This vulnerability may be compounded by 
ischaemic vulnerability due to periventricular vascular anatomy, 
or by vascular congestion in the path of the medullary veins, 
leading to small venous infarcts, which may be responsible for 
the imaging appearances in the two infants with larger WMI.

Interestingly, all arterial infarcts in our study occurred 
following BAS. However, sample sizes were too small to form 
strong conclusions, and clinically important differences cannot 
be discounted from this study alone. Septostomy has been asso-
ciated with an increased risk of cerebral infarction in some 
published studies,7 69 but not in others.25 37 49 All three arterial 
infarcts in our group were in the left middle cerebral artery terri-
tory, consistent with previous findings.25 50 Prediction of hypox-
emia by prenatal echocardiography has proved difficult,70 and 
need for septostomy is generally assessed postnatally by the clin-
ical team. It is therefore plausible that infants requiring septos-
tomy will have experienced the greatest burden of hypoxia and 
cardiovascular instability after birth, and are most at risk of cere-
bral injury. The use of the umbilical vein has been implicated in 
displacement of pre-existing thrombus from the ductus venosus 
or hepatic vein during septostomy, increasing the risk of arterial 
embolic infarction.71 In this study, the umbilical route was asso-
ciated with a greater proportion of AIS compared with femoral, 
although sample sizes were small. Previous studies showed no 
clear difference between the use of the femoral or umbilical 
vein.7 69

There were limitations to our study. The heterogeneous 
nature of the cohort and relatively small subgroup sample sizes 
hampered our ability to compare risk factors across groups. 
While this study adds a valuable new UK cohort to the literature, 
in isolation it does not advance greatly estimates of WMI prev-
alence from previous estimates. All infants were from a single 
centre, and almost all infants had been diagnosed antenatally and 
were inborn. Comparison of our results to other cohorts was 
complicated by the heterogeneity of CHD studies, the variable 
detail of clinical parameters in comparable studies and variability 
in radiological definitions across sites. Homogenous cohorts 
with individual diagnoses are required to truly understand the 
risks for injury.

COnClusIOn
Cerebral lesions in newborns with CHD prior to surgery are 
common.
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