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Sarcomatoid renal cell carcinoma is a de-differentiated form of kidney cancer

with an extremely poor prognosis. Genes associated with sarcomatoid

differentiation may be closely related to the prognosis of renal cell

carcinoma. The prognosis of renal cell carcinoma itself is extremely variable,

and a new prognostic model is needed to stratify patients and guide treatment.

Data on clear cell renal cell carcinoma with or without sarcomatoid

differentiation were obtained from TCGA database, and a sarcomatoid-

associated gene risk index (SAGRI) and column line graphs were constructed

using sarcomatoid-associated genes. The predictive power of the SAGRI and

column line graphs was validated using an internal validation set and an

independent validation set (E-MTAB-1980). The SAGRI was constructed

using four sarcoma-like differentiation-related genes, COL7A1, LCTL, NPR3,

ZFHX4, and had a 1-year AUC value of 0.725 in the training set, 0.712 in the

internal validation set, and 0.770 in the independent validation set for TCGA

training cohort, with high model reliability. The molecular characteristics

among the SAGRI subgroups were analyzed by multiple methods, and

results suggested that the SAGRI-HIGH subgroup may benefit more from

immunotherapy to improve prognosis. SAGRI satisfactorily predicted the

prognosis of patients with clear cell renal cell carcinoma with or without

sarcomatoid differentiation.
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Introduction

Kidney cancer accounts for approximately 4% of all human malignancies.

Approximately 180,000 people die from kidney cancer worldwide each year, and this

number is increasing (Bray et al., 2018). The degree of malignancy of kidney cancer itself

varies widely, and a significant number of small kidney cancers are not detected owing to

their inert behavior (Wunderlich et al., 1998). However, up to 30% of patients can develop
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recurrence or metastasis after surgery, significantly affecting

prognosis (Lam et al., 2005; Lucca et al., 2015; Haas et al., 2016)

Therefore, it is imperative to construct a more accurate risk

stratification system for kidney cancer to guide treatment

strategies. At present, the common international kidney

cancer staging method is the TNM stage system of the

American Joint Committee on Cancer (AJCC). This staging

incorporates tumor size and local invasion (T), lymph node

metastasis (N), and distant metastasis (M), which only

approximately reflects the cross-sectional invasion status at

the time of kidney cancer diagnosis and cannot longitudinally

reflect biological malignancy. The system has been continuously

updated and refined as its limitations have been identified in

practice; it is now in the eighth edition since its introduction.

Another widely used risk stratification system for limited kidney

cancer was developed by the University of California, Los

Angeles (University of California, Los Angeles Integrated

Staging System (UISS)), which incorporates additional

physical scores and pathological grading of kidney cancer

compared to the AJCC system. However, it still does not

accurately reflect the heterogeneity of kidney cancer. The

scoring system constructed by the Mayo Clinic for the

prediction of outcomes after radical resection for renal clear

cell carcinoma incorporates renal cancer stage, size, grade, and

necrosis (Frank et al., 2002), but the C-index in external

validation ranges from 0.6 to 0.8 (Parker et al., 2017), and

there remains a great need for improvement (Mischinger

et al., 2019). For limited renal clear cell carcinoma, the

ClearCode34 system was recently developed based on the

grouping of 34 genes with different expression profiles

(Ghatalia and Rathmell, 2018). This system is less

discriminatory than the traditional UISS (C-index 0.62 vs.

0.83) (Zigeuner et al., 2010). Therefore, new models for the

risk stratification of kidney cancer are needed.

Approximately 90% of all diagnosed renal parenchymal

malignancies are renal cell carcinoma (RCC), which includes

subtypes such as clear cell carcinoma, papillary carcinoma, and

suspicious cell carcinoma (Fang et al., 2019; Li et al., 2021). A rare

transformation called sarcomatoid dedifferentiation can occur in

most RCC histologic subtypes and portends a particularly poor

prognosis. RCC that undergoes sarcomatoid dedifferentiation is

often referred to as sarcomatoid renal cell carcinoma (sRCC).

Patients with sRCC are often diagnosed in the advanced stage or

have metastases, and rarely survive more than 1 year (Delahunt,

1999; Adibi et al., 2015). Approximately 20% of patients with

metastatic renal cell carcinoma have concomitant sarcomatous

differentiation (Shuch et al., 2009). sRCC has a very poor

prognosis, with approximately 60–80% of patients diagnosed

in the advanced stage or inoperable (Shuch et al., 2009;

Alevizakos et al., 2019). The median survival is approximately

6–13 months, and the higher the percentage of sarcomatoid

differentiation, the worse the patient’s prognosis (Shuch et al.,

2009; Alevizakos et al., 2019). Regardless of stage, patients with

sRCC have a worse survival rate than kidney cancer patients

without sarcomatoid differentiation (Golshayan et al., 2009). The

subtype in which sarcomatoid differentiation occurs is closely

related to the traditional histologic subtype of kidney cancer

(Delahunt et al., 2013; Moch et al., 2016). Therefore, sarcomatoid

differentiation is now considered to be a “dedifferentiation”

pattern, a change from the traditional histologic subtype of

kidney cancer that has lost its epithelial features (Delahunt,

1999). Because of the high overall prevalence of clear cell

renal cell carcinoma (ccRCC), the majority of sRCCs detected

are transformed from the ccRCC subtype (Shuch et al., 2012;

Klatte et al., 2018). Sarcomatoid differentiation is closely

associated with poor prognosis in renal cell carcinoma.

Therefore, we constructed a prognostic model of clear cell

renal cell carcinoma by identifying genes associated with

sarcomatoid differentiation.

Materials and methods

Data acquisition and preprocessing

The case data for this study were obtained from The Cancer

Genome Atlas (TCGA) database, and TCGA data were

downloaded from the “TCGAbiolinks” package in R language.

External validation of the model was done using the E-MTAB-

1980 cohort (www.ebi.ac.UK) (Sato et al., 2013). Because the

open-access data do not include patient-identifiable information,

ethical clearance was not required. Matching transcriptomic data

with clinical data were conducted, and missing data of either

type, as well as duplicate samples, were removed.

Identification of genes associated with
sarcoma-like differentiation

X-tile (Camp et al., 2004) converts continuous variables into

ordered categorical variables by taking the best truncation values

for continuous variables based on survival outcomes.

The propensity score matching (PSM) analysis in this study

was implemented using the “MatchIt” package (version 4.3.2) in

R. The settings were logistic regression for score calculation, best

proximity method for matching, and a caliper value of 0.02. Only

successfully matched samples will be included in the

transcriptome difference analysis. Variables that differed

between the sarcomatoid renal cell carcinoma and clear cell

renal cell carcinoma groups were included in the calculation.

For paired cases of sRCC and ccRCC after propensity score

matching, mRNA differential expression was compared between

the two groups. The analysis was performed using the R language

software package “edgeR”. The screening result conditions were

set as |logFC| ≥ 2 and FDR ≤0.05 (Zhang et al., 2020a; Zhang

et al., 2020b).
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Constcruction of the sarcomatoid-
associated gene risk index model

The differentially expressed mRNAs between the sRCC and

ccRCC groups were labeled sarcomatoid associated genes, and all

TCGA samples were randomly divided into training and

validation sets at a ratio of seven to 3. The model was

constructed using TCGA training set, and one-way Cox

regression was used to analyze the genes associated with

sarcomatoid differentiation and those associated with

prognosis, with a p-value of less than 0.05 used as the

screening criteria. Lasso regression analysis was then

performed, and the prognosis-related genes obtained in the

first step were further downscaled. Then, the genes obtained

from Lasso regression were subjected to multi-factor COX

regression analysis to construct the model for screening

factors associated with independent prognostic effects. The

sarcomatoid-associated gene risk index (SAGRI) was

calculated based on the regression coefficients, and then

divided into high risk and low risk groups based on the cut-

off values. The effects of clinical information and risk models on

prognosis were examined using one-way COX regression and

multi-way Cox regression, respectively. Factors that had an

impact on prognosis were included in the construction of the

nomogram, and ROC curves were plotted along with other

clinical information. The risk model and nomogram were

validated using TCGA internal validation set and the

E-MTAB-1980 external validation set.

Immune checkpoints

After reviewing the literature, 49 immune checkpoint-related

genes were identified (Table), and statistical analysis was

performed using the R language “limma” package with a non-

parametric test (Wilcoxon test) to compare the expression of

immune checkpoint genes in the sRCC and ccRCC groups. TIDE

scores were calculated using an online website (http://tide.dfci.

harvard.edu/) to estimate the effect of the sample on

immunotherapy.

Analysis of immune cell content and
immune function

In this study, estimation of immune cell content and

immune function of the samples was performed using

single-sample gene set enrichment analysis (ssGSEA).

ssGSEA is an extension of the GSEA method, which is free

from the limitation that enrichment analysis cannot be

performed on a single sample. ssGSEA allows for the

estimation of ssGSEA and can score samples for relevant

function or expression based on the available gene set. The

enrichment analysis was performed using the “GSVA”

(version 1.40.1) and “GSEABase” (version 1.54.0)

packages in R.

Identification of SAGRI hub genes

Differential genes were analyzed between SAGRI-HIGH and

SAGRI-Low using the R package “limma”, and the screening

conditions were |logFC| ≥ 2 and FDR ≤0.05. The differential

genes obtained were subjected to GO and KEGG enrichment

analysis. Correlations between genes were analyzed using the

online website (https://cn.string-db.org/), and the minimum

required interaction score was set to high confidence (0.7).

The hub genes were identified using Cytoscape software.

Survival curves of the hub genes in TCGA cohort were then

plotted.

Results

TCGA cohort data processing

The clinical information of the 537 KIRC patients were

downloaded from TCGA database using the R language

“TCGAbiolinks” package, and duplicate data and missing data

were removed. Data from a total of 454 were ultimately obtained.

The original pathology reports of patients in TCGA database

were obtained from the Digital Slide Archive website (http://

cancer.digitalslidearchive.net/), and the pathology reports were

read manually to select cases with sarcomatoid differentiation. A

total of 45 cases of renal clear cell carcinoma with sarcomatoid

differentiation (sRCC) and 409 cases of renal clear cell carcinoma

without sarcomatoid differentiation (ccRCC) were also included

in the study in conjunction with a study on sRCC in TCGA

(Bakouny et al., 2021).

Continuous variables such as age and tumor size were

transformed into categorical variables by taking cut-off values

using X-tile for such continuous variables. The results are shown

in Figures 1A–D. Age was divided into three groups: less than or

equal to 51 years, 52–73 years, and greater than or equal to

74 years; tumor size was divided into three groups: less than

or equal to 5.6 cm, 5.7–9.5 cm, and greater than or equal to

9.6 cm.

Identification of sarcoma-like related
genes

The clinical data of unmatched sRCC and ccRCC patients

were first compared, and the Chi-square test or exact test was

selected according to the frequency; results are shown in

Supplementary Table S1. Statistical differences were found in
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Stage, T stage, N stage, M stage, and tumor size between the two

groups. A total of 21 cases of sRCC and 21 cases of ccRCC were

successfully matched. Pre-post comparisons of the matching

PSM scores are shown in Figure 1E. Results showed that the

balance of baseline information between sRCC and ccRCC was

improved significantly after matching.

The differences between the sRCC and ccRCC groups after

PSM matching were analyzed using the “edgeR” package in R.

This package was used to perform differential analysis of genes

after removing under-expressed genes and performing TMM

(trimmed mean of M values) normalization correction. The

results were plotted as volcano plots using the R package The

“gplots”, are shown in Figure 1F. Ultimately, 393 genes were

upregulated, and 46 genes were downregulated in sRCC. These

439 genes were defined as sarcoma-like differentiation-related

genes.

Construction of the SAGRI and nomogram
graphs

A prognostic stratification model for kidney cancer was

constructed using sarcoma-like differentiation-associated

genes. The 454 TCGA-KIRC samples were randomly divided

into a training set (N = 319) and a validation set (N = 135) at a

ratio of 7: 3. Models were constructed using TCGA training set

cohort.

Genes associated with prognosis were first screened using

one-way COX regression analysis, and 183 genes were screened

from the 439 genes associated with sarcoma-like differentiation

and prognosis. Then, Lasso regression was used to further

downscale the number of genes to obtain four genes,

COL7A1, LCTL, NPR3, and ZFHX4. Plotting the survival

curves of these four genes separately also showed that the

high expression of COL7A1, LCTL, and ZFHX4 predicted

poor prognosis, while high expression of NPR3 represented a

better prognosis; the difference between high and low expression

was obvious (Figures 1G–J). A stratified prognostic model was

then constructed using multifactorial Cox regression with the

SAGRI calculation formula SAGRI = COL7A1 ×

0.0512269863,293,571 + LCTL × 2.31801428021911 + NPR3 ×

(−0.0167625372671674) + ZFHX4 × 0.295409105635163. The

median SAGRI value was taken as the cut-off point and the

training set patients were divided into two groups with high and

low risk. The risk formula and cutoff values were obtained using

TCGA training set to calculate the stratification of TCGA

FIGURE 1
(A) Classification result of age using x-tile; (B) Kaplan-Meier survival curve of age classification; (C) classification result of size using x-tile; (D)
Kaplan-Meier survival curve of size classification; (E) propensity score matching result of two groups of sRCC and ccRCC; (F) volcano plot of mRNA
expression differences between sRCC and ccRCC; (G–J): Kaplan-Meier survival curve of the four genes in TCGA cohort used for constructing the
model.
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internal validation set and the E-MTAB-1980 external validation

set. The survival curves and ROC curves for TCGA training set,

TCGA validation set, and TCGA overall were plotted as shown in

Figure 2. The area under the curve (AUC) values for TCGA

training set were 0.725, 0.695, and 0.697 for 1 year, 2 years, and

3 years, respectively. The AUC values for TCGA validation set

were 0.712, 0.688, and 0.715, and 1-, 2-, and 3-years AUC values

for all cases were 0.722, 0.692, and 0.703, respectively.

Heat maps of the expression of these four genes in the

454 cases were plotted, and the relationship of clinical

information between the high and low risk groups was

compared (Figures 3A–C). The figure clearly shows that three

genes, COL7A1, LCTL, and ZFHX4, were highly expressed and

NPR3 was downregulated in the high-risk group. Tumor

subtype, Stage, T stage, N stage, and tumor size were

statistically different between the high and low risk groups

(Figure 3A).

The effects of clinical information and the risk model on

prognosis were examined using univariate COX regression

and multifactorial Cox regression, respectively. The results

showed that tumor subtype, Stage, T stage, N stage, M stage,

tumor size, age, and SAGRI were influential in prognosis, but

only tumor subtype, Stage, M stage, age, and SAGRI were

independent risk factors for prognosis in the multifactorial

Cox regression (Figures 3D,E). Tumor subtype, Stage, T stage,

N stage, M stage, tumor size, age, and SAGRI were included in

the construction of the nomogram, which was created by COX

regression using the “regplot” and “rms” packages (Figure 3F).

The ability of the nomogram (AUC = 0.876) to discriminate

was higher than that of TNM stage or other clinical

information (Figure 3G). The discriminatory ability of the

nomogram (AUC = 0.933) and SAGRI (AUC = 0.770) was

verified using the E-MTAB-1980 cohort and compared using

clearcode34 (AUC = 0.656) and other clinical information

(Figure 3H). The nomogram and risk score model in this study

had better discriminatory ability.

Immune characteristics of different SAGRI
subgroups

The expression of immune checkpoint-related genes was

compared between sarcomatoid differentiated renal cell renal

carcinoma and clear cell renal carcinoma using a

FIGURE 2
(A) ROC curves of SAGRI in TCGA training cohort; (B) ROC curves of SAGRI in TCGA validation cohort; (C) ROC curves of SAGRI in the full TCGA
cohort; (D) K-M survival curves of SAGRI-HIGH and SAGRI-LOW in TCGA training cohort; (E) K-M survival curves of SAGRI-HIGH and SAGRI-LOW in
TCGA validation cohort; (F) K-M survival curves of SAGRI-HIGH and SAGRI-LOW in the full TCGA cohort.

Frontiers in Genetics frontiersin.org05

Zuo et al. 10.3389/fgene.2022.985641

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.985641


nonparametric test. In this study, 22 immune checkpoint

genes were highly expressed in the SAGRI-HIGH subgroup

and 10 genes were highly expressed in the SAGRI-LOW

subgroup in TCGA cohort (Figure 4A). Notably,

PDCD1 was highly expressed in the SAGRI-HIGH

subgroup, but the immunotherapy effect of TCGA cohort

assessed using the TIDE score suggested that the SAGRI-

HIGH subgroup may have had a slightly lower treatment

effect than the SAGRI-LOW subgroup (Figure 4B).

Check-point, Parainflammation, T cell co-inhibition, and T cell

co-stimulation were higher in the SAGRI-HIGH subgroup than in

the SAGRI-LOW subgroup.MHC class I, Type II IFN response was

lower than in the SAGRI-LOWsubgroup (Figure 4C). The results of

the immune cell content analysis are shown in Figure 4D. CD8+

T cells, macrophages, T helper cells, Tfh, Th2_cells, and TIL content

were higher in the SAGRI-HIGH subgroup than in the SAGRI-

LOWsubgroup, where the content ofmast cells and neutrophils was

lower than in the SAGRI-LOW subgroup.

FIGURE 3
(A–C): clinical information and gene expression heat map of the SAGRI subgroup; (D): one-factor COX regression analysis of SAGRI and clinical
information in TCGA cohort; (E): multi-factor COX regression analysis of SAGRI and clinical information in TCGA cohort; (F): nomogram plot
constructed for TCGA cohort; (G): ROC curve in TCGA cohort; (H): ROC curve for the external validation cohort.
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Identification of hub genes among the
SAGRI subgroups

Differential gene analysis was performed between the

SAGRI-HIGH and SAGRI-LOW groups using the R

package “limma”, and the screening conditions were set as |

logFC| ≥ 2 and FDR ≤0.05. The 133 genes were upregulated

and 12 genes were downregulated in the SAGRI-HIGH

subgroup. The 145 differential mRNAs obtained were

subjected to enrichment analysis. Gene Ontology (GO)

(Gene Ontology Consortium, 2015) analysis showed that

the differential mRNAs were mainly enriched in external

FIGURE 4
(A) Differences in immune checkpoint gene expression between SAGRI subgroups; (B) Differences in TIDE scores between SAGRI subgroups;
(C,D) Differences in immune cells and immune function between SAGRI subgroups; (E) Results of GO enrichment analysis between SAGRI
subgroups; (F) Differential gene-protein interactions between SAGRI subgroups; (G) Results of KEGG enrichment analysis between SAGRI
subgroups.
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encapsulating structure organization and extracellular matrix

(Figure 4E). The Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000) showed that the

differential mRNAs were mainly enriched in external

encapsulating structure organization, extracellular matrix

organization, apical plasma membrane, apical part of cell,

and anion transmembrane transporter activity. Enrichment

analysis showed that differentially expressed mRNAs were

mainly enriched in the PPAR signaling pathway, IL-17

signaling pathway, NF-kappa B signaling pathway,

Arachidonic acid metabolism, and the TNF signaling

pathway (Figure 4G). Protein interactions between

differential genes were analyzed using the STRING online

website, and results are shown in Figure 4F. In the figure, red

represents upregulated genes in the SAGRI-HIGH subgroup

and green represents downregulated genes. Key nodes in the

protein interaction network were identified using Cytoscape

software, and the most central gene was found to be MMP9,

followed by CRP, IL6, SAA1, and PLG (Figure 5A). The K-M

survival curves of the five hub genes in TCGA cohort were

plotted using R language (Figures 5B–F). We found that

both high and low expression of the five hub genes were

closely associated with the prognosis of clear cell renal cell

carcinoma.

Discussion

Sarcomatoid renal cell carcinoma (sRCC) is one of the most

aggressive types of kidney cancer (Przybycin et al., 2014;

Kyriakopoulos et al., 2015). Therefore, we screened for genes

related to sarcomatoid differentiation that may be used to assess

prognosis in renal cell carcinoma. In this study, we used

propensity score matching to strictly match sarcomatoid renal

cell carcinoma cases with clear cell renal cell carcinoma cases in

TCGA database. All sarcomatoid differentiation was found to be

from clear cell carcinoma, and the differentially expressed genes

in sarcomatoid differentiation screened on this basis were more

credible. We screened a total of 393 upregulated mRNAs and

46 downregulated mRNAs in sarcomatoid renal cell carcinoma.

In this study, we constructed a prognostic stratification

model for kidney cancer using the screened sarcomatoid

differentiation-related genes. The constructed model was

found to be more accurate in predicting longer-term

prognosis. The closeness of the validation set results to the

training set indicated that no overfitting occurred. Recent

studies suggest that NPR3 may be negatively associated with

adenylyl cyclase and the MAP kinase signaling pathway

(mitogen-activated protein kinase, MAPK) (Prins et al., 1996;

Lelièvre et al., 2001), and the adenylate cyclase can stimulate the

FIGURE 5
(A) Graph of hub gene relationships among SAGRI subgroups; (B–F): survival curve of hub genes in TCGA cohort.
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MAPK signaling pathway (Breckler et al., 2011; Tang et al., 2013).

Several studies have also shown that the MAPK signaling

pathway plays an activating role in the development,

metastasis, and angiogenesis of several human malignancies,

including renal cell carcinoma (Webb et al., 1998; Ward et al.,

2001; Huang et al., 2008). COL7A1 encodes the alpha chain of

type VII collagen. Studies focused on COL7A1 demonstrated that

COL7A1 is significantly upregulated in gastric cancer tissues and

is an independent risk factor for poor prognosis in gastric cancer

(Webb et al., 1998).

We further performed a pan-cancer survival analysis of

TCGA database (Supplementary Tables S4–7) for the four

genes modeled. COL7A1 suggested poor prognosis in a variety

of TCGA tumors: kidney cancer (KIRC: HR = 1.36; KIRP: HR =

1.23; KICH: HR = 1.45), mesothelioma (MESO: HR = 1.36),

adrenocortical carcinoma (ACC: HR = 1.37), lung

adenocarcinoma (LUAD: HR = 1.11), pancreatic

adenocarcinoma (PAAD: HR = 1.17), and cholangiocarcinoma

(CHOL: HR = 1.40) (Supplementary Figure S2). LCTL in glioma

(GBMLGG: HR = 1.73; LGG: HR = 1.60), kidney cancer (KIRC:

HR = 1.31; KICH: HR = 2.92; KIRP: HR = 1.45) ZFH,

mesothelioma (MESO: HR = 1.28), uveal melanoma (UVM:

HR = 1.56), bladder urothelial carcinoma (BLCA: HR = 1.15),

lung adenocarcinoma (LUAD: HR = 1.14) (Supplementary

Figure S3) and ZFHX4 in renal cancer (KIRC: HR = 1.18;

KIRP: HR = 1.23), stomach adenocarcinoma (STAD: HR =

1.16), testicular germ cell tumors (THCA: HR = 1.66), bladder

urothelial carcinoma (BLCA: HR = 1.09), and uterine corpus

endometrial carcinoma (UCEC: HR = 1.15) also suggested poor

prognosis (Supplementary Figure S4), but not in uterine

carcinosarcoma (UCS: HR = 0.79), glioma (GBMLGG: HR =

0.86) where an association with good prognosis was suggested.

NPR3 (Supplementary Figure S5) was found to be a favorable

prognostic factor in this study and was differently associated with

prognosis in different subtypes of renal cell carcinoma. nPR3 was

suggested to be favorable to prognosis in KIRC (HR = 0.80) and

KIRP (HR = 0.84), but negative in KICH (HR = 1.87). In

addition, NPR3 was also suggested as favorable to prognosis

in adrenocortical carcinoma (ACC: HR = 0.83) but not in

stomach adenocarcinoma (STAD: HR = 1.15), bladder

urothelial carcinoma (BLCA: HR = 1.11), or breast invasive

carcinoma (BRCA: HR = 1.10) where it suggested poor

prognosis.

The 1-year AUC values for TCGA training cohort of the

SAGRI constructed using the four sarcoma-like differentiation-

related genes (COL7A1, LCTL, NPR3, ZFHX4) were 0.725 in the

training set, 0.712 in the internal validation set, and 0.770 in the

external validation set. This indicated that the LASSO regression

used in this study did not overfit and the model was reliable.

Moreover, the heat map showed that sarcomatoid renal

carcinoma was mainly concentrated in the high-risk group as

predicted by the model, which also demonstrated better

predictive ability of the model for prognosis. To further

optimize the prognostic model for renal cell carcinoma, we

included the four-gene prognostic model and other clinical

information into the multifactorial prognostic analysis and

found that tumor subtype (i.e., whether the cancer was

sarcomatoid renal carcinoma), stage, whether it was metastatic

or not, age, and the four-gene prognostic model were all

independent risk factors for renal cell carcinoma. A

nomenclature was constructed, and the obtained

nomenclature had a 1-year AUC value of 0.875, with a

significant improvement in predictive power. The 1-year AUC

value was 0.933 in the independent cohort validation and was

significantly higher than the Clearcode34 classification. The

existing, more mature clinical models for prognostic analysis

and prediction of patients with renal cell carcinoma mainly

include tools such as TNM staging, UISS score, RCClnc4, and

Clearcode34. TNM staging mainly relies on clinical information

and pathological information without biological features and

cannot effectively distinguish inert tumors from invasive tumors.

UISS score is mainly used for limited renal cancer and cannot

effectively assess the prognosis of patients with all types of renal

cell carcinoma. Moreover, the TNM staging and UISS scoring

systems were constructed based on clinical variables with

postoperative TNM staging and tumor grade as the main

predictors, and these systems lack tumor molecular markers

related to kidney cancer prognosis. In contrast, RCClnc4 and

Clearcode34 were constructed using genes as the main

predictors, based on genetic variables, and lack relevant

clinical factors. In the prognosis assessment of renal cell

carcinoma patients, both biological and clinical factors are

very important.

The above studies failed to effectively combine genetic and

clinical factors to establish a model for predicting survival of

renal cell carcinoma patients, which is insufficient to assess the

prognosis of renal cell carcinoma patients comprehensively and

effectively. Owing to the vastly different clinical outcomes of

patients with clear cell renal cell carcinoma, especially those with

combined sarcomatoid differentiation, this disease requires new

prognostic models. Therefore, this study combined biological

and clinical factors to construct a comprehensive model for

predicting patients with clear cell renal cell carcinoma.

Comparing the results of the nomogram constructed in this

study with TNM staging and Stage staging, we found that the

nomogram was superior to TNM staging and Stage staging as

well as Clearcode34 in terms of predictive accuracy and clinical

utility.

The discovery of immune checkpoints was an important

breakthrough in cancer immunology. In almost all human cancer

cells, there is disruption of DNA integrity due to insertions,

deletions, substitutions of nucleotides, chromosomal deletions,

duplications, or translocation events. This genetic heterogeneity

provides the basis for clonal evolution, allowing cancer cells to

become progressively resistant to therapy. However, this also

generates neoantigens that the autoimmune system can
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recognize as foreign substances (Ribas and Wolchok, 2018).

However, multiple mechanisms can suppress the antitumor

immune response, making it impossible to kill tumor cells

even when tumor-killing T cells infiltrate the tumor

microenvironment. Among them, immune checkpoints are

immune molecules present in the immune system that are

responsible for upregulating (co-stimulatory molecules) or

downregulating immune system signals. In TCGA cohort,

22 immune checkpoint genes were highly expressed in the

SAGRI-HIGH subgroup and 10 genes were highly expressed

in the SAGRI-LOW subgroup (Figure 4A). Notably, PDCD1 was

highly expressed in the SAGRI-HIGH subgroup, but the

immunotherapy effect of TCGA cohort assessed using the

TIDE score suggested that the SAGRI-HIGH subgroup may

have had a slightly worse treatment effect than the SAGRI-

LOW subgroup (Figure 4B). This may be due to the higher

malignancy of the SAGRI-HIGH subgroup itself or other

confounding factors; however, the use of immunotherapy in

the SAGRI-HIGH subgroup may still be an option worth

considering. In particular, the expression of CTLA-4 and

PDCD1 was higher in the SAGRI-HIGH subgroup, also

suggesting that the SAGRI-HIGH subgroup may be more

sensitive to immune checkpoint therapy. In T-cell activation,

CTLA-4 and PD-L1/PD-1 are crucial immune co-suppressive

signals, and immune checkpoint inhibitors targeting them have

been widely used in recent years for a variety of tumors.

For the first-line treatment of metastatic kidney cancer, the

CheckMate 214 study found that the combination of the

PD1 antibody nabumab and the CTLA-4 antibody

epitumumab was significantly superior to the targeted drug

sunitinib in terms of overall survival for intermediate- and

high-risk metastatic kidney cancer in International Metastatic

Renal-Cell Carcinoma Database Consortium (IMDC) (Motzer

et al., 2018). The KEYNOTE-426 study showed that the

pablizumab combined with axitinib treatment group had

significantly better progression-free survival than the

sunitinib-treated group in metastatic kidney cancer (Rini

et al., 2019). The results of these two studies have brought the

treatment of metastatic kidney cancer from the era of targeted

drugs to a new era of immunotherapy. Currently, major

guidelines such as NCCN and EAU recommend nabumab in

combination with epirubicin or pablizumab in combination with

axitinib as first-line treatment options for intermediate- and

high-risk metastatic kidney cancer in IMDC (Jonasch, 2019).

Recent results from two other phase III clinical trials (JAVELIN

Renal 101 and Immotion 151) also showed that in PD-L1-

positive patients with metastatic kidney cancer, treatment with

the PD-L1 antibody avelumab in combination with axitinib had

longer progression-free survival than the sunitinib treated group

(Motzer et al., 2019), while patients treated with the PD-L1

antibody atezolizumab and VEGF antibody bevacizumab had

longer progression-free survival than the sunitinib group

(Motzer et al., 2022). A retrospective analysis suggested that

the combination of immune checkpoint inhibitors for metastatic

sarcomatoid kidney cancer is superior to conventional, targeted

agents alone (Hanif et al., 2019).

We analyzed the differentially expressed genes between the

SAGRI-HIGH and SAGRI-LOW groups using the STRING

website and found five key hub genes, the most core gene

being MMP9, followed by CRP, IL6, SAA1, and PLG. All

these genes are closely related to the prognosis of ccRCC, and

studies targeting these genes may be important to improving

prognosis and outcomes in ccRCC patients.

There were some limitations to this study. First, this was a

retrospective study, and although propensity score matching has

been used to pairwise screen for sarcomatoid differentiation trait

factors, selection bias is difficult to avoid in the overall context.

Therefore, follow-up multicentre prospective studies are needed

to further validate the accuracy of the nomogram prognostic

model. Second, sarcomatoid differentiated renal cell carcinoma

tumors are inherently heterogeneous, which makes it difficult to

ensure the quality of TCGA database sampling. In addition, the

proportion of sarcomatoid differentiation was not included in the

analysis, introducing potential bias in the analysis results. Third,

although this study found that four genes (COL7A1, LCTL,

NPR3, and ZFHX4), had a large impact on the prognosis of

renal cell carcinoma and analyzed their relationship with survival

in multiple cancers, the specific molecular biology and cell

biology mechanisms need to be further investigated.

Conclusion

In this study, we identified genes related to sarcoma-like

differentiation which were then used to construct a SAGRImodel

of renal clear cell carcinoma. We then combined the genes with

clinical information to construct a nomogram. The SAGRImodel

and nomogram in this study had high specificity and sensitivity

in both TCGA training and validation sets and were validated in

an independent cohort. This study also analyzed the genetic

differences and immune differences among SAGRI subtypes.

Targeted therapy against immune checkpoints may be key to

the treatment of renal cell carcinomas with poor prognosis.
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