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Abstract: Hypoxic-ischemic (HI) brain injury is a leading cause of acute mortality and chronic 
disability in newborns. Current evidence shows that cerebral microvascular response and compro-
mised blood-brain barrier (BBB) integrity occur rapidly and could primarily be responsible for the 
brain injury observed in many infants with HI brain injury. MicroRNAs (miRNAs) are a type of 
highly conserved non-coding RNAs (ncRNAs), which consist of 21-25 nucleotides in length and 
usually lead to suppression of target gene expression. Growing evidence has revealed that brain-
enriched miRNAs act as versatile regulators of BBB dysfunctions in various neurological disorders 
including neonatal HI brain injury. In the present review, we summarize the current findings regard-
ing the role of miRNAs in BBB impairment after hypoxia/ischemia brain injury. Specifically, we 
focus on the recent progress of miRNAs in the pathologies of neonatal HI brain injury. These find-
ings can not only deepen our understanding of the role of miRNAs in BBB impairment in HI brain 
injury, but also provide insight into the development of new therapeutic strategies for preservation 
of BBB integrity under pathological conditions. 
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1. INTRODUCTION 
 Hypoxic-ischemic encephalopathy (HIE) is the brain 
injury caused by deprivation of oxygen or impaired cerebral 
blood flow to the brain in conditions such as placental insuf-
ficiency, umbilical cord occlusion, asphyxia, cardiac arrest, 
and others. The term HIE is sometimes used interchangeably 
with neonatal encephalopathy (NE) in the literature [1]. It is 
estimated that HIE occurs in about 1.5 per 1000 live births 
[2, 3] and is usually associated with severe long-term dis-
abilities including cognitive impairments, epilepsy and cere-
bral palsy [3, 4]. Similar to ischemic stroke, brain injury in 
HIE also results from a cascade of pathological events trig-
gered by hypoxia/ischemia and evolves overtime [3-6]. The 
cerebral vascular cells are negatively affected over the 
course of HI pathology, leading to the opening of the blood-
brain barrier (BBB), the structure that restricts material ex-
change between the blood and the brain parenchyma. Neona-
tal HIE showed rapid BBB disruption hours after the onset of 
HI insult in animal models [7-10]. Consistently, a clinical 
study found increased serum albumin in cerebrospinal fluid 
of neonates suffering from HI brain injury, and the perme-
ability of BBB increased with the progression of HIE [11]. 
Therapeutic hypothermia is by far the only treatment avail-
able for HIE. Clinical trials have shown a reduction of infant  
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death and disability due to hypothermia therapy, but death 
and disability in infants with severe to moderate HIE remain 
to be a big challenge for HIE treatment [12]. 
 MicroRNAs (miRNAs) are a class of small non-coding 
RNAs that are well known for their ability to post-
transcriptionally modulate gene expression. They are in-
creasingly recognized as master regulators of cellular proc-
esses through regulating one-third of the genes encoded. 
Mature miRNAs are single-stranded RNAs of 21-25 nucleo-
tides in length and target specific messenger RNAs (mRNAs) 
for degradation or suppression by complementary binding to 
their 3'-untranslated region (3' UTR) [13, 14]. Encoded by 
about 1% of the genomic transcripts, thousands of miRNAs 
have been found in the human genome [15]. Cumulating 
evidence suggests that miRNAs may play a very important 
role in brain development and pathogenesis of neurological 
diseases such as ischemic stroke [13, 16, 17]. In the adult 
brain, the role of miRNAs in the modulation of BBB func-
tions has been widely studied, and therapies based on miR-
NAs have shown to improve some outcomes of stroke in 
preclinical models of ischemic stroke. However, a majority 
of these studies focus on the mature brain, while BBB dis-
ruption and protection in the developing brain is less studied. 
Our understanding of the regulation of the BBB in the devel-
oping stage is still limited, thus the summary of findings 
from the adult brain could help us gain insights into BBB 
manipulations in the developing brain. However, cautions 
should be taken while extrapolating the data in consideration 
of the differences in the BBB between the mature and imma-
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ture brain. Herein, we have reviewed current knowledge on 
the BBB in the developing brain. We have summarized the 
progress of miRNAs in the modulation of BBB functions in 
ischemic stroke and highlighted several miRNAs that are 
implicated in the pathogenesis of neonatal HI brain injury. 

2. COMPONENTS AND STRUCTURE OF THE 
BLOOD-BRAIN BARRIER IN THE IMMATURE 
BRAIN 
 The BBB is a diffusion barrier primarily located at the 
cerebral capillaries. In the traditional concept, the BBB in-
cludes brain microvascular endothelial cells (ECs), pericytes, 
astrocytes and basement membrane, while a more conven-
tional concept of the neurovascular unit (NVU) also includes 
perivascular microglia, smooth muscle cells and neurons. 
This so-called NVU plays important roles in neurovascular 
coupling and maintaining vascular homeostasis in CNS [18-
22]. The barrier function of BBB is primarily attributed to a 
non-fenestrated layer of ECs that are assembled by junc-
tional complexes consisting of tight junctions (TJs) and ad-
herens junctions (AJs). The TJs seal the intercellular cleft 
and restrict paracellular transport, while the AJs are respon-
sible for initiating and stabilizing endothelial cell-cell con-
tact [23, 24]. There are now over 40 proteins identified 
within TJs, including claudins, occluding, and zonula oc-
cludens (ZO) [25]. The barrier function of the ECs is com-
plemented and regulated by the cellular and non-cellular 
components of the NVU. 

 Despite the early belief that the BBB is ‘leaky’ in the 
immature brain, experimental evidence reported that the 
BBB is fully functional during brain development [26, 27]. It 
was shown that TJ proteins such as occludin and claudin 5 
are present in the barrier interface soon after the first vessels 
invading the brain [27]. The endothelial permeability is 
tightly restricted at embryonic day (E) 15 and the tight junc-
tions are completely differentiated at E19 in mice [28]. ECs, 
pericytes, and basement membrane are all present in the 
BBB, while astrocytes are mostly absent at the early stage of 
BBB development [27]. Astrogenesis starts around E18 and 
lasts around a week [29]. The mature astrocytes are critically 
involved in regulating BBB function [27, 28, 30]. 

3. MECHANISMS FOR BBB DISRUPTION AFTER 
BRAIN ISCHEMIA 
 The cellular responses of the BBB and mechanisms of 
BBB dysfunction after ischemic stroke have been compre-
hensively reviewed elsewhere [31, 32]. Briefly, the injured 
ECs show cytoskeletal rearrangement and increased transcy-
tosis of the TJ associated proteins, leading to the opening of 
BBB. Increased adhesion of immune cells to the injured en-
dothelium further promotes TJ protein redistribution and 
immune cell infiltration [33]. Infiltrated neutrophils as well 
as other injured cells produce matrix metalloproteinases 
(MMPs), a type of calcium-dependent zinc-containing en-
dopeptidase that contributes to the degradation of TJs and 
extracellular matrix (ECM) [31]. Cytokines and chemokines 
released during neuroinflammation further exacerbate BBB 
breakdown by activating healthy ECs and modifying TJ pro-
teins. It is recently confirmed that BBB disruption proceeds 
infarction development and blocking of early BBB dysfunc-

tion provides parenchymal protection in the ischemic stroke 
model in mice [34, 35]. 

 In the developing brain, the vulnerability of BBB to hy-
poxia/ischemia varies depending on the developmental stage. 
In the preterm brain, BBB in the germinal matrix has rela-
tively low pericyte coverage, few astrocytic ensheathment, 
immature basal membrane, and high local production of en-
dothelial growth factor (VEGF), angiopoietin-2 (angpt2) and 
MMPs that make the preterm brain prone to hemorrhage 
[36]. This condition is changed at term. Studies from neona-
tal arterial stroke animal models using transient middle cere-
bral artery occlusion (tMCAO) revealed that the BBB in the 
brain at term is more resistant to ischemic insult [37]. They 
found that some BBB-associated proteins that were pro-
foundly changed in the adult stroke, such as collagen type IV 
α1 (col4a1), col4a2 and ECM proteins were better preserved 
in experimental HIE. Yet BBB disruption and brain edema 
were still rapidly observed in experimental HIE, especially 
in cases where a more severe injury is implemented [7, 8, 
10]. In clinic, 86% of term neonates suffering from severe 
HIE develop brain edema, which is usually associated with 
poor neurological outcome [38]. Consistently, experimental 
HIE showed decreased TJ proteins such as claudin-5, oc-
cludin and ZO-1 [7, 8], as well as increased infiltration of 
neutrophil and other immune cells [10]. Increased MMP-9 
and inflammatory cytokines are found in the serum of neo-
nates with HIE [39]. Those changes are similar, though they 
may be less severe compared to the adult brain under the 
same conditions [36]. However, evidence on the cellular and 
molecular mechanisms for BBB disruption and repair in HIE 
is still limited. The data from ischemic stroke may not fully 
apply to HIE. Future efforts are needed to study the mecha-
nism of BBB disruption, as well as its impact on the progress 
of neuropathology in the immature brain. 

4. BIOGENESIS OF miRNAs 
 MiRNA genes are mainly located in either non-coding 
areas or introns within coding genes in the genome. The bio-
genesis of miRNAs has been described in detail elsewhere 
[40]. In the canonical pathway, the primary miRNAs (pri-
miRNAs) are transcribed by polymerase II from miRNAs 
genes. Those long pri-miRNAs are then processed by RNase 
III protein Drosha to form precursor miRNA (pre-miRNAs) 
which is then transported to the cytoplasm. In the cytoplasm, 
the pre-miRNAs are cleaved by another RNase III protein 
Dicer and TRBP, giving rise to miRNA duplex. One strand 
of the duplex is selected to incorporate into the RNA-
induced silencing complex (RISC) which degrades mRNAs 
in the guidance of loaded miRNA sequence. A few miRNAs 
are processed through non-canonical pathways that are inde-
pendent of Drosha or Dicer [40, 41]. It is proposed that 
miRNAs act in networks. One miRNA influences multiple 
transcripts within the targeted signaling network, and several 
miRNAs can target a single mRNA or multiple mRNAs in a 
signaling pathway to achieve a biological effect [42]. The 
level of mature miRNA in cells is subjected to transcrip-
tional regulations and RNA modifications that interfere with 
the maturation process [40, 43]. Thus, miRNAs are sensitive 
to environmental factors and external stimuli, such as the 
presence of growth factors, inflammation or hypoxia. 



1182    Current Neuropharmacology, 2020, Vol. 18, No. 12 Shen and Ma 

 MiRNAs are also found extracellularly [44, 45]. They 
exist in biological fluids including blood plasma, cerebrospi-
nal fluid, saliva, urine, breast milk, tears and many others 
[46], in which miRNAs are packaged in membrane vesicles 
such as apoptotic bodies, shedding vesicles and exosomes 
[47, 48], or bound to Argonaute (AGO) proteins which stabi-
lize them from being degraded by RNases in the body fluids 
[49]. A diverse range of cell types contributes to the pool of 
extracellular miRNAs which may be part of the communica-
tion system between different cells or organs [50]. A number 
of studies have reported that miRNAs are packed in apop-
totic bodies, and exosomes can be taken up by recipient cells 
and exert functional effects [50]. Therefore, both locally syn-
thesized miRNAs and those found in the circulation system 
may be involved in the regulation of the BBB. 

5. POTENTIAL ROLE OF miRNAs IN BBB 
DISRUPTION 
 The role of miRNAs in stroke and BBB protection has 
been widely studied. Many differentially expressed miRNAs 
can positively or negatively manipulate BBB functions in in 
vitro and/or in vivo model for stroke [32]. These miRNAs 
may fall into different categories according to their targets. 

5.1. MiRNAs and Junction Proteins 

 Tight junction protein degradation is a major contributor 
to BBB disruption. The TJ and AJ proteins such as claudins, 
occludins and cadherins are subjected to degradation by 
MMPs, which is directly regulated by miRNAs. For in-
stance, the expression of miR-132 was increased in the blood 
of stroke patients. Agomir-132 (exogenous miR-132) sup-
pressed the transcript of MMP-9 and decreased the degrada-
tion of VE-cadherin in a mouse model of ischemic stroke 
[51]. Another study showed increased miR-539 expression in 
the brain tissue in rats after ischemia, which directly inhibits 
MMP-9 expression and protects ECs from oxygen-glucose 
deprivation (OGD)-induced EC monolayer hyperpermeabil-
ity [52]. Moreover, other miRNAs have been found to di-
rectly target signaling pathways that regulate the expression, 
distribution and degradation of the junctional proteins. For 
example, miR-150 increased BBB permeability by targeting 
Tie-2 [53], an angiopoietin receptor that positively regulates 
vascular barrier function [54, 55]. MiR-143, which was up-
regulated after ischemic stroke in both human and animal 
models, was shown to target the E3 ubiquitin-protein ligase 
Hectd1 and enhance endothelial-mesenchymal transition 
associated with BBB disruption [56]. MiR-130a, which pre-
dominantly increased in ECs after ischemia, decreased tight 
junction protein expression by binding to transcription factor 
homeobox A5 [57]. MiR-155 targets claudin 1, and inhibi-
tion of which increases claudin1 and ZO-1 expression in 
human brain microvascular ECs [58]. In addition, miRNAs 
have been found to regulate junctional protein in other brain 
disorders [32]. 

5.2. MiRNAs and Cellular Components of the BBB 
 Endothelial cell injury after HI insult is the initial phase 
of BBB disruption. Thus, modulation of miRNAs related to 
endothelial cell damage is beneficial for preserving the BBB 
integrity. For example, miR-34a is upregulated in ECs after 

HI insult, which negatively affects mitochondria function in 
ECs by targeting Cytochrome c. Moreover, miR-34a knock-
out reduces BBB permeability, alleviates disruption of tight 
junctions, and improves stroke outcomes [59, 60]. MiR-26b 
inhibits autophagy and survival of ECs under OGD by tar-
geting ULK2 and its endogenous sponge malat1 overturns 
the effect of miR-26b [61]. MiR-15a is upregulated in mouse 
cerebral ECs after OGD and induces EC death by targeting 
bcl-2. Further study showed that miR-15a is negatively regu-
lated by peroxisome proliferator-activated receptor (PPAR) 
delta, a potential neuroprotectant in ischemic stroke [62]. 
Besides the primary contribution of ECs to the barrier func-
tion of the BBB, other cellular components such as astro-
cytes and pericytes also contribute to the regulation of the 
BBB permeability. Pericytes are the important regulator of 
BBB functions. Upon HI insult, pericytes separate and mi-
grate away from the basement membrane, contributing to the 
BBB dysfunction. MiR-149-5p exerts its BBB protective 
effect by regulating pericyte migration. Further mechanical 
study revealed that miR-149-5p increased N-cadherin ex-
pression and decreased cell migration by negatively regulat-
ing sphingosine-1-phosphate receptor (S1PR) 2 and its 
downstream NF-kB/p65 pathway in cultured pericyte ex-
posed to OGD [63]. Aquaporin-4 (AQP-4) is an active regu-
lator of water flux, which is primarily expressed on the end-
feet of astrocytes and plays an important role in edema for-
mation. It has been documented that overexpression of miR-
29b down-regulates AQP-4 and reduces cerebral edema in 
mice model of ischemic stroke [64]. Moreover, miR-130a 
and miR-320 were also shown to be transcription repressor 
and inhibitor of AQP-4 [65, 66]. However, cautions should 
be taken when designing therapeutics based on AQP-4 due 
to its reported ability to increase vasogenic edema [67]. 
AQP-4 activity is mainly associated with reduced cerebral 
edema in the neonatal brain [68]. 

5.3. MiRNAs and Neuroinflammation 
 Neuroinflammation is greatly increased after neonatal HI 
insult. The BBB at the interface of the blood and the brain 
parenchyma is prone to injury induced by immune cell infil-
tration and cytokine signaling. Some miRNAs can protect 
BBB integrity by reducing immune cell adhesion and pro-
inflammatory cytokine expression. For instance, overexpres-
sion of miR-126-3p and -5p in the ischemic mice brain 
down-regulated pro-inflammatory cytokines and adhesion 
molecules, preserving BBB integrity and improving stroke 
outcome [69]. MiR-146a expression was increased in the 
brain tissue in a mouse model of ischemia stroke. Inhibition 
of miR-146a was shown to exacerbate BBB leakage after 
ischemic stroke by over-activating NF-kB signaling, increas-
ing expression of inflammatory cytokines and its direct tar-
get, interleukin-1 receptor-associated kinase 1 (IRAK1)[70]. 
MiR-98, which is significantly reduced in the ECs after HI 
insults, was shown to reduce BBB permeability, leukocytes 
infiltration and microglia activation [71]. In addition to anti-
inflammation, a number of miRNAs were shown to exhibit a 
pro-inflammatory effect and exacerbate BBB function after 
ischemic stroke. For instance, miR-210 up-regulates the ex-
pression of TNF-α, IL-1β, IL-6 CCL1 and CCL2 that are 
associated with pro-inflammatory response in a mouse 
model of ischemic stroke [72]. MiR-155 is strongly induced 
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by cytokines and mediates cytokine-induced hyperperme-
ability in ECs monolayer, whereas inhibition of miR-155 
partially prevented monolayer damage [73]. Therapies based 
on those miRNAs may also show a potential protective ef-
fect on the BBB. 

6. MiRNA IN THE DEVELOPING BRAIN AFTER HI 
BRAIN INJURY 
 Comparing to the large amount of studies investigating 
the role of miRNAs in brain injury in adults, only a few stud-
ies have focused on the expression of miRNAs in neonatal 
HIE [16]. Several miRNAs were found to be associated with 
HIE. For instance, miR-210 is up-regulated in the maternal 
blood of severely growth-restricted infants [74] and in the 
mouse hemisphere after HI brain injury [75]. MiR-210 is a 
master hypoxamir, which is regulated by HIF-1α and NF-κB 
during hypoxia [76]. It has been reported that miR-210 ex-
erts a wide range of biological activities, including mito-
chondrial metabolism, angiogenesis and cell differentiation 
[13, 76]. In the normal brain, overexpression of miR-210 
promotes angiogenesis and neurogenesis [77]. Our study 
found that HI insult significantly overexpressed miR-210 
levels in the neonatal brain, which exacerbated BBB perme-
ability by downregulating the expression of occludin and β-
catenin after HI insult [78]. Moreover, inhibition of miR-210 
exerted neuroprotective effect as well as anti-inflammation 
effect in the neonatal and adult brain [75, 79, 80]. Other 
studies have shown that miR-210 mediates the protective 
effect of vagus nerve stimulation on ischemic stroke and 
promotes neural precursor cell accumulation around 
ischemic region [81, 82]. It is possible that miR-210 have 
multiple targets in the brain to exert multiple functions that 
differ at injury and recovery stage of ischemic stroke and 
neonatal HIE. As a potential therapeutic target for HIE, more 
studies are needed to further determine the effect of miR-210 
over the course of HI brain injury in neonates. 

 In addition to miR-210, other miRNAs, including miR-21, 
miR-374a, miR-424, miR-199a and miR-20b, are also poten-
tially associated with neonatal HIE [74, 83]. MiR-21 upregu-
lated TJ proteins in an animal model of traumatic brain in-
jury [84] and a neuroprotective effect of miR-21 in ischemic 
stroke was also reported [85]. The effects of miR-374a, miR-
199a and miR-424 have also been studied in ischemic stroke. 
However, their effects in the neonatal HIE are yet to be de-
termined. Moreover, miR-146a, miR-155, miR-124 and let-
7f have been implicated for the regulation of neuroinflamma-
tion, mainly microglia related response in the neonatal brain 
[86]. Among them, the miR-146a and let-7f showed a pro-
tective effect toward hypoxia in the neonatal brain [87, 88]. 
How neuroinflammation contributes to the BBB disruption 
in the neonatal brain after HI insult remains to be studied. 

CONCLUSON 
 BBB protection has been widely recognized as a poten-
tial therapeutic strategy for the treatment of ischemic stroke. 
Cumulating evidence has shown that miRNA-based thera-
pies such as miRNA mimics and inhibitors can manipulate 
miRNAs in the brain and protect BBB integrity in experi-
mental stroke. However, those therapies are facing major 
challenges such as the lack of efficient drug delivery system 

to the brain, short half-life of the therapeutic molecules and 
the presence of off-target effects [89]. There may be still a 
long way to go to achieve success in the clinical translation 
of those therapeutics. Moreover, the molecular and cellular 
mechanism of BBB dysfunction in neonatal HI brain injury 
remains to be elucidated. The role of miRNAs in the patho-
genesis of HIE is largely unknown. Despite the rich knowl-
edge on BBB protection in ischemic stroke, the physiologi-
cal difference between the developing and mature brain may 
limit the applicability of the data extrapolated from ischemic 
stroke. Future studies are needed to fill in the gap regarding 
BBB protection in the developing brain. 
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