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Transcriptomic analysis provides insights 
into molecular mechanisms of thermal 
physiology
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Abstract 

Physiological trait variation underlies health, responses to global climate change, and ecological performance. Yet, 
most physiological traits are complex, and we have little understanding of the genes and genomic architectures that 
define their variation. To provide insight into the genetic architecture of physiological processes, we related physi-
ological traits to heart and brain mRNA expression using a weighted gene co-expression network analysis. mRNA 
expression was used to explain variation in six physiological traits (whole animal metabolism (WAM), critical thermal 
maximum (CTmax), and four substrate specific cardiac metabolic rates (CaM)) under 12 °C and 28 °C acclimation condi-
tions. Notably, the physiological trait variations among the three geographically close (within 15 km) and genetically 
similar F. heteroclitus populations are similar to those found among 77 aquatic species spanning 15–20° of latitude 
(~ 2,000 km). These large physiological trait variations among genetically similar individuals provide a powerful 
approach to determine the relationship between mRNA expression and heritable fitness related traits unconfounded 
by interspecific differences. Expression patterns explained up to 82% of metabolic trait variation and were enriched 
for multiple signaling pathways known to impact metabolic and thermal tolerance (e.g., AMPK, PPAR, mTOR, FoxO, and 
MAPK) but also contained several unexpected pathways (e.g., apoptosis, cellular senescence), suggesting that physi-
ological trait variation is affected by many diverse genes.
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Introduction
Physiological traits define how species live, the habitats 
they can exploit, health, and energy allocation between 
ecological interactions or reproduction [1–10]. To 
understand the molecular mechanisms and evolutionary 
forces altering physiological traits, it is critical to under-
stand the genes involved. Quantifying mRNA expres-
sion provides information for both heritable and plastic 
responses [11–17], offering insight where genome wide 
association studies (GWAS) or similar approaches may 

be less informative due to context dependent genetic 
architecture [19, 20]. Studying mRNA expression is also 
likely to provide a greater mechanistic understanding of 
complex traits in comparison to genome wide nucleotide 
variation because mRNAs are more often defined genes 
associated with biochemical or physiological pathways 
(e.g., through Kyoto Encyclopedia of Genes and Genomes 
[KEGG] or Gene Ontology [GO] terms or molecular 
investigation). Overall, an improved mechanistic under-
standing of traits enables us to parse redundancy across 
biological organization levels and reveal the evolutionary 
processes and genetic architectures contributing to phe-
notypic variation.
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Here, we used mRNA expression patterns to identify 
molecular mechanisms underlying physiological traits 
in the small saltmarsh teleost fish, Fundulus heterocli-
tus. Thermal physiology is often studied in F. heterocli-
tus because they are highly plastic and have adapted to 
live in the highly variable temperate coastal salt marshes 
where temperature fluctuates 15 °C on daily and seasonal 
timescales [18, 21–29]. Yet, few studies have examined 
the molecular and genetic basis of physiological trait 
variation related to thermal responses in this species 
beyond specific gene expression (e.g., heat shock pro-
tein expression, [26, 30]), limiting our understanding of 
physiological response to temperature, which is likely to 
include 10  s or 100  s of expressed genes and may differ 
in response to variable acclimation conditions. To better 

understand thermal response molecular mechanisms in 
F. heteroclitus, we used individuals captured from three 
wild populations less than 15 km apart with little overall 
genetic distance among them [31–33] to examine physi-
ological trait variation and then related physiological trait 
variation to heart and brain mRNA expression under 
12 °C and 28 °C acclimation conditions (Fig. 1, [18, 34]). 
Traits included whole animal metabolic rate (WAM), 
critical thermal maximum (CTmax), and four substrate 
specific cardiac metabolic rates (CaM substrates: glu-
cose [Glu], fatty acids [FA], lactate + ketones + ethanol 
[LKA], and endogenous [END]) [18]. Notably, there were 
few differences among the three populations in the six 
physiological traits measured. This allowed us to address 
two hypotheses: 1) genetically similar populations with 

Fig. 1  Metabolic and thermal tolerance trait variation among individual Fundulus heteroclitus. Relative physiological trait performance at 12 °C 
(blue) and 28 °C (red) acclimation and assay temperatures for A)Whole animal metabolic rate versus thermal plasticity between acclimation 
temperatures, B critical thermal maximum versus thermal plasticity between acclimation temperatures, and C-F cardiac metabolism under 12 °C 
and 28 °C acclimation and assay temperatures with substrates C glucose, D fatty acids, E lactate ketones and ethanol (LKA), and F endogenous (no 
substrate). Previously, difference between individuals when acclimated and assayed at 12 °C (blue) and 28 °C (red) revealing up to 14-fold variance 
in mass corrected whole animal metabolism (for the most plastic individual), 0.25-fold variance in critical thermal maximum, and 13-fold variance in 
fatty acid cardiac metabolism (the most variable substrate). Adapted from Drown et. al. 2021. [18]
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little divergence in physiological traits will have a shared 
mRNA expression response to thermal acclimation, and 
2) physiological traits will be related to temperature and 
tissue specific mRNA expression, with variance among 
traits in the mRNAs that explain trait variation.

Using mRNA expression in combination with physi-
ological trait variation we found co-variation between 
physiological traits and heart and brain mRNA expres-
sion among 86 individuals across the three populations. 
Among individuals, we previously found mass cor-
rected physiological traits to be highly variable with up 
to 14-fold difference (range spread) in metabolic rate 
(mass corrected), 0.25-fold difference in CTmax (mass 
corrected), and 13-fold difference in fatty-acid CaM 
(heart mass corrected, the most variable substrate) [18] 
(Fig. 1, [18, 34]). This degree of trait variance is compa-
rable to that found in metabolic rates [35] among 77 fish 
species spanning thousands of kilometers (15–20° lati-
tude, ~ 2000 km (Fig. S1, data from [35]), and for thermal 
tolerance among polar and temperate crabs [36]. This 
large physiological trait variation among individuals 
within a species provides a powerful approach to deter-
mine the relationship between mRNA expression and 
these heritable fitness related traits [16, 37–41]. We show 
that among these individuals, acclimation induced dif-
ferential expression of 362 heart mRNAs and 528 brain 
mRNAs across all three populations, yet few differen-
tially expressed mRNAs (one or less) were shared across 
all three populations. Within each acclimation tempera-
ture, co-expressed mRNA modules were significantly 
associated with WAM, CTmax, and CaM. Using KEGG 
and GO enrichment, we identify biologically relevant 

networks among co-expressed mRNA modules that 
explain these traits. These data link a simpler molecular 
phenotype (mRNA expression) to complex trait variation 
to enhance our understanding of biological pathways that 
affect these traits and may be important for evolutionary 
adaptation.

Results
Differential expression analysis
Sequencing statistics and sample sizes are summa-
rized in Table 1. Differential expression patterns among 
populations and acclimation temperatures were iden-
tified using DESeq2 [42]. First, to examine popula-
tion and temperature specific expression we used 
model design: (~ Population + Acclimation-Temper-
ature + Population*Acclimation-Temperature). This 
analysis revealed significant Population*Acclimation-
Temperature interactions, suggesting acclimation tem-
perature specific mRNA expression patterns among 
populations. Because of the significant interactions, we 
analyzed individuals acclimated to 12  °C or 28  °C sepa-
rately with model design: ~ Population to identify differ-
entially expressed mRNAs among populations within an 
acclimation temperature. Similar to other species, there 
were significant differentially expressed mRNAs between 
acclimation temperatures, reflecting changes in response 
to environmental temperature ([14, 43, 44], Table S1). 
Across all 3 populations, hearts had 362 mRNAs (3.5% 
of total) that were significantly different between the 
two acclimation temperatures (FDR < 0.05) with an equal 
number of up and down regulated mRNAs for 12 °C ver-
sus 28 °C (180 up and 182 down). For brains, 528 mRNAs 

Table 1  Sequencing statistics. Sequencing statistics and sample size distribution among tissues, acclimation temperatures, and 
populations

Heart Tissue Sequencing Statistics Acclimation Temperature Population Sample Size
Total N 41 12 °C N.Ref 4

Total mRNAs 10,535 TE 6

Average reads per mRNA 8,224.70 S.Ref 9

Minimum reads per individual 1.5 million 28 °C N.Ref 4

Average reads per individual 2.17 million TE 8

S.Ref 10

Total 41

Brain Tissue Sequencing Statistics Acclimation Temperature Population Sample Size
Total N 45 12 °C N.Ref 9

Total mRNAs 10,932 TE 11

Average reads per mRNA 6578.5 S.Ref 8

Minimum reads per individual 1 million 28 °C N.Ref 5

Average reads per individual 1.74 million TE 6

S.Ref 6

Total 45
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(4.8% of total) were significantly differently expressed 
between the two acclimation temperatures (FDR < 0.05) 
with ~ 2.5-fold more down regulated at 28  °C relative to 
12 °C (148 up and 380 down). While all three populations 
showed acclimation effects for heart and brain mRNAs, 
the affected mRNAs were not shared among all popula-
tions (Fig. 2, Table S1). Additionally, acclimation signifi-
cant mRNAs were unique to either heart or brain with no 
shared (0 mRNAs) acclimation response between tissues. 

This reflected different expression patterns between tis-
sues, previously identified with PCA analysis (Fig. S2).

At each acclimation temperature, populations also 
had significant expression differences (Fig.  3, Table 
S2). Hearts at 12  °C and 28  °C had 158 or 153 differ-
entially expressed mRNAs among populations, respec-
tively (Table S2). These represent 1.50% or 1.45% of all 
expressed heart mRNAs at 12  °C and 28  °C, respec-
tively; brains had 242 or 330 differentially expressed 

Fig. 2  Population and tissue specific transcriptomic response to acclimation temperature. Number of differentially expressed mRNAs (DEGs) within 
each population between 12 °C and 28 °C acclimated hearts (A and C) and 12 °C and 28 °C acclimated brains (B and D). For both heart and brain, 
populations had many unique DEGs (C and D, upregulated = black, downregulated = grey) that were differentially expressed between acclimation 
temperatures and few shared DEGs (C and D, shared = white), with only 1 DEG shared among all three populations for brain (LOC118561484 in 
brains). Population and number of DEGs are not independent, Chi-Squared test, heart p = 1.64 × 10–10, brain p = 2 × 10–16
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mRNAs among populations at 12 °C and 28 °C, respec-
tively. These represent 2.21% or 3.02% of all expressed 
brain mRNAs at 12 °C and 28 °C, respectively. None of 
the population effects were significant across all three 
populations (Fig. S4) for any acclimation temperature 
or tissue.

Importantly, there is an adaptive hypothesis: that the 
mRNAs in the anthropogenically warmed population, 
TE, are uniquely different, where TE is significantly 
different from both northern and southern reference 
populations with no significant differences between 
the references [14, 45]. For heart mRNAs at 12 °C there 
are 10 mRNAs (6.33% of significant mRNAs), and at 
28  °C there are 3 mRNAs (1.96%) where the TE popu-
lation is uniquely different from both references (Fig 
S4, Table S2). For brain mRNAs at 12  °C there are 11 
mRNAs (4.55% of all significant mRNAs), and at 28 °C 
there are 27 mRNAs (8.18%) where the TE population 
is uniquely different from both reference populations. 
While the overall frequency of differentially expressed 
genes is small (1.45% to 3.02% vs. total 10  k mRNAs), 
the pattern where the TE population is different from 
both northern and southern reference populations but 
the two reference populations are not different aligns 
with an adaptative hypothesis.

Variation in mRNA expression
In addition to differential expression analysis, we were 
interested in the degree of mRNA expression variance. 
Previously, we found that variation in WAM, CTmax, 
and substrate specific CaM was greater at 12  °C than at 
28  °C. Here we found that both heart and brain tissue 
had greater average coefficient of variation (CV, stand-
ard deviation/mean*100) across all mRNAs at 12 °C than 
at 28  °C (T-test, heart p = 9.587e-05, brain p = 0.02014), 
similar to our findings of greater variation in physiologi-
cal traits measured at 12 °C.

Weighted gene co‑expression network analysis
We used weighted gene co-expression network analy-
sis (WGCNA, [46]) to detect co-expressed mRNA clus-
ters. WGCNA approaches group mRNAs with similar 
expression patterns into independent modules. Expres-
sion patterns for all mRNAs within a module were then 
summarized into principal components called module 
eigengenes (MEs, Table 2 for heart mRNAs and Table 4 
for brain mRNAs), and these MEs were correlated to each 
of the six physiological traits (Table  3 shows significant 
heart ME trait correlations, and Table 5 shows significant 
brain ME trait correlations). Each ME has a “hub-MM”, 

Fig. 3  Temperature specific differential mRNA expression among populations. A Differential expression for 158 heart mRNAs and B 242 brain 
mRNAs between any two populations at 12 °C. In hearts, 43.0% of mRNAs (68/158) are shared among any two population comparisons. In brains, 
32.2% of mRNAs (78/242) are shared among any two population comparisons
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the mRNA with the highest correlation to the ME, with 
MM being the correlation coefficient (Tables 2 and 4).

MEs were correlated to the body mass residuals for the 
six traits (WAM, CTmax, and the four substrate specific 
CaM). These analyses were done across all three popu-
lations because populations did not have any significant 

differences among traits. Each of the ME-trait correla-
tions had a “hub-GS” – the mRNA in the module with the 
highest correlation to the trait, with GS (gene specific) 
being the correlation coefficient for this single mRNA. 
Both heart and brain WGCNA analysis used a minimum 
module size of 30 mRNAs per module and combined 

Table 2  Heart Significant Modules

Columns include: Module = identifier for module eigengene (ME, first principal component of module), KEGG Pathway = top KEGG pathway determined by number of 
KEGG terms, Module Size = number of mRNAs in the module, Hub MM = mRNA with highest correlation with module eigengene, MM = correlation of hub mRNA with 
module eigengene, Positive MM = proportion of mRNAs with positive MM in the module, KEGG Terms in Pathway = enriched KEGG terms in the listed KEGG pathway. 

*Indicates modules where more than one KEGG Pathway had the same number of enriched KEGG terms, in which case the most informative KEGG pathway was 
selected

Module KEGG Pathway Module Size Hub MM MM Positive MM KEGG 
Terms in 
Pathway

ME1_heart MAPK signaling pathway* 194 SAC3D1 0.51 74.70% K04459

K20216

ME2_heart Endocytosis* 147 NCKAP5L 0.52 31.30% K12471

ME3_heart FoxO signaling pathway* 281 CLMPB 0.53 23.80% K11411

ME4_heart RNA degradation 168 TRAFD1 0.49 32.10% K03681

ME5_heart Metabolic pathways 336 LOC105935504 0.39 30.90% K00166

K00232

K03844

K05546

ME6_heart NA 554 WNT5B 0.65 34.10% NA

ME7_heart NA 454 MOSPD2 0.57 30.60% NA

ME8_heart Oxidative phosphorylation* 142 TXLNA 0.45 32.40% K0393

ME9_heart Ribosome* 90 YIF1B 0.54 66.70% K02899

Table 3  Heart Significant Module Trait Correlations

Significant heart ME correlations with FDR p < 0.05. Columns include: Trait = traits significantly correlated with a given ME (critical thermal maximum: CTmax, whole 
animal metabolic rate: WAM, cardiac metabolic rate: CaM with substrates fatty acids = FA, lactate + ketones + ethanol = LKA), Module = identifier for module 
eigengene (ME, first principal component of module), Correl coef = Pearson’s signed correlation coefficient for trait and ME, FDR P-value = multiple test corrected 
p-value for trait versus module correlation, Hub GS = mRNA with highest gene significance for the trait in the module, GS = gene significance, correlation between top 
module mRNA and trait, Positive GS = proportion of mRNAs in the module that are positively correlated with trait

Trait Module Correl coef FDR
P-value

Hub GS GS Positive GS

CTMax 12 °C ME1_heart 0.49 2.10E-02 GPM6AA -0.51 54.60%

CTMax 28 °C ME2_heart -0.53 9.50E-03 NCKAP5L -0.50 35.30%

FA 12 °C ME3_heart 0.50 1.02E-02 PDCD4A 0.55 65.80%

FA 12 °C ME4_heart 0.53 4.82E-03 RSRC1 -0.58 13.10%

FA 12 °C ME5_heart 0.55 4.82E-03 RPL5A 0.62 81.80%

heart mass 12 °C ME6_heart -0.57 1.80E-03 WRAP53 0.72 48.20%

LKA 12 °C ME6_heart -0.65 3.39E-05 LOC118563371 0.80 46.90%

LKA 12 °C ME7_heart -0.56 1.29E-03 LOC105934375 0.80 44.70%

WAM 12 °C ME8_heart -0.56 1.20E-03 LOC118563115 0.70 36.60%

WAM 12 °C ME9_heart -0.55 1.20E-03 LRRC58B -0.56 10.00%

WAM 12 °C ME4_heart -0.54 1.74E-03 LOC118563570 0.61 65.50%

WAM 12 °C ME5_heart -0.56 1.20E-03 HPRT1L 0.66 40.50%

AVERAGE 0.55
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modules with correlation > 75% (see methods). To verify 
that trait versus ME correlations were not driven by spu-
rious outliers, we used a jack-knife approach to subsam-
ple 90% of individuals and repeat ME-trait correlations 
100 times. Correlations that were significant in at least 
70 out of 100 repeated correlations in the same direc-
tion (positive or negative correlation coefficient) were 
retained for further analysis (see methods).

Heart WGCNA
For heart mRNAs, we found 39 co-expression mod-
ules with 90 to 554 mRNAs in each module (Table  2), 
and these heart MEs (first principal component of co-
expressed mRNAs) were correlated to six physiological 
traits at each acclimation temperature. There were 12 sig-
nificant ME-trait correlations: 9 heart MEs with 5 tem-
perature specific traits (FDR < 0.05, Table 3, Figs. 3 and 4). 
Traits correlated with at least one of these 9 heart MEs 
included: at 12  °C WAM, CTmax, FA CaM, heart mass, 
LKA CaM, and at 28 °C, CTmax (Table 3, Figs. 4, 5). Two 
of these modules (ME4_heart, ME5_heart) were corre-
lated with both WAM at 12 °C and FA CaM at 12 °C, and 
one module (ME6_heart) was correlated with both LKA 
CaM at 12 °C and heart mass at 12 °C. WAM at 12 °C had 
the most significant ME correlations (4 total), followed by 
FA CaM at 12 °C (3 total) and LKA CaM at 12 °C (2 total). 
The other three traits were each correlated with a sin-
gle module (Table 3). On average, a single heart module 
explained 55% of variance for one trait with a minimum 
of 48.5% (ME1_heart with CTmax 12 °C) and a maximum 
of 65% (ME6_heart with LKA 12 °C).

For traits that were significantly correlated with more 
than one ME, a multiple correlation coefficient was 

calculated. For WAM at 12  °C, the four significant MEs 
together had a multiple correlation coefficient of 82%, the 
three significant MEs for FA CaM at 12 °C had a multiple 
correlation coefficient of 79.5%, and the two significant 
MEs for LKA CaM at 12  °C had a multiple correlation 
coefficient of 75.5%. All modules correlated with FA CaM 
at 12 °C and CTmax at 12 °C had positive correlation coef-
ficients while all other significant trait versus ME correla-
tions in hearts had negative correlation coefficients.

Brain WGCNA
For brain mRNAs, we found 42 co-expressed modules 
with 142 to 393 mRNAs per module (Table  4). There 
were 6 significant ME-trait correlations (FDR < 0.05) 
that included 4 unique modules and 4 temperature spe-
cific traits (Table  5, Fig.  6): at 12  °C, body mass and at 
28  °C, CTmax, WAM, and body mass. The trait with the 
most significant correlations was CTmax at 28  °C (3 sig-
nificant ME’s), and two of these were also significant 
with body mass at 28 °C (ME3_brain) or WAM at 28 °C 
(ME4_brain). On average, the correlation coefficient for a 
brain ME was 62% with a minimum of 56.8% (ME3_brain 
with CTmax 28 °C) and a maximum of 70.2% (ME4_brain 
with WAM 28 °C). For CTmax at 28 °C, which was corre-
lated with three MEs, the multiple correlation coefficient 
was 71.7%. All correlations between traits and brain MEs 
were negative except for body mass at 28 °C.

KEGG and GO enrichment
Critical thermal maximum enriched terms
MEs were tested for KEGG and GO term enrichment 
using the complete set of tissue specific mRNAs as the 
gene universal or reference set (10,535 for heart, 10,932 

Table 4  Brain Significant Modules

Columns include: Module = identifier for module eigengene (ME, first principal component of module), KEGG Pathway = top KEGG pathway determined by number of 
KEGG terms, Module Size = number of mRNAs in the module, Hub MM = mRNA with highest correlation with module eigengene, MM = correlation of hub mRNA with 
module eigengene, Positive MM = proportion of mRNAs with positive MM in the module, KEGG Terms in Pathway = enriched KEGG terms in the listed KEGG pathway

*Indicates modules where more than one KEGG Pathway had the same number of enriched KEGG terms, in which case the most informative KEGG pathway was 
selected

Module KEGG Pathway Module Size Hub MM MM Positive MM KEGG 
Terms in 
Pathway

ME1_brain Metabolic pathways 393 IDH3B 0.47 26.40% K00323

K01443

K10106

K19006

ME2_brain Tight junction 198 LOC105921153 0.52 28.20% K07198

K08018

K08020

ME3_brain Lysosome 342 LRCH3 0.58 25.10% K01134

K08568

ME4_brain RNA degradation* 142 SI:CH211-244C8.4 0.36 21.10% K03681
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for brain; Tables S3 and S4). For CTmax, all 5 MEs were 
significantly enriched for KEGG pathways (ME1_heart, 
ME2_heart, ME2_brain, ME3_brain, and ME4_brain) 
and included MAPK signaling, mTOR signaling, gly-
oxylate and dicarboxylate metabolism, insulin sign-
aling pathway, glutathione metabolism, metabolic 
pathways, carbon metabolism, and tryptophan metabo-
lism. Enriched GO terms included regulation of organ 
growth and cellular stress response in heart and AMP-
activated protein kinase (AMPK) activity in brain. ME for 
CTmax at 28 °C contained substantial overlap in enriched 
KEGG pathways related to metabolism with 5 out of 8 
terms enriched in both heart and brain modules. So, 

although there were different mRNAs in heart and brain 
modules correlated with CTmax at 28 °C, the KEGG terms 
related to metabolism were shared (5 out of 8), suggest-
ing that different mRNAs in heart and brain belonged to 
similar pathways impacting CTmax at 28 °C.

Metabolic rate enriched terms
Modules significantly correlated with WAM were 
enriched for KEGG pathways including oxidative phos-
phorylation (heart only), glutathione metabolism (brain 
only), and metabolic pathways (both heart and brain). 
In addition, ME3_heart was correlated with FA CaM at 
12 °C and enriched for KEGG terms including metabolic 

Fig. 4  Significant cardiac metabolism-heart module correlations from weighted gene co-expression network analysis. Significant correlation of 
fatty acid cardiac metabolic rate at 12 °C (N = 16) with ME3_heart (A), ME4_heart (B), and ME5_heart (C). Significant correlation of lactate, ketone, 
and alcohol (LKA) cardiac metabolic rate at 12 °C (N = 19) with ME6_heart (D) and ME7_heart (E). Pearson correlation coefficients (Cor) and FDR 
p-values are displayed for each significant correlation
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pathways, forkhead protein (FoxO) signaling, and 
metabolism of NADH derivatives (nicotinate and nico-
tinamide). One module, ME5_heart, was significantly 
correlated with WAM at 12  °C and FA CaM at 12  °C 
and contained several KEGG pathways directly related 
to fatty acid metabolism as well as known transcription 
factors like PPAR that impact metabolic homeostasis by 
controlling expression of many metabolism related genes 
[47]. Previously, partial correlation coefficients between 

FA CaM at 12 °C and WAM at 12 °C were negatively cor-
related [18], and similarly ME_5 had opposite correla-
tion coefficients for these two traits (Table 3, Figs. 4, 5). 
This correlation between traits and their correlations to 
MEs also occurs for CTmax and WAM at 28 °C [18] and 
ME4_brain (enriched for glutathione metabolism and 
metabolic pathways). The fact that the same MEs are 
associated with traits that have significant partial correla-
tions emphasizes the biological relevance of the MEs.

Fig. 5  Significant whole animal trait-heart module correlations from weighted gene co-expression network analysis. Significant correlation of 
critical thermal maximum at 12 °C (N = 17) with ME1_heart (A), critical thermal maximum at 28 °C (N = 19) with ME2_heart (B), whole animal 
metabolic rate at 12 °C (N = 16) with ME8_heart (C), ME9_heart (D) ME4_heart (E), and ME5_heart (F). Pearson correlation coefficients (Cor) and FDR 
p-values are displayed for each significant correlation
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Discussion
Understanding the genes that affect physiological per-
formance is one of the more important research goals 
for human health [48–50] and evolutionary ecol-
ogy, especially with global climate change [2, 6, 10, 
51–53]. Here, to provide insight into the genes that 
affect physiological performance, we relate the mRNA 
variation with the variation in six physiological traits 
(Fig.  1, [18, 34]). This approach is strengthened by 
the large variation among F. heteroclitus individu-
als used in this study: the variation (range spread) is 
14-fold for WAM, 13-fold for FA CaM, and 0.25-fold 
for CTmax [18] (Fig. 1). These physiological trait vari-
ations are larger than found among different species 
spanning temperate to tropical waters (Fig. S1). Addi-
tionally, five of six traits are not significantly differ-
ent among the three populations (F-values < 2), with 
most trait variation found among individuals and not 
among populations [18]. This substantial interindi-
vidual variation in traits allowed us to examine inter-
esting physiological patterns related to acclimation 
response and temperature performance. For example, 
individuals with low WAM at 12  °C tended to have 
high WAM at 28  °C and visa-versa; the substrates 
that supported CaM differed among individuals; and, 
acclimation response eliminated temperature effects 
such that Q10 (change in rate for every 10 °C increase 
in temperature) was approximately 1.0 for cardiac 
metabolic rates (nearly equal rate when measured at 
12  °C and 28  °C, [18]). The large physiological vari-
ation among individuals, the difference in substrate 
use, and the strong acclimation responses provide a 
unique resource to begin to understand which mRNAs 
are associated with physiological performance and 
thus the genes responsible for health and response to 
environmental change.

The role of mRNA expression in acclimation and evolution
For mRNA expression in both heart and brain tissues, 
we found significant interactions between acclimation 
and population effects: the expression of several hun-
dred mRNAs differed between acclimation temperatures, 
but these were not shared among all three populations 
(Fig. 2). Previously (Fig. 1., [18]), in these same individu-
als, acclimation response to 12  °C and 28  °C affected all 
six physiological traits (WAM, CTmax, and the four sub-
strate specific CaM). For CTmax, there was an expected 
enhancement: higher CTmax in individuals experiencing 
warmer environments. For metabolic rates (WAM and 
CaM), acclimation to 12 °C and 28 °C mitigated the effect 
of temperature [18]. Specifically, without physiological 
acclimation there is an expected ~ threefold increase in 
metabolic rates with the 16  °C increase in acclimation 
and assay temperature (i.e., with a doubling for every 
10  °C) [54]. Yet, WAM had only ~ 1.2-fold increase [43] 
from 12 °C to 28 °C, and CaM had no significant increase 
between temperatures [18]. Presented here, across all 
three populations, acclimation produced significant dif-
ferential mRNA expression (FDR < 0.05) in hearts (362 
mRNAs) and brains (528 mRNAs, (Table S1)). These 
mRNA expression changes associated with acclimation 
responses are similar to prior studies among ectotherms 
where transcriptomic response to temperature acclima-
tion enhances thermal performance [43, 44, 55, 56]. For 
example, in three-spine stickleback (Gasterosteus acu-
leatus) and other fishes, metabolic enzyme expression 
and mitochondrial volume density increase in response 
to cold acclimation can compensate for reduced enzyme 
catalytic rate with decreased temperature [43, 57, 58]. 
Similarly, in eastern oysters (Crassostrea virginica) 
among a suite of environmental factors (temperature, 
pH, salinity, dissolved oxygen, etc.), temperature was 
the most important transcriptomic variation predictor 

Table 5  Brain Significant Module Trait Correlations

Significant brain versus ME correlations with FDR p < 0.05. Columns include: Trait = traits significantly correlated with a given ME (critical thermal maximum: CTmax, 
whole animal metabolic rate: WAM), Module = identifier for module eigengene (ME, first principal component of module), Correl coef = Pearson’s signed correlation 
coefficient for trait and ME, FDR P-value = multiple test corrected p-value for trait versus module correlation, Hub GS = mRNA with highest gene significance for the 
trait in the module, GS = gene significance, correlation between top module mRNA and trait, Positive GS = proportion of mRNAs in the module that are positively 
correlated with trait

Trait Module Correl coef FDR
P-value

Hub GS GS Positive
GS

body mass 12 °C ME1_brain -0.60 5.75E-04 MAP3K5 0.61 44.80%

body mass 28 °C ME3_brain 0.58 1.46E-03 LOC105919139 0.63 68.70%

CTmax 28 °C ME2_brain -0.60 2.01E-04 CIAO2B 0.36 44.90%

CTmax 28 °C ME3_brain -0.57 4.83E-04 RAD17 0.64 83.90%

CTmax 28 °C ME4_brain -0.67 2.38E-05 APOC1 -0.65 48.60%

WAM 28 °C ME4_brain -0.70 3.15E-06 APOC1 -0.68 50.00%

AVERAGE 0.62
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with thermal stress increasing oxidative phosphorylation 
transcript expression [59]. Even Antarctic fish, which are 
adapted to extreme and invariable cold, show plasticity in 
metabolic transcripts with temperature acclimation that 
impacts whole animal performance [58, 60].

While quantitative gene expression changes are com-
mon with acclimation (affecting both mRNA and pro-
teins [55, 61]), surprisingly, mRNA acclimation responses 
were different among populations—for heart mRNAs, no 
significant acclimation responses were shared among all 
three populations, and for brains only one mRNA was 
shared among the three populations. Further, 88–98% of 
significant acclimation responsive mRNAs are unique to 
each population. In contrast, the six physiological traits’ 
acclimation responses were not different among popula-
tions. All populations were subjected to a common envi-
ronment for a long time (~ 1 year or nearly 30–50% of a 
fish’s expected life span) with acclimation to the 12 °C and 
28C. Thus, the difference in acclimation mRNA response 
among populations was not due to short-term physio-
logical effects and may be due to genetic polymorphisms 
driving acclimation responses but could also be due to 
irreversible developmental effects or trans-generational 

effects. Regardless of the genetic mechanisms responsible 
for the divergent mRNA acclimation responses among 
populations, these data suggest that multiple different 
mRNA expression patterns drive acclimation responses. 
This conclusion is similar to CaM measurements in 
Maine and Georgia populations, where the mRNAs that 
explain substrate specific metabolism varied among 
groups of individuals [16]. The observations, that plastic-
ity in the six physiological traits between temperatures 
is similar among populations yet mRNA acclimation 
responses differ among populations, suggest that multi-
ple redundant molecular mechanisms drive temperature 
compensation.

A single difference occurs among populations for the 
six physiological traits: endogenous CaM at 28  °C. Yet, 
populations had significant mRNA expression differences 
specific for each temperature, and none of the population 
significant mRNAs were shared at 12 °C or 28 °C (Fig. S4, 
Table S2). One pattern indicative of adaptation occurs 
where the anthropogenically warmed TE population 
is significantly different from both northern and south-
ern reference populations (not heated by thermal efflu-
ent from nuclear power plant) but not different between 

Fig. 6  Significant whole animal trait-brain module correlations from weighted gene co-expression network analysis. Significant correlation of 
critical thermal maximum at 28 °C (N = 17) with ME3_brain (A), ME4_brain (B), and ME2_brain (C). Significant correlation of whole animal metabolic 
rate at 28 °C (N = 16) with ME4_brain (D). Pearson correlation coefficients (Cor) and FDR p-values are displayed for each significant correlation
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these two references [14, 31, 45]. While we did not find 
this adaptive pattern for any of the physiological traits, 
a few mRNAs (2–8%) did show this pattern. Yet, this 
pattern is not unlikely given the number of differences 
among all populations. That is, it is probable that 2%-8% 
of mRNAs for either tissue or at either acclimation tem-
perature would have this potentially adaptive pattern of 
mRNA expression. Thus, while some mRNA expression 
patterns are exclusive for the anthropogenically heated 
TE population relative to both references, an adaptive 
hypothesis is possible but not strongly supported by our 
mRNA data. Regardless, the differences here were for 
mRNA expression that can be affected by DNA polymor-
phisms or influenced by environment (i.e., GxE). Thus, 
the difference among populations in mRNA expression 
are dependent on the thermal environment, and, if adap-
tive, suggest that the different genetic polymorphisms 
are responsible for adaptive divergence at different tem-
peratures. This conclusion is similar to a comparison 
within and among species across a wider geographic 
range where adaptive divergence in mRNA expression 
was dependent on the thermal environment [14]. For the 
TE population, Dayan et  al. [31], concluded that there 
was adaptive divergence based on evolutionarily sig-
nificant DNA polymorphisms. We would extend this to 
suggest that populations have evolved different mRNA 
expression patterns that are dependent on the thermal 
environment but that, nevertheless, produce similar 
physiological phenotypes. This is consistent with a redun-
dant polygenic trait architecture, which may be expected 
for some complex traits that are affected by many physi-
ologically processes [48]. While mRNA expression varia-
tion is largely attributed to DNA polymorphisms [62, 63], 
other possible mechanisms including epigenetic modifi-
cation (e.g., DNA methylation) are also known to impact 
mRNA expression and may impact the physiological trait 
variation we have measured [64–66].

Biological relevance of co‑expressed mRNAs
This study’s focus is to identify differential mRNA expres-
sion responsible for the large physiological trait variation 
previously characterized [18]. We examine co-variation 
among mRNAs and relate this to the six physiological 
traits using a weighted gene co-expression network anal-
ysis (WGCNA) [46]. WGCNA identified co-expressed 
mRNA modules, MEs, highly correlated with WAM, 
CTmax, FA CaM, LKA CaM, and body and heart mass, 
depending on the acclimation temperature (Figs, 4, 5, and 
6). The average ME-trait correlation was 0.55 for heart 
and 0.62 for brains (Tables 3 and 5). These MEs, contain-
ing 90–554 mRNAs each, contained few (0–10) mRNAs 
with significant expression differences among popula-
tions, suggesting that the variation among individuals, 

and not differences among populations, is most impor-
tant. This is in agreement with five of the six physiologi-
cal traits, where most the variation is within and not 
between populations (exception of CaM END at 12  °C). 
WGCNA has been previously used to identify mRNA 
expression networks important for various patholo-
gies including cardiovascular disease [67, 68], cancers 
[69–73], and diabetes [68, 74], among others. In non-
human organisms, WGCNA has been used to character-
ize response to the environment, including heat stress in 
turbot [75], carotenoid metabolism in apricot fruit [76], 
and disease response in corals [77]. Although few stud-
ies, to our knowledge, have validated correlations using 
jack-knife subsampling to ensure that the correlations 
were consistent among most individuals and not driven 
by a few outliers as we did, these studies similarly iden-
tified potentially meaningful correlations between traits 
and co-expressed mRNAs.

Our jack-knife subsampling indicates that the high cor-
relations between traits and co-expressed mRNAs are 
found among most individuals and not driven by a few 
outliers. More importantly, in this study, the correlation 
patterns between MEs and physiological traits are similar 
to the correlations among physiological traits. For exam-
ple, at 12  °C, FA CaM and WAM were negatively cor-
related [18], and similarly, ME5_heart was significantly 
correlated with opposite signs with these two traits (i.e., 
positively correlated with FA CaM but negatively corre-
lated with WAM, Table  3, Figs.  4, 5). Additionally, MEs 
correlated to WAM and CaM were enriched in KEGG 
metabolic pathways and GO terms related to metabo-
lism. These data indicate that modules represent inde-
pendent, biologically important mRNA networks.

The biological importance of co-expressed mRNA net-
works is also supported by their relation to metabolic 
processes. Eleven of the 13 significant heart or brain 
MEs were significantly enriched for at least one KEGG 
term, and 6 were significantly enriched for at least one 
GO term. KEGG terms mapped to biologically relevant 
KEGG pathways including metabolic pathways, mecha-
nistic target of rapamycin (mTOR) signaling, mitogen 
activated protein kinase (MAPK) signaling, insulin sign-
aling, and metabolism and biosynthesis of various mac-
romolecules including glycogen, NADH precursors, 
amino sugars, and fatty acids (Table S3, S4). Importantly, 
8 out of 11 modules with significantly enriched KEGG 
terms mapped to at least one metabolism related KEGG 
pathway. Among these KEGG terms are an abundance 
of signaling pathways that are known to affect physi-
ological systems (see below). Yet, we also found sev-
eral enriched KEGG pathways and GO terms that were 
uniquely enriched in only one or few modules and seem-
ingly unrelated to the correlated trait(s) (e.g., cellular 
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senescence). This could indicate a limited understand-
ing of the complexity and interconnectedness among 
biological pathways and how different pathways affect a 
diversity of traits, mRNAs that are minimally annotated 
and missing relevant pathway involvement, or mRNA 
expression that impacts biological processes that indi-
rectly impact the traits we have measured. The concept 
that there is a limited understanding of the interactions 
among pathways is supported by earlier mitochondrial 
respiration studies, specifically concerning the oxidative 
phosphorylation pathway (OxPhos) [78]. Among selec-
tively important nuclear genes affecting OxPhos, none 
of the genes were among the 97 proteins in the OxPhos 
pathway; instead, they were in diverse pathways, some of 
which made sense (e.g., ADP transport- where ADP is a 
substrate for OxPhos) [78]. Thus, the few MEs associated 
with unexpected pathways may indicate a complexity in 
physiological traits where many pathways and the genes 
in these pathways affect trait variation.

Previously, data from our laboratory demonstrated that 
natural variation in substrate specific cardiac metabolism 
in F. heteroclitus could be explained by cardiac mRNA 
expression using microarray data [16]. Similar to the 
WGCNA approach presented here, the first principal 
component of mRNA expression from different meta-
bolic pathways (oxidative phosphorylation, TCA cycle, 
glycolysis) explained substrate specific CaM among indi-
viduals with different mRNA pathways explaining sub-
strate specific metabolisms in different individuals. Here, 
we found that mRNA expression explained a similar pro-
portion of substrate specific CaM as previously reported 
(~ 80%) using three MEs to explain a single trait (FA CaM 
at 12 °C).

Few, if any, studies have examined the correlation 
between co-expressed mRNA and CTmax (although see 
[79]). Our analyses found that 341 heart mRNAs in two 
co-expressed modules and 682 brain mRNAs in three co-
expressed modules were associated with CTmax at 12  °C 
or 28  °C, with different MEs at each temperature. Fur-
thermore, heart and brain significant MEs for CTmax at 
28  °C share enriched KEGG pathways, yet do not share 
any mRNAs, suggesting that different mRNAs affect a 
common set of pathways that impact CTmax. These data 
suggest that CTmax is polygenic and relies on different 
mRNAs in different tissues at different temperatures. 
There is prior evidence suggesting that CTmax is poly-
genic: a GBS study covering ~ 0.1% of the genome found 
up to 47 single nucleotide polymorphisms (SNPs) that 
explained 43.4% of variation in CTmax among F. heterocli-
tus individuals collected from Georgia, New Jersey, and 
New Hampshire, USA [28]. Here, a greater proportion of 
CTmax was explained with mRNA expression, up to 71.7% 

with 3 brain MEs. This increase in explained CTmax vari-
ance by mRNA expression is likely due to the combined 
heritable and physiologically inducible nature of mRNA 
expression. Few (0–10) of the mRNAs in MEs were dif-
ferentially expressed between 12  °C and 28  °C, and thus 
MEs that explained CTmax variation within each of accli-
mation temperatures are not due to acclimation effects 
on mRNA expression. Instead, the CTmax variation 
within each acclimation temperature appears to be due 
to individual variation in mRNA expression, which may 
be explained by nucleotide variation driving differential 
expression.

Whole animal metabolism, WAM, is a fundamental 
physiological process that defines how animals live, niche 
space, evolutionary transition, and the human condition 
[2, 4, 6, 7, 80]. There is significant literature investigating 
metabolic rate variation (e.g. [41, 81, 82],); however, the 
relationship between metabolic rate and mRNA expres-
sion remains poorly understood. This may be due to the 
complex nature of whole animal metabolism, which is 
a sum of tissue specific metabolic demands and a bal-
ance between growth, maintenance, and energy storage. 
Yet, we find 82% of 12 °C WAM variation related to four 
heart MEs with 736 mRNAs and 50% of 28 °C WAM var-
iation related to one brain ME with 142 mRNAs. These 
data indicate that a large proportion of WAM can be 
explained by mRNAs within a common pathway impact-
ing cardiac metabolic processes and thus provides insight 
into the physiological relationship between cardiorespi-
ratory performance and overall metabolism [83–86].

These WGCNA analyses suggest that many mRNAs 
in several biochemical pathways define the physiological 
state among individuals. Yet, the careful reader will note 
two substantial complexities: 1) heart MEs explain the 
variation in many physiological traits at 12 °C but few at 
28 °C, and brain MEs explain the variation in many physi-
ological traits at 28  °C but few at 12  °C and 2) mRNAs 
within MEs are enriched for many diverse and unex-
pected pathways as discussed above.

The difference between tissue specific MEs and their 
association with physiological traits is related to CaM, 
WAM, and CTmax having higher inter-individual vari-
ation at 12  °C than 28  °C, and similarly there is greater 
mRNA expression variation at 12 °C than at 28 °C. Thus, 
the more frequent explanation of physiological traits by 
12  °C mRNA expression may simply result from greater 
statistical power due to the greater variance in both phys-
iological traits and mRNA. Yet, in brains, mRNAs explain 
WAM and CTmax at 28  °C. While we can only specu-
late, these data suggest that at the higher temperature 
brain mRNA expression is more important than cardiac 
mRNA expression. There is evidence that acclimatory 
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response to temperature in brain is greater than in hearts 
(more acclimatory mRNAs and greater decreased mito-
chondrial function in brain when compared to heart 
tissue [24]). This is similar to our data: brains at 28  °C 
have more acclimation responsive mRNAs than hearts 
and more population divergence than brains at 12 °C or 
hearts at either temperature. Together these data suggest 
that the variation in WAM and CTmax at 28 °C are more 
dependent on brain specific expression.

Many MEs are associated with KEGG pathways that 
impinge on metabolic processes. Physiological pro-
cesses are within 9 heart MEs and 4 brain MEs (Tables 2 
and 4), and these MEs each contain 90–554 mRNAs. 
Each of these MEs is significantly enriched for multi-
ple KEGG and GO pathways (Tables S3 and S4). Sur-
prisingly MEs that explain trait variance do not mainly 
include genes involved in primary metabolic pathways 
(e.g., glycolysis, TCA cycle, or oxidative phosphoryla-
tion) but instead are enriched for several signaling 
pathways including MAPK, mTOR, AMPK, PPAR, and 
FoxO. These signaling pathways are known to impact 
metabolic and thermal tolerance among ectotherms. 
For example, MAPK has been linked to adaptive cold 
tolerance [55, 87] and lipid metabolism [88]. Addition-
ally, mTOR is involved with energy homeostasis, has 
been linked to growth and longevity, and may be sensi-
tive to temperature variation [89–91]. AMPK induces 
cellular ATP production in mammals and is important 
for thermal stress response in ectotherms [92–94]. Fur-
thermore, AMPK phosphorylation in Coho salmon and 
rainbow trout hearts has been correlated with exposure 
above optimum temperatures [95], suggesting a role of 
AMPK in fish thermal response. FoxO proteins, espe-
cially FoxO1, are involved in energy homeostasis and 
may aid in the switch from carbohydrate (glycolytic) to 
fatty acid metabolites [96]. Therefore, although these 
pathways may not be the “usual suspects”, their role in 
ectotherm metabolism and thermal tolerance is well 
documented, and we suggest that signaling pathways 
play an important role in explaining the trait variation 
examined here. In addition to these important signal-
ing pathways, several modules are enriched for path-
ways not typically thought to be directly involved in 
metabolism or thermal tolerance. Similar to nuclear 
genes that impact Fundulus mitochondrial respiration 
[78], these data suggest that many metabolically distant 
genes affect physiological variation. This is important 
because too often publications have “just so stories” 
(e.g., [97, 98]) that only focus on a few preconceived 
genes to explain functional physiological variation [99]. 
While it is understandable to highlight a prior expecta-
tion, doing so limits our understanding of how geno-
types effect phenotypes.

Conclusion
In summary, these data address two hypothesis, first, that 
genetically similar populations with little divergence in 
physiological traits would have a shared mRNA expres-
sion response to thermal acclimation. Here, we found 
that mRNAs important for acclimation are popula-
tion specific and that divergence among geographically 
close populations did not include acclimation respon-
sive mRNAs. This suggests that even genetically similar 
populations have distinct thermal response molecular 
mechanisms. Our second hypothesis was that physio-
logical traits would be related to temperature and tissue 
specific mRNA expression, with variance among traits 
in the mRNAs that explain trait variation. We found this 
to be true, with tissue specific mRNA expression associ-
ated with physiological traits dependent on the thermal 
environment. We highlight that biologically important 
mRNA networks are related to 48–82% of variation in 
whole animal metabolism, thermal tolerance, or substrate 
specific cardiac metabolism and are different at different 
thermal environments. This suggests that mRNA varia-
tion among individuals within and among populations 
is important for explaining complex trait variation and, 
surprisingly, that while similar pathways can be impor-
tant at different temperatures, the tissues where they are 
expressed differ: heart mRNA expression explains varia-
tion in more traits at 12 °C, and brain mRNA expression 
explains variation in more traits at 28 °C.

Methods
Animal care and use
Adult fish were collected in live traps in Septem-
ber 2018 at three sites in central New Jersey, USA 
near the Oyster Creek Nuclear generating station 
(OCNGS). Sites included one north reference (N.Ref; 
39°52′28.000  N, 74°08′19.000  W), one south reference 
(S.Ref; 39°47′04.000  N, 74°11′07.000  W), and a central 
site located within the thermal effluent of the OCNGS 
(TE; 39°48′33.000  N, 74°10′51.000  W). All fish were 
transferred live to the University of Miami, FL where they 
were kept in accordance with the University of Miami 
Institutional Animal Care and Use Committee (IACUC) 
guidelines.

Individuals from all three populations were common 
gardened to 20  °C for three months (12:12 light dark 
cycle) and kept at 20  °C in a common recirculating sea-
water system (15ppt) at 12  h light:12  h dark, then sub-
jected to pseudo-winter for 6  weeks at 8  °C (8:16 light 
dark cycle). Following the pseudo-winter, half of the fish 
from each population were acclimated to 12  °C and the 
other half to 28 °C (16:8 light dark cycle) for four weeks 
prior to determination of WAM and CTmax. Following 
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this acclimation, fish originally acclimated to 12 °C were 
acclimated to 28 °C and vice versa for at least four weeks, 
and WAM and CTmax were measured at the new acclima-
tion temperature. After a minimum one-week recovery 
period post- CTmax, fish were sacrificed, substrate specific 
CaM was measured at the second acclimation tempera-
ture, and mRNA was isolated. Thus, WAM and CTmax 
were measured in all individuals at 12 °C and 28 °C, but 
CaM and mRNA were sampled from half the individuals 
acclimated at 12 °C and the other half at 28 °C.

Quantifying metabolic and thermal tolerance traits
Individuals acclimated to 12  °C and 28  °C for at least 
4 weeks were measured for whole animal metabolic rate 
(overnight intermittent flow respirometry) with a mini-
mum of 20 replicate metabolic rate measures per individ-
ual used to determine the standard metabolic rate (SMR) 
in mgO2 hr−1 [34]. Critical thermal maximum (CTmax) 
was measured in a 10-gallon tank that was slowly heated 
at a rate of 0.3  °C  min−1 as in [100] and was defined as 
the point when fish lost equilibrium in the water col-
umn for 5 consecutive seconds. Finally, substrate specific 
cardiac metabolic rate (CaM, substrates: 5 mM glucose, 
fatty acids – 1 mM Palmitic acid conjugated to fatty-acid-
free bovine serum albumin, lactate + ketones + etha-
nol – 5 mM lactate, 5 mM hydroxybutyrate, 5 mM ethyl 
acetoacetate, 0.1% ethanol, endogenous – substrate free 
Ringers media) was measured using micro-respirom-
etry. Heart ventricles were dissected out and splaying 
in Ringers media before being transferred to a custom 
1  mL chamber system [101]. Each heart was measured 
for glucose (GLU), then fatty acids (FA), followed by lac-
tate + ketones + ethanol (LKA), and endogenous (END) 
cardiac metabolic rate. All substrates except GLU used 
non-reversible glycolytic enzyme inhibitors, so the order 
of substrates did not differ among hearts. Each heart was 
measured for 6 min per substrate with the last 3 min used 
to calculated oxygen consumption in pmolO2 sec−1. All 
respirometry measurements used PreSens fiber optic 
oxygen sensors (POF) with flow through cells (FTC-Pst7-
10,WAM) or sensor spots (SP-PSt7-10, CaM) (PreSens 
Precision Sensing, Regensburg, Germany). Both WAM 
and CaM were measured at both acclimation tempera-
tures (12 °C and 28 °C) for the same individuals, and CaM 
was measured at a single acclimation temperature. For 
additional methods and analysis of physiological data see 
[18].

mRNA library preparation and sequencing
Tissues for mRNA expression were stored in chaotropic 
buffer at the time of CaM measurement and captured 
gene expression variation due to long term temperature 
acclimation rather than heat shock or acute temperature 

response (e.g., resulting from higher temperatures dur-
ing CTmax measurements) because CTmax measurements 
were performed at least a week prior to tissue isolation. 
We extracted total RNA from homogenized heart and 
brain tissues using a phenol–chloroform isoamyl alco-
hol isolation and treated RNA samples with DNase to 
remove genomic DNA. For each sample we started with 
50 ng of RNA and captured the 3’ mRNA ends using an 
NVdT primer with a poly-A tail for first strand cDNA 
synthesis (Table S5). This primer contained a unique bar-
code for each sample (1–96), which allowed all samples 
in a single plate to be pooled for the remaining library 
preparation steps. Nick translation was used to make 
double stranded cDNA that was digested with an in-
house purified Tn5 transposase (as in [102]) loaded with 
partial adapter sequences to generate fragments of dou-
ble stranded cDNA ranging from ~ 300-800 bp (Table S6). 
Libraries were amplified for 17 PCR cycles using primers 
complimentary to the inserted partial adapter sequence 
and a plate level barcode to fully multiplex samples.

mRNA data processing and analysis
A total of 219 libraries (110 individuals, 2 tissues per indi-
vidual, 1 individual only heart was collected) were pooled 
and sequenced on 2 lanes of Illumina HiSeq4000 (dual 
end 150  bp reads) at the Genewiz LCC facility, South 
Plainfield NJ, USA. Raw reads were trimmed with BBDuk 
(from BBMap v38.87) to remove adapter sequences, 
aligned with STAR (v2.7.5) to the Fundulus heteroclitus 
genome, and counted with Featurecounts (v1.4.6-p5, 
parameters: -T 4 -s 2 -t gene -g gene_id).

The raw counts table was imported into R Studio 
(v1.4.1106) and all counts were normalized for library 
size using the median ratio method [103] with the “esti-
mateSizeFactors” function in DESeq2 v1.6.3 [42]. Sam-
ples with a minimum of 1.5 million reads for hearts or 
1 million reads for brains were retained and filtered to 
keep only mRNAs with at least 30 counts in 10% of indi-
viduals. After filtering, 53 heart samples and 58 brain 
samples remained. Principal component analysis (PCA) 
using “plotPCA” function from the DESeq2 package was 
used to examine variation among all samples. Among 
all samples, the 500 most variable mRNAs were used 
for PCA. In this analysis, 12 hearts and 13 brains were 
removed as outliers because they differed in expression 
from other same-tissue samples (i.e., some hearts had 
“brain-like” expression patterns and vice versa, Fig. S2). 
This reduced variation within a tissue and reduced sam-
ple size to 41 hearts and 45 brains (86 total individuals); 
however, the individuals removed were not from a single 
acclimation temperature or population so likely had lit-
tle overall impact on further analyses. In a separate tis-
sue specific principal component analysis, clustering of 
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samples by biological effects including sex, habitat tem-
perature, population, acclimation temperature, and date 
of tissue collection (possible batch effect) was examined. 
Batch effects did not split individuals along any of the 
principal components examined (PC1-PC4) for heart or 
brain. In this separate analysis, heart PC1 accounted for 
18%, heart PC2 for 7%, brain PC1 for 11%, and brain PC2 
for 7% of the variation among individuals. No biologically 
relevant clustering was detected among the first four 
principal components for either tissue (chi-squared test 
p > 0.05, Fig. S3A, B). To determine the degree of varia-
tion in mRNA expression among groups within a tis-
sue, the coefficient of variation (CV, standard deviation/
mean) for each expressed mRNA was calculated and the 
average CV compared among groups.

Differential expression analysis
DESeq2 v1.6.3 [42] package in R was used for differen-
tial expression analysis separately for heart and brain. To 
identify differentially expressed mRNAs between accli-
mation temperatures within populations, the DESeq 
model used was: ~ Population + Acclimation_Tempera-
ture + Population*Acclimation_Temperature. Addition-
ally, due to significant interaction between population 
and acclimation temperature, a separate analysis was 
used to find differentially expressed mRNAs among 
populations within an acclimation temperature; individu-
als measured for CaM only at 12  °C or 28  °C were used 
with DESeq model: ~ Population. Multiple test correction 
across all comparisons made within a model used the 
Benjamin Hochberg false discovery rate with a signifi-
cance threshold of 0.05.

Weighted gene co‑expression network analysis
To identify sets of co-expressed mRNAs, weighted gene 
co-expression network analysis (WGCNA v1.70–3, [46]) 
was completed for heart and brain separately. Network 
calculation, used to group mRNAs into co-expressed 
modules for heart and brain, used soft thresholding to 
generate a scale free network with high similarity (soft 
thresholding power set to 5 in heart, 4 in brain) before 
calculating the topological overlap measure (TOM) and 
using dynamicTree with minimum module size of 30 and 
threshold for module merging of 0.75. The first princi-
pal component of each independent module (below the 
threshold for module merging), known as the module 
eigengene (ME), was then correlated with temperature 
specific quantitative traits using signed Pearson’s cor-
relation. Multiple test correction across all correlations 
made for a single trait used the Benjamin Hochberg false 
discovery rate with a significance threshold of 0.05. To 
remove significant correlations potentially driven by out-
liers, a jack-knife approach was used to subsample 90% 

of individuals and repeat the signed Pearson correlation 
analysis 100 times. Correlations that were significant 
in > 70 out of 100 subsamples in the same direction were 
robust to outliers and reported as significant. A multi-
variate correlation coefficient was calculated for traits 
significantly correlated with more than one module by 
correlating the fitted values from a linear model with 
formula: trait ~ ME1 + ME2..ME# with trait data. This 
multivariate correlation coefficient represents the ability 
of the MEs together to accurately predict the trait. For 
significant modules, the mRNAs with the highest module 
membership (MM, correlation between mRNA expres-
sion and module eigengene) and the highest gene signifi-
cance for a given trait within a module (GS, correlation 
between mRNA expression and a given quantitative trait) 
were also identified.

Gene ontology and Kyoto encyclopedia of genes 
and genomes enrichment
To identify biologically important networks within 
WGCNA modules that were significantly correlated 
with at least 1 trait, we used KEGG pathway and GO 
enrichment analyses. First, the genome was mapped 
to KEGG and GO terms using eggNOG mapper [104] 
with default parameters. The KEGG and GO terms were 
then matched to the set of expressed mRNAs for heart 
and brain. The list of mRNAs in each module was com-
pared to the set of expressed mRNAs (set as the reference 
or gene universe) in each tissue for enrichment analysis 
in R using the clusterProfiler v3.16.1 package “enricher” 
function for KEGG terms [105]. To map enriched KEGG 
terms to KEGG pathways, the KEGG Mapper online 
tool was used with annotations from the closest rela-
tive, zebrafish (Danio rerio) [106, 107]. Cytoscape v3.8.2 
with BiNGO v3.0.3 was used for GO enrichment using 
the set of expressed mRNAs as the reference to exam-
ined enrichment of biological process, molecular func-
tion, and cellular component GO terms [108]. Significant 
KEGG and GO terms are reported with FDR p-value 
threshold of 0.05.
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The online version contains supplementary material available at https://​doi.​
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Additional file 1: Figure S1. Trait variance in metabolic rate among ecto-
therms. A) Standard metabolic rate variance among species from different 
climates are compared to average variance in metabolic rate within the 
Fundulus heteroclitus populations used in this study. Variance calculated 
as mass corrected maximum (in warmer environment) – minimum (in 
cooler environment)/minimum (in cooler environment) (range spread).
All standard metabolic rates are corrected for body mass (residual of meta-
bolic rate vs. body mass + metabolic rate of an average sized fish from 
this data set). B) Number of species per group. Data from (1). Figure S2. 
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Principal component analysis of all samples. Principal component 1 split 
heart and brain tissue and explained 86% of variance. Individuals who did 
not clearly group with the appropriate tissue were removed as outliers. 
Figure S3. Tissue specific principal component analysis. Heart (N=41, 
A) first two principal components explain 19% and 7% of variance. Brain 
(N=45, B) first two principal components explain 11% and 7% of variance. 
Triangles are 28°C acclimated individuals, circles are 12°C. Individuals from 
the north reference (N.Ref ) are blue, south reference (S.Ref ) are purple, 
and thermal effluent population (TE) are red. Figure S4. Differentially 
expressed mRNAs among populations within tissue and acclimation 
temperature. A) Heart at 12°C, B) brain at 12°C, C) heart at 28°C, D) brain at 
28°C. Populations are north reference (N.Ref ), south reference (S.Ref ), and 
thermal effluent (TE). 

Additional file 2: Table S1. Significant Acclimation effect on mRNA 
Expression within each Population. Population differential expression.
with FDR p<0.05.  Differentially expressed genes among population pairs 
within 12°C or 28°C with FDR p<0.05. Table S2. Population differential 
expression for each acclimation temperature with FDR <0.05 . Differen-
tially expressed genes between 12°C and 28°C within populations with 
FDR p<0.05.Temperature differential expression. Differentially expressed 
genes between 12°C and 28°C within populations with FDR p<0.05. 
Table S3. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Pathways within Significant Modules. Module identifier (Module), cor-
related trait(s), enriched KEGG terms, and KEGG pathways are listed in 
columns. Enriched KEGG terms with FDR p-value < 0.05 were mapped to 
KEGG pathways using KEGG Mapper. Terms of interest based on relation-
ship to correlated trait(s) are underlined. Table S4. Enriched Gene Ontol-
ogy (GO) Terms within Significant Modules. Modules are named based 
on the tissue they are in and trait they are significantly correlated with. 
Enriched GO terms with FDR p-value < 0.05 are listed. Terms of interest 
based on relationship to correlated trait(s) are underlined. Table S5. Prim-
ers and barcodes for 3’ mRNA library preparation. First strand synthesis 
with i7 primers added i7 indicies. Second strand synthesis added i5 index 
to 96 pooled samples. Table S6. Tn5 loading and PCR amplification primer 
sequences. The lower-case nucleotides complement the Tn5MErev primer. 
The upper-case underlined nucleotides match with the i5 (R1) and P7 
match with the i7 (part of the NVdT primer).  
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