
RESEARCH ARTICLE

MEKK3 coordinates with FBW7 to regulate

WDR62 stability and neurogenesis

Dan Xu1,2☯, Minghui Yao1☯, Yaqing Wang1☯, Ling Yuan3☯, Joerg D. Hoeck4☯, Jingwen Yu1,

Liang Liu1, Yvonne Y. C. Yeap5, Weiya Zhang1, Feng Zhang1, Yinghang Feng6,

Tiantian Ma1, Yujie Wang2, Dominic C. H. Ng5, Xiaoyin Niu7, Bing Su7,8, Axel Behrens9,10*,

Zhiheng XuID
1,6,11*

1 State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and

Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,

Beijing, China, 2 College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University,

Fuzhou, China, 3 Center for Medical Genetics, School of Life Sciences, Central South University, Changsha,

Hunan, China, 4 CR-UK London Research Institute, London, United Kingdom, 5 School of Biomedical

Science, Faculty of Medicine, University of Queensland, St Lucia, Australia, 6 Sino-Danish College,

University of Chinese Academy of Science, Beijing, China, 7 Shanghai Institute of Immunology, Shanghai

Jiao Tong University School of Medicine, Shanghai, China, 8 Department of Immunobiology, Yale University

School of Medicine, New Haven, Connecticut, United States of America, 9 Adult Stem Cell Laboratory, The

Francis Crick Institute, London, United Kingdom, 10 King’s College London, Faculty of Life Sciences and

Medicine, Guy’s Campus, London, United Kingdom, 11 Parkinson’s Disease Center, Beijing Institute for

Brain Disorders, Beijing, China

☯ These authors contributed equally to this work.

* zhxu@genetics.ac.cn (ZX); axel.behrens@crick.ac.uk (AB)

Abstract

Mutations of WD repeat domain 62 (WDR62) lead to autosomal recessive primary micro-

cephaly (MCPH), and down-regulation of WDR62 expression causes the loss of neural pro-

genitor cells (NPCs). However, how WDR62 is regulated and hence controls neurogenesis

and brain size remains elusive. Here, we demonstrate that mitogen-activated protein kinase

kinase kinase 3 (MEKK3) forms a complex with WDR62 to promote c-Jun N-terminal kinase

(JNK) signaling synergistically in the control of neurogenesis. The deletion of Mekk3,

Wdr62, or Jnk1 resulted in phenocopied defects, including premature NPC differentiation.

We further showed that WDR62 protein is positively regulated by MEKK3 and JNK1 in the

developing brain and that the defects of wdr62 deficiency can be rescued by the transgenic

expression of JNK1. Meanwhile, WDR62 is also negatively regulated by T1053 phosphory-

lation, leading to the recruitment of F-box and WD repeat domain-containing protein 7

(FBW7) and proteasomal degradation. Our findings demonstrate that the coordinated recip-

rocal and bidirectional regulation among MEKK3, FBW7, WDR62, and JNK1, is required for

fine-tuned JNK signaling for the control of balanced NPC self-renewal and differentiation

during cortical development.

Author summary

Microcephaly is a neural developmental disorder characterized by significantly reduced

brain size and variable intellectual disability. WD repeat domain 62 (WDR62) was
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identified as the second most common gene for autosomal recessive primary microceph-

aly (MCPH) in human. Here, we studied the underlying regulatory mechanism of

WDR62 and the impact on generation of new neurons. We show that mitogen-activated
protein kinase kinase kinase 3 (Mekk3), Wdr62, and c-Jun N-terminal kinase 1 (Jnk1)
knockout (KO) mice have defects in the generation and maturation of neurons. We dem-

onstrate that WDR62 stability is positively regulated by a mitogen-activated protein kinase

kinase kinase (MAPKKK), MEKK3, but negatively regulated by the E3 ligase, F-box and

WD repeat domain-containing protein 7 (FBW7). These positive and negative factors cali-

brate the strength of the activity of the JNK signaling pathway, which controls self-renewal

and differentiation of neural progenitor cells (NPCs) during brain development. This

finding improves our understanding of the molecular pathogenesis of MCPH.

Introduction

Establishment of the mammalian neocortex requires precise control of proliferation and self-

renewal of neural progenitor cells (NPCs), as well as the differentiation of NPCs and neuronal

migration [1–4]. Defects in these processes lead to brain disorders, including autosomal reces-

sive primary microcephaly (MCPH) [5–8]. During cortical development, the balance between

symmetric and asymmetric cell division of NPCs determines the size of the NPC pool for

ongoing neurogenesis and ultimately brain size [9–16]. Disturbance in symmetric cell division

leads to a reduction in the NPC pool and a falloff of neuron production [10,14,16–19].

MCPH is a neural developmental disorder characterized by significantly reduced brain size

and variable intellectual disability [20,21]. Most of the 23 MCPH-associated genes (MCPH1-
23) identified so far are predicted to be associated with the mitotic apparatus, such as centro-

somes or mitotic spindle poles, at least during part of the cell cycle [6,22–33].

WD repeat domain 62 (WDR62) was identified as a causative gene of MCPH [22–24]. More

than 50% of MCPH cases worldwide are caused by mutations in either abnormal spindle-like
microcephaly-associated (ASPM) or WDR62 [7,21]. WDR62 has been reported to be a scaffold

protein for the c-Jun N-terminal kinase (JNK) signaling pathway by forming a complex with

MAP kinase kinases (MKKs) 4 and 7, and JNKs [34,35], similar to what we and other groups

have demonstrated for the JNK pathway scaffold proteins such as Plenty of SH3s (POSH) and

JNK-interacting proteins (JIPs) [36–39]. We and others have recently shown that WDR62

plays a role in NPC maintenance [40–42]. However, how WDR62 and JNK signaling are regu-

lated for the control of neurogenesis and brain size during brain development is still not clear.

Here, we have identified 2 novel WDR62-interacting proteins: the MAP3K kinase, mito-

gen-activated protein kinase kinase kinase 3 (MEKK3), and the E3 ubiquitin ligase, F-box and

WD repeat domain-containing protein 7 (FBW7). Using in vivo short hairpin RNA (shRNA)

knockdown (KD), gene knockout (KO), and transgenic mice, we find that MEKK3, WDR62,

and JNK1 play an important role in neurogenesis during cortical development. We demon-

strate further that there is synergy between MEKK3 and WDR62 in the activation of JNK sig-

naling while FBW7 negatively regulates the stability of WDR62 through specific

phosphorylation of WDR62. Taken together, our findings have revealed the detailed mecha-

nism regulating WDR62 protein levels via interaction with MEKK3 and FBW7, to control pro-

liferation and differentiation of NPCs during brain development. Our study thus unravels a

novel molecular mechanism underlying MCPH pathogenesis.

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance
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Results

MEKK3 plays an important role in neurogenesis during neocortical

development

WDR62 serves as a scaffold for the JNK pathway [34,35] and is critical for the maintenance of

NPCs during brain development [40]. MAP3Ks (MKKKs) are important for development and

tissue homeostasis and act as central regulators of cell fate during development [43]. To iden-

tify potential WDR62 interacting proteins, especially the MKKK that acts upstream of JNK

and plays a role in neurogenesis, we screened for neurogenesis-disturbing MAP3Ks with dif-

ferent shRNAs via in utero electroporation at embryonic day 16.5 (E16.5) in rat (Fig 1A and S1

Fig) [40,44]. We found that only MEKK3 (also named MAP3K3) depletion with 3 different

shRNAs incurred defects very similar to those resulting from WDR62 KD [40], including a

dramatic reduction of NPCs in the proliferative regions of the ventricular and subventricular

zones (VZ and SVZ) (Fig 1A). KD of MEKK2 or MEKK4 did not disturb the distribution of

cells in a similar way as WDR62 KD (S1 Fig). In addition, we have shown previously that KO

or KD of another MKKK, TAK1, only affects the migration of newborn neurons [45].

MEKK3 is a serine/threonine kinase that can be activated by different signaling pathways.

Previous studies showed that MEKK3 is essential for T-cell or cancer cell proliferation [46,47].

The similar defects induced by depletion of MEKK3 and WDR62 suggest that MEKK3,

like WDR62, may control NPC proliferation and differentiation. To test this, we crossed

the Mekk3flox/flox mice that we generated previously [46] with Nestin-Cre mice to obtain

Mekk3flox/flox;Nestin-Cre conditional knockout (Mekk3 cKO) mice in which Mekk3 was deleted

in the NPCs. We inspected E16.5 cortical slices with different progenitor cell markers includ-

ing Pax6 and Sox2 (markers for radial glial cells or apical progenitor cells) and Tbr2 (a marker

for intermediate or basal progenitor cells). The thickness of Pax6+, Sox2+, and Tbr2+ cortical

layers was reduced significantly in Mekk3 cKO mice, indicating a decrease in NPCs (Fig 1B–

1D). In addition, the thinner Pax6+ and Sox2+ cell layers were accompanied by broader corti-

cal staining for Tuj1 (a marker for immature neurons) and decreased numbers of cells positive

for phosphor-histone H3 (P-H3, a marker for mitotic activity), respectively (Fig 1B and 1C).

Furthermore, we examined the effect of Mekk3 KO on cell-cycle exit index. Both Mekk3 cKO

and their wild-type (WT) littermates were labeled at E16.5 with 5-bromo-2’-deoxyuridine

(BrdU) to track cells undergoing DNA synthesis. Twenty-four hour later, Ki67 (a marker for

proliferating cells) and BrdU+ cells were inspected in brain slices. We observed a substantial

decrease in Ki67+ and BrdU+ cells and a significant increase in cell-cycle exit index (cells that

had incorporated BrdU but were Ki67−) (Fig 1E), indicating an overall decrease in cell prolifer-

ation. Finally, we analyzed cell death in the Mekk3 cKO cortices and did not observe an appar-

ent increase in cell death in the VZ/SVZ (S2 Fig). Taken together, these findings indicate that

MEKK3 is required for NPC proliferation and differentiation during cortical development.

MEKK3 interacts with and stabilizes WDR62

Because both MEKK3 and WDR62 are required for neurogenesis, we postulated that MEKK3

might interact with WDR62 to regulate JNK activity and neurogenesis. To test this hypothesis,

constructs encoding MEKK3 and WDR62 were transfected into HEK293 cells individually or

in combination, and reciprocal coimmunoprecipitation experiments revealed that MEKK3

interacts with WDR62 (Fig 1F). In addition, an anti-MEKK3 antiserum was able to pull down

endogenous WDR62 from E14.5 mouse cortex (Fig 1G).

We went on to generate different truncation mutants of WDR62 and MEKK3 in order to

identify the potential binding site in MEKK3 and WDR62 (Fig 2A). Using the glutathione-S-

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance
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Fig 1. MEKK3 is critical for cortical neurogenesis. (A) Coronal sections of rat cortices electroporated in utero with

bicistronic constructs encoding both EGFP and MEKK3 shRNAs (shM1, 2, or 3) or control shRNA (Ctrl) at E16.5 and

inspected at E20.5. Middle panel: quantification of EGFP+ cell distribution. Data are means ± SEM; ���P< 0.0001;

Ctrl, n = 9; shM1 and shM3, n = 6; shM2 n = 8. Right panel: KD efficiency of Mekk3 shRNAs. HA-MEKK3 was

cotransfected with shCtrl or shM into HEK293 cells; 24 hours later, cell lysates were analyzed by immunoblotting with

anti-HA antibody, with GAPDH as a loading control and GFP to indicate transfection efficiency. (B–E) Coronal

sections of E16.5 mice WT or Mekk3 cKO (M-cKO) cortices stained with antibodies against different markers or DAPI

as indicated. In panel E, cell-cycle exit index means percent of BrdU+/Ki67- “among all BrdU+”. All data are

means ± SEM; �P< 0.05, ��P< 0.01, ���P< 0.001. (B) WT and cKO, n = 4. (C) Left panel: WT, n = 5; cKO, n = 3;

right panel: WT, n = 7; cKO, n = 3. (D) WT and cKO n = 5. (E) WT, n = 5; cKO, n = 6. n: number of brain slices from

different brains. Scale bars: 100 μm (panel A), 50 μm (panels B–E). (F) MEKK3 interacts with WDR62. HEK293 cells

were transfected with Flag-MEKK3 and HA-WDR62 cDNA, either alone or in combination. Cell lysates were

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance
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transferase (GST)-fused WDR62 truncation mutant (WDR62 C2, aa1018-1523), which

includes the MKK and JNK binding domains [34,35], we performed in vitro GST pull-down

assays and noticed that MEKK3 could bind to WDR62 C2, but not the WDR62 C1 (aa1314-

1523) mutant or GST (Fig 2B). GST pull-down experiment on E14.5 mouse brain lysate was

able to pull down endogenous MEKK3 (Fig 2C). These results indicate that WDR62 and

MEKK3 association is direct and mapped to 1018–1314 at the WDR62 C-terminal.

Because the WDR62 MKK4/7 binding domain was mapped to aa1212-84 [35], the MEKK3

binding domain is likely to be located within aa1018-1212 on WDR62 unless there is an over-

lap with the MKK4/7 binding domain. Therefore, we characterized in more detail the potential

MEKK3 binding motif on WDR62. As shown in Fig 2D, MEKK3 could interact with aa1018-

1523, 1018–1314, and 1018–1212 of WDR62. This indicates that the binding motif for MEKK3

in WDR62 is located within aa1018-1212.

The domain structure of MEKK3 consists of a conserved kinase domain and a PB1 domain

in the C- and N-terminals, respectively (Fig 2A). Through reciprocal coimmunoprecipitation

analysis, we detected that WDR62 interacted with the C-terminal half of MEKK3, but not the N-

terminal half of MEKK3 (Fig 2E and S3A Fig). In order to investigate whether a synergistic effect

exists between WDR62 and MEKK3, as what has been shown previously for POSH and the

MLK family members [36,37], WDR62 and MEKK3 were expressed either alone or in combina-

tion in 293 cells. As shown in Fig 2F, when WDR62 and MEKK3 were coexpressed, the level of

JNK activity (phosphorylated form of JNK) was significantly enhanced compared to WDR62 or

MEKK3 expressed alone. Interestingly, the levels of WDR62 and MEKK3 protein were also

much higher when coexpressed (Fig 2F). This suggests that WDR62 and MEKK3 play a syner-

gistic role in the activation of JNK signaling, likely by mutual stabilization of the two proteins.

To determine whether JNK1 is also involved in the regulation of WDR62 levels, down-

stream of MEKK3, WT JNK1 and a constitutively active form of JNK1 (CA JNK1) were

expressed in 293 cells. As shown in Fig 2G, the WDR62 protein level was higher in WT

JNK1-expressed cells, and even higher in CA JNK1-expressing cells compared with vector con-

trols, in accordance with the level of JNK activity. Importantly, endogenous WDR62 protein

levels were much lower in E16.5 Mekk3 cKO cortices (Fig 2H). However, KD or overexpres-

sion of MEKK3 had no significant effect on WDR62 mRNA levels (S3B and S3C Fig). Taken

together, the above results indicate that MEKK3 and JNK1 regulate WDR62 expression at the

post-transcriptional level.

WDR62 controls neurogenesis and brain size through the regulation of

JNK activity

Jnk1 and Jnk2 double-deficient mouse embryos develop exencephaly and die around E11–12

[48]. Jnk1 KO induced pluripotent stem cells (iPSCs) are impaired in their ability to develop

into neural precursors in vitro [49]. We have shown previously that JNK1 KD and WDR62

KD cause similar defects during cortical development [40]. We therefore generated a Wdr62
null mutant [50] and investigated further the relationship between WDR62 and JNK activity

during brain development. As shown in Fig 3A, the levels of JNK activity were significantly

immunoprecipitated with HA or Flag antibodies and probed with Flag and HA antibodies. (G) Endogenous WDR62

interacts with MEKK3. E14.5 mouse cortical lysates was immunoprecipitated with anti-MEKK3 antibody and probed

for MEKK3 and WDR62. Underlying data can be found in S1 Data. BrdU, 5- bromo-2’-deoxyuridine; cKO,

conditional knockout; CP, cortical plate; E, embryonic day; EGFP, enhanced green fluorescent protein; HA, influenza

hemagglutinin; IgG, Immunoglobulin G; IP, immunoprecipitation; IZ, intermediate zone; KD, knockdown; MEKK3,

mitogen-activated protein kinase kinase kinase 3; shRNA, short hairpin RNA; SVZ, subventricular zone; VZ,

ventricular zone; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g001
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Fig 2. MEKK3 interacts with WDR62 and stabilizes WDR62. (A) Schematic representation of WDR62 and MEKK3

constructs. (B) MEKK3 interacts with WDR62 in vitro. In vitro–transcribed and translated MEKK3 was subjected to

pull-down assay with purified GST-fused WDR62 fragments. (C) Purified GST fused C-terminal half of WDR62 pulls

down MEKK3 from E14.5 mouse cortical lysate. (D) MEKK3 interacts with different fragments of WDR62. (E) The C-

terminal half of MEKK3 interacts with WDR62. (F) Left panel: cells were transfected as indicated. Cell lysates were

probed with HA, Flag, and p-JNK, with GAPDH serving as a loading control and GFP as transfection efficiency

control. Right panel: quantification of left panel from 3 independent experiments. (G) Vector, WT JNK1, or CAJNK1

was transfected in 293 cells; 24 hours later, cells were collected and analyzed for WDR62 and JNK activity. (H) Left

panel: E16.5 cortices from 3 Mekk3 cKO and 3 WT littermates were analyzed for endogenous WDR62 and MEKK3 by

western blot. Right panel: quantification of left panel. All data are means ± SEM; ��P< 0.01. Underlying data can be

found in S1 Data. CA, constitutively active; E, embryonic day; EGFP, enhanced green fluorescent protein; cKO,

conditional knockout; GFP, green fluorescent protein; GST, glutathione-S-transferase; HA, influenza hemagglutinin;

IP, immunoprecipitation; JNK, c-Jun N-terminal kinase; MEKK3, mitogen-activated protein kinase kinase kinase 3;

WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g002
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Fig 3. WDR62 controlled JNK activity is important for neurogenesis. (A) Left panel: coronal sections from E14.5

Wdr62 mutant and WT littermates were stained with p-JNK antibody. Middle panel: Immunoblot analysis of WDR62

and p-JNK levels in E14.5 WT and mutant cortices. Right panel: quantification of p-JNK level from 2 independent

experiments. WT n = 3, wdr62 Mut n = 4. (B) Left panel: DAPI staining of coronal section of E18.5 Wdr62 mutant and

WT brains. Enlarged views of the cortical area are shown in the middle panel. Right panel: the average cortical

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance
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reduced in the Wdr62 mutant cortex as indicated by immunostaining and western blotting,

which is consistent with previous findings in different systems [50,51]. We went on to inspect

whether KO of Jnk1 would result in similar defects as KO of Wdr62 during cortical develop-

ment. As observed in Wdr62 mutant mice (Fig 3B), Jnk1 KO brains at E16 also showed

enlarged ventricles and a thinner cortex, especially in the VZ/SVZ (Fig 3C). In addition, we

observed a significant decrease in Ki67+ cells and an increase in cell-cycle exit index in Jnk1
KO cortices (Fig 3D).

Because WDR62 regulates JNK activity, we postulated that WDR62 might regulate NPC pro-

liferation and differentiation through JNK1. To test this hypothesis, we investigated whether the

defects in Wdr62 mutants can be rescued by JNK1. We first generated conditional transgenic

mice expressing CA JNK1 (S4 Fig). The transgenic mice were crossed with Nestin-Cre mice in

order to express CA JNK1 in NPCs (JNK1 cTg, hereafter). As observed in cells, CA JNK1 expres-

sion increased JNK activity and WDR62 protein level in the cortex (S5A and S5B Fig). We next

examined the effect of JNK1 activation on NPC development through BrdU labeling. As shown

in Fig 3E, JNK1 cTg cortices showed a significant increase in BrdU+ and Ki67+ cells, while the

cell-cycle exit index was comparable between JNK1 cTg and their WT littermates.

Because Wdr62 mutants were sterile [50], we used brain-specific Wdr62flox/flox;Nestin-Cre
mice (Wdr62 cKO) for further investigations. Similar to our Wdr62 mutants, Wdr62 cKOs

showed reduced brain weight, enlarged ventricles, and a thinner cortex (Fig 4A–4C and S5C

and S5D Fig). By crossing Wdr62 cKO with JNK1 cTg mice, we were able to generate Wdr62
cKO, JNK1 cTg, and Wdr62 cKO;JNK1 cTg genotypes. Compared with WT littermates,

Wdr62 cKO, but not JNK1 cTg, mice had decreased brain weight at P12. The brain weight of
Wdr62 cKO;JNK1 cTg mice was increased compared with Wdr62 cKO mice, and comparable

to that of controls (Fig 4B). This indicates that Wdr62 cKO-induced microcephaly can be res-

cued by increased JNK1 activity. Similarly, JNK1 cTg also rescued the reduced cortex thickness

and enlarged lateral ventricle phenotypes in Wdr62 cKO mice (Fig 4C and S5D Fig).

Because Wdr62 deficiency leads to defects in NPC proliferation and differentiation, we

investigated whether those defects could be rescued in Wdr62 cKO;JNK1 cTg mice. As shown

in Fig 4D, the number of Pax6+ cells was significantly reduced in Wdr62 cKOs and signifi-

cantly increased in JNK1 cTgs, while Wdr62 cKO;JNK1 cTg double mutants were comparable

to controls. Moreover, we observed a significant increase in cell-cycle exit in Wdr62 cKOs but

not in Wdr62 cKO;JNK1 cTg cortices (Fig 4E). Taken together, these findings indicate that

WDR62 regulates NPC proliferation and differentiation through JNK1.

FBW7 negatively regulates WDR62 protein stability through the

proteasomal pathway

WDR62 and MEKK3 play a synergistic role in the activation of JNK. However, under physio-

logical conditions, a negative regulatory mechanism likely exists to prevent cell death incurred

thickness was measured at the position of the rectangle. WT n = 20 and Wdr62 mutant n = 22 brain slices in 13 brains.

(C) DAPI staining of coronal section of E16.5 Jnk1 KO and WT brains. Enlarged views of the cortical area are shown

in the lower panel. (D) Images of the VZ/SVZ of cortices from E16.5 Jnk1 KO or WT littermates labeled with BrdU at

E16 and stained for Ki67 and BrdU. Arrowheads mark BrdU+ but Ki67− cells that have exited the cell cycle. Lower

panels: quantification of Ki67+ cells and cell-cycle exit index. WT and Jnk1 KO n = 3. (E) Images of the VZ/SVZ of

cortices from E17.5 JNK1 cTg or WT littermates labeled with BrdU at E16.5 and stained for Ki67 and BrdU. Lower

panels: quantification of cell-cycle exit index and BrdU+ or Ki67+ cells. WT, n = 3; Jnk1 cTg, n = 4. n: number of brain

slices from different brains. Scale bars: 50 μm. All data are means ± SEM; ns P> 0.05, �P< 0.05, ���P< 0.001.

Underlying data can be found in S1 Data. BrdU, 5-bromo-2’-deoxyuridine; CP, cortical plate; E, embryonic day; JNK1,

c-Jun N-terminal kinase 1; ns, not significant; IZ, intermediate zone; KO, knockout; Mut, mutant; SVZ, subventricular

zone; VZ, ventricular zone; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g003

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006613 December 19, 2018 8 / 23

https://doi.org/10.1371/journal.pbio.2006613.g003
https://doi.org/10.1371/journal.pbio.2006613


by sustained JNK activation. We noticed that a JNK1-target phosphorylation site in WDR62,

T1053 [52], is located within LPQTPEQE, a potential binding motif for the E3 ubiquitin ligase

substrate recognition component FBW7. FBW7 plays an opposite role to WDR62 during

brain development, promoting rather than antagonizing NPC differentiation [53,54]. This led

us to postulate that FBW7 may interact with WDR62 to regulate WDR62 protein stability

Fig 4. WDR62 regulates NPC proliferation, differentiation, and brain size through JNK1. (A) Brain and body

weight of P10 Wdr62flox/flox;Nestin-cre (Wdr62 cKO) and WT mice and their ratio of brain weight (BrW) to body

weight (BoW). Four Wdr62 cKO and WT littermates were analyzed. (B) Brain weight of P12 mice. Wdr62 cKO, n = 16;

JNK1 cTg, n = 4; WT, n = 10 and Wdr62 cKO;JNK1 cTg, n = 10. (C) Coronal sections of E17.5 cortices stained with

DAPI. Right panel: quantification of cortical thickness at the position of rectangle. WT n = 9; Wdr62 cKO n = 14; JNK1
cTg n = 7; Wdr62 cKO;JNK1 cTg n = 6. (D) Coronal sections from E17.5 cortices stained with Pax6 and DAPI. Right

panel: quantification of Pax6+ cells per section. WT and Wdr62 cKO n = 4; JNK1 cTg and Wdr62 cKO;JNK1 cTg n = 3.

(E) Images of cortices from E17.5 littermates labeled with BrdU at E16.5 and stained for Ki67 and BrdU. Right panel:

quantification of cell-cycle exit index. WT n = 8; Wdr62 cKO and Wdr62 cKO/JNK1 cTg n = 7. All Data are

means ± SEM; ���P< 0.001; ��P< 0.01; �P< 0.05; ns P> 0.05; n: number of brain slices from different brains. All

scale bars: 50 μm. Underlying data can be found in S1 Data. BoW, body weight; BrdU, 5-bromo-2’-deoxyuridine; BrW,

brain weight; cKO, conditional knockout; E, embryonic day; JNK, c-Jun N-terminal kinase; NPC, neural progenitor

cell; ns, not significant; P12, postnatal day 12; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g004
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through the proteasomal pathway. WDR62 was transfected into HEK293 cells either alone or

together with the 3 different isoforms of FBW7, FBW7α, β, and γ. Interestingly, WDR62 pro-

tein levels appeared lower when coexpressed with FBW7 α or γ in particular, and the reduction

could be significantly blocked by MG132 (Fig 5A). We therefore performed a coimmunopreci-

pitation analysis and detected an interaction of WDR62 with FBW7α and γ but not FBW7β
(Fig 5B). In addition, FBW7α interacted with the C-terminal half of WDR62 (WD40Δ) but not

the N-terminal half of WDR62 that consists primarily of WD40 domains (Fig 5C). To examine

whether FBW7 possesses E3 ligase activity towards WDR62, we assessed WDR62 ubiquitina-

tion both in vivo and in vitro. Both FBW7α expression in cells (Fig 5D) and purified FBW7α
in an in vitro assay (Fig 5E) induced the ubiquitination of WDR62. To rule out the possibility

that the smeared ubiquitin signals were from WDR62-associated proteins, we performed the

immunoprecipitation of influenza hemagglutinin (HA)-tagged WDR62, blotted for WDR62,

and detected significantly increased upper smear signal when coexpressed with FBW7α and γ
but not FBW7β (Fig 5F). Reciprocal immunoprecipitation for HA-ub also pulled out more

WDR62 in FBW7α overexpressed cells (Fig 5G). Importantly, WDR62 protein levels were sig-

nificantly higher in E14.5, E15.5, and E17.5 Fbw7 cKO brains (Fig 5H and S6A and S6B Fig).

However, deficiency of FBW7 had no significant effect on WDR62 mRNA level (S6B Fig).

These results indicate that Fbw7 negatively regulates WDR62 protein stability through the pro-

teasomal pathway.

Previous study indicates that FBW7 controls neural stem cell differentiation in midbrain

[54]. We inspected the distribution of cells in cortex electroporated with Ctrl shRNA, Fbw7
shRNA, Wdr62 shRNA, and Wdr62 shRNA with Fbw7 shRNA. FBW7 KD led to reduced per-

centage of cells in the SVZ, intermediate zone (IZ), and cortical plate (CP), while WDR62 KD

had the opposite phenotype. The phenotype was partially neutralized when Fbw7 shRNA and

Wdr62 shRNA were cotransfected together (S6C and S6D Fig). This further supports the

notion that WDR62 and FBW7 plays an opposite role in NPC development.

JNK1 induced phosphorylation of WDR62 is important for the

ubiquitination of WDR62 by FBW7

We went on to perform a cycloheximide (CHX) time course analysis and found that WDR62

was degraded more rapidly when coexpressed with FBW7α (Fig 6A). We also utilized a

WDR62 mutant (PM6, L1299A/L1301A) that is unable to bind to and activate JNKs [55], and

compared with WT WDR62, the PM6 mutant was very stable even when coexpressed with

FBW7α (Fig 6A), suggesting that the interaction between JNK and WDR62 is important for

the destabilization of WDR62.

Because JNK1 can induce the phosphorylation of WDR62 T1053 [52], we investigated the

role of this modification in WDR62 stability. When WDR62 T1053 was mutated to alanine, its

interaction with FBW7 decreased significantly compared with that of WT WDR62 (Fig 6B).

We went on to make a phosphomimetic mutant, WDR62 T1053D, and found that it was less

stable than WT WDR62, while WDR62 T1053A was more stable when cotransfected with

FBW7α (Fig 6C and S7 Fig). We further examined the ubiquitination of WDR62 mutants

induced by FBW7. When coexpressed with FBW7, an increased ubiquitination of WT

WDR62 but not WDR62 T1053A was detected (Fig 7A and 7B). Consistently, the ubiquitina-

tion level of WDR62 T1053D was significantly higher than that of WT WDR62. WDR62

T1053A seemed to be more stable than WT WDR62 and could induce JNK activity more sig-

nificantly when coexpressed with MEKK3 (Fig 7C).

JNK activity has been shown to increase during G2 and M phases of the cell cycle and

decline after exiting M phase [56]. We arrested HeLa cells in anaphase with nocodazole and
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Fig 5. FBW7 regulates WDR62 protein stability through the proteasomal pathway. (A) Left panel: FBW7α and γ
reduces WDR62 protein level. HEK293 cells were transfected as indicated; 16 hours later, cells were treated with

MG132 for 4 hours and analyzed by immunoblotting with HA and Flag antibodies. Right panel: quantification of left

panel in 3 independent experiments. Relative levels of WDR62 were normalized with GFP. (B) FBW7α and γ interacts

with WDR62. Cells transfected as in indicated and were immunoprecipitated with Flag antibody and analyzed. (C)

FBW7α interacts with the C-terminal half of WDR62 (WD40Δ). FBW7α was cotransfected with WDR62, WDR62

WD40 (N-terminal half of WDR62) and WDR62 WD40Δ. Cell lysates were immunoprecipitated with HA and

analyzed. (D) FBW7α induces WDR62 ubiquitination in cells. HA-WDR62 and Myc-Ub were cotransfected with

FBW7α, immunoprecipitated with HA antibody, and probed with Flag and Myc antibodies. (E) FBW7α induces

WDR62 ubiquitination in vitro. HA-WDR62 or Flag-FBW7α were expressed in cells, purified by immunoprecipitation

MEKK3, FBW7, and WDR62 cooperate in NPC maintenance
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then released the cell-cycle arrest. As shown in Fig 7D, JNK activity declined after release from

nocodazole arrest, as did the phosphorylation of endogenous WDR62 at T1053. Meanwhile,

the level of WDR62 protein increased correspondingly. Taken together, our results indicate

that the phosphorylation of WDR62 at T1053 by JNK is critical for its interaction with FBW7

and subsequent ubiquitination and degradation.

and then subjected to in vitro ubiquitination assay. (F) Upper smear signal by immunoblotting with WDR62 indicate

stronger ubiquitination of FBW7α. (G) HA-ubi pulled out more WDR62 in WDR62 and FBW7α transfected lyses. (H)

E14.5 cortices from 3 Fbw7 cKO and 3 WT littermates were analyzed for endogenous WDR62 with GAPDH as

control. All data are means ± SEM; �P< 0.05, ��P< 0.01. Underlying data can be found in S1 Data. cKO, conditional

knockout; E, embryonic day; FBW7, F-box and WD repeat domain-containing protein 7; GFP, green fluorescent

protein; HA, influenza hemagglutinin; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g005

Fig 6. WDR62 T1053 phosphorylation impaired FBW7-mediated degradation. (A) Left: WT WDR62 or WDR62

PM6 was transfected independently or cotransfected with FBW7α and the half-life of WDR62 was examined by CHX

chase assay as indicated. Right: quantification of (left) in 3 independent experiments. (B) The interaction between

FBW7α and WDR62 1053A is much weaker. Lower: quantification of (upper) in 2 independent experiments. Relative

levels of FBW7 (IP) were normalized with FBW7α (Input). (C) WT WDR62 or WDR62 T1053A and WDR62 T1053D

were single transfected or cotransfected with FBW7α, and the half-life of WDR62 was examined by CHX chase assay as

indicated. Lower panel: quantification of upper panel in 3 independent experiments. All data are means ± SEM.

Underlying data can be found in S1 Data. CHX, cycloheximide; FBW7, F-box and WD repeat domain-containing

protein 7; IP, immunoprecipitation; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g006
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Discussion

Several MCPH proteins (ASPM, WDR62, CDK5RAP2, CEP63, CEP135, CEP152, CPAP,

MCPH1, and STIL) have been shown to play a role in neurogenesis [7,57–60]. Our study

reveals the mechanisms that regulate the stability of MCPH-associated protein WDR62 and

NPC proliferation and differentiation during brain development. Specifically, we demonstrate

that MEKK3 interacts with WDR62 to stabilize WDR62 and regulates JNK activity in a syner-

gic way. On the other hand, JNK activity also regulates the phosphorylation of WDR62 at

T1053 in a feedback loop which facilities the recruitment of FBW7 degradation of WDR62

(Fig 8). In addition, KO of MEKK3 or JNK1 phenocopies WDR62 KO in the dysregulation of

NPC development. Transgenic expression of JNK1 can rescue the defects of WDR62, indicat-

ing a critical role of JNK signaling pathway in cell fate determination and NPC maintanence.

Fig 7. WDR62 T1053 phosphorylation is critical for its regulation by FBW7. (A) FBW7 induces more

ubiquitination of WDR62 T1053D than WDR62 WT and WDR62 T1053A. (B) FBW7 mediated HA-ubi pull out more

WDR62 in T1053D compared with WT and T1053A. (C) HEK293 cells were transfected with WT WDR62 or WDR62

T1053A alone or in combination with MEKK3. 24 hours later, cell lysates were probed with p-WDR62, WDR62,

MEKK3, p-JNK, GAPDH, and GFP antibodies. (D) Endogenous WDR62 T1053 phosphorylation declines after exiting

M phase (release from nocodazole arrest), is correlated with JNK activity but negatively correlated with WDR62 level.

Underlying data can be found in S1 Data. FBW7, F-box and WD repeat domain-containing protein 7; GFP, green

fluorescent protein; IP, immunoprecipitation; JNK, c-Jun N-terminal kinase; MEKK3, mitogen-activated protein

kinase kinase kinase 3; NZ, nocodazole; WDR62, WD repeat domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g007
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MEKK3 cooperates with WDR62 in the regulation of JNK signaling and

neurogenesis

Through a functional screen, we have found that MEKK3 KD induces very similar phenotypes

as WDR62 KD [40], such as NPC depletion in the embryonic neocortex, suggesting defects in

the maintenance of NPC proliferation and the occurrence of premature differentiation. This

notion is supported by the significant decrease in cycling cells (Ki67+ and P-H3+) and an

increase in cell-cycle exit index in the Mekk3 cKO embryonic neocortex. Meanwhile, we

observed a considerable reduction in Pax6-, Sox2-, and Tbr2-positive NPCs accompanied by

an increase in Tuj1-positive immature neurons in these mice. Thus, our findings indicate a

role for MEKK3 in the proliferation and differentiation of NPC during neurogenesis.

The similar function of MEKK3 and WDR62 led us to explore their relationship and con-

firm their interaction in the embryonic brain. Interestingly, WDR62 and MEKK3 are likely to

play a synergistic role in the activation of JNK signaling as well as in the elevation of each oth-

er’s protein levels. In addition, expression of JNK1 elevated WDR62 levels, while endogenous

levels of WDR62 were much lower in Mekk3 cKO cortices. Therefore, we can postulate that

MEKK3 regulates the protein level of WDR62 through JNK signaling.

Fig 8. MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis during brain development.

(A) In the WT brain, the WDR62 scaffold organizes a protein complex including MEKK3, MKK4/7, and JNK1 to

control NPC development during corticogenesis (1). The expression of WDR62 is positively regulated by MEKK3

which induced JNK activation (phosphorylation) (blue) (2). It is also negatively regulated subsequently by JNK-

induced phosphorylation at T1053 (red) (3). The phosphorylation of WDR62 at T1053 recruits FBW7 to lead to the

ubiquitination and degradation of WDR62 through the proteasomal pathway (3), and the down-regulation of JNK

activity (4). (B) JNK1 cannot be activated properly in Wdr62, Mekk3, or Jnk1 KO brains, leading to defects in NPC

maintenance (possibly due to increase of asymmetric division), which may cause microcephaly. FBW7, F-box and WD

repeat domain-containing protein 7; JNK1, c-Jun N-terminal kinase 1; KO, knockout; MEKK3, mitogen-activated

protein kinase kinase kinase 3; MKK4/7, MAP kinase kinase 4/7; NPC, neural progenitor cell; WDR62, WD repeat

domain 62; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2006613.g008
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JNK signaling is important for cortical neurogenesis

Previous studies have shown that depletion or mutation of several MCPH proteins leads to

the premature cell-cycle exit of NPCs and consequently to premature neuronal differentia-

tion or cell death during neurogenesis [42,57,61,62]. Several MCPH proteins such as MCPH1

and ASPM have been shown to regulate the Chk1-Cdc25b and Wnt signaling pathways

respectively to control brain size [62,63]. Our studies indicate that the JNK signaling plays a

critical role in the normal function of WDR62. First, Jnk1 KO mice have phenotypes very

similar to our Wdr62 KO and cKO mice, including premature differentiation of NPCs,

enlarged lateral ventricles, and thinner cortices during cortical development. These defects in

Wdr62 cKO mice can be largely rescued by the transgenic expression of CA-JNK1. In addi-

tion, mice with deletion of kinases upstream of JNK1 have phenotypes somewhat similar to

Wdr62 and Jnk1 mutants. For example, brain-specific Mkk7 or Mkk4 KO mice display either

enlarged embryonic brain ventricles or reduced brain size [64]. Taken together, all these stud-

ies imply that WDR62 cooperates with MEKK3, MKKs, and JNK1 in the regulation of brain

development.

FBW7 negatively regulates WDR62 stability through the proteasomal

pathway

The E3 ligase FBW7 is important for normal brain development, and KO of Fbw7 inhibits

NPC differentiation [54], the opposite defect of that caused by Wdr62 KO. We have confirmed

the interaction between WDR62 and FBW7. Interestingly, WDR62 T1053, which is phosphory-

lated by JNK1 and localizes within the FBW7 binding motif of WDR62, is important for the

interaction between WDR62 and FBW7. In addition, phosphorylation of T1053 is crucial for

the regulation of WDR62 stability by FBW7, through ubiquitination and degradation of

WDR62.

Previous studies have shown that WDR62 protein level is cell-cycle dependent [22,52].

However, the underlying mechanism is unknown. Two mutants—WDR62 L1299A/L1301A,

which cannot bind to JNK, and WDR62 T1053A—are more stable than WT WDR62, indicat-

ing the involvement of JNK signaling in the regulation WDR62 expression. JNK activity

increases during G2 and M phases of cell cycle [56]. Intriguingly, the level of WDR62 phos-

phorylated at T1053 declines after cells are released from nocodazole arrest (M anaphase). This

is accompanied by the decline in JNK activity and the elevation of WDR62 level, indicating

that phosphorylation of T1053 is negatively correlated with WDR62 stability. We would like to

propose a model (Fig 8) that JNK activation at G2/M phase leads to WDR62 phosphorylation

at T1053, which will recruit FBW7 to induce the ubiquitination and degradation of WDR62.

As the cell cycle progresses, JNK activity declines, and newly synthesized WDR62 will accumu-

late. Through the interaction with MEKK3, WDR62 is stabilized and promotes activation of

JNK at G2/M phase. Thus, JNK-induced phosphorylation of T1053 is also likely to play a criti-

cal role in recruiting FBW7 and the degradation of WDR62 during cell-cycle progression. How

MEKK3 and JNK1 stabilize WDR62 and activate JNK needs to be explored in the future.

Taken together, our results support a model in which the scaffold protein WDR62 orga-

nizes a protein complex that includes MEKK3, MKKs, and JNK1 to control the proliferation

and differentiation of NPCs during corticogenesis (Fig 8). The expression of WDR62 is fine-

tuned both positively by MEKK3 and JNK activity and negatively by JNK-induced phosphory-

lation of WDR62 at T1053. Thus, the coordinated reciprocal and bidirectional regulation

among WDR62, MEKK3, JNK1, and FBW7 fine-tunes JNK signaling to control the balance

between proliferation and differentiation of NPCs and prevent superfluous cell death incurred

by sustained JNK activation during brain development.
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Materials and methods

Ethics statement

All animal procedures used in this study were performed according to protocols approved by

the Institutional Animal Care and Use Committee at the Institute of Genetics and Develop-

mental Biology (IGDB), Chinese Academy of Sciences (CAS) (protocol number: AP2016053).

Antibodies

The antibodies used for western blotting (for human) were as follows: GFP (abcam, ab290,

1:2,000), α-tubulin (CST, 3873s, 1:2,000), GAPDH (CST, 2118s, 1:2,000), Flag (MBL, M185,

1:2,000), Myc (MBL, M047-3, 1:5,000), HA (MBL, M180-3, 1:5,000), Phospho-JNK (CST,

9255, 1:1,000), and WDR62 (bethyl, A310-550A, 1:1,000). For mouse, they were as follows:

WDR62 (abcam, 1:1,000), WDR62 antibody generated by MBL company using antigen

VGQGGNQPKAGPLRAGTC, Phospho-WDR62 1053T (present from Dominic) [52], and

MEKK3 (CST, 5727, 1:1,000). The antibodies used for immunostaining were Sox2 (abcam,

ab97959, 1:1,000), Pax6 (Covance, PRB-278P, 1:400), Tbr2 (Millipore, ab2283, 1:1,000), β-III

Tubulin/Tuj1 (abcam, ab7751, 1:1,000), γ-Tubulin (abcam, ab11316, 1:1,000), α-Tubulin

(CST, 3873, 1:2,000), Phosph-Histone 3 (P-H3) (abcam, ab10543, 1:1,000), Nestin (abcam,

ab6142, 1:1,000), GFP (abcam, ab13970, 1:1,000), Ki67 (abcam, ab15580, 1:1,000), BrdU

(abcam, ab6326, 1:500), Phospho-JNK (abcam, ab124956, 1:1,000), activated-caspase3 (abcam,

ab13847, 1:1,000). Nuclei were stained with DAPI (4’,6-diamidino-2-phenylindole)

(Invitrogen).

Plasmids

Human WDR62 WT, WD40 and WD40Δ truncations, or WDR62 mutants were created by

cloning WDR62 cDNA sequence into the pCMS.EGFP (modified) (Flag) or pCDNA3.1-HA

vector. Full-length MEKK3, MEKK3 N- and MEKK3 C-terminal truncations were cloned into

the pCMV-Tag2B vector. Full-length MEKK3 was also cloned into the pCMS.EGFP (modi-

fied) (Flag) or pCDNA3.1-HA vector. For GST pull-down assay, full-length WDR62, WDR62

C2 (1018-1523aa), or WDR62 C1 (1314-1523aa) were cloned into pGEX6p1. Flag-FBW7α, β,

and γ in pCDNA3.1 were kindly provided by Dr. Clurman [65]. All constructs were verified by

sequencing.

Generation of KO and transgenic mice

Wdr62 cKO mice. Wdr62+/flox mouse and Wdr62 mutant (Wdr62−/−) mice were gener-

ated as described previously [50]. Wdr62 cKO (Wdr62flox/flox; Nestin-Cre) mice were obtained

by crossing Nestin–Cre mice with Wdr62flox/flox mice.

CA-JNK1 conditional transgenic mice. An HA-tagged human JNKK2-JNK1 fusion con-

struct was inserted into the pENTR1A vector (Life Technologies) as described in S4A Fig. To

guarantee controlled and efficient monosite insertion of JNKK2-JNK1 into the ubiquitously

expressed ROSA26 locus, we used the Gateway Entry system (Life Technologies) (S4B Fig)

[66]. Mice carrying the conditional floxed (loxP-STOP-loxP; LSL) LSL-CA-JNK1 f/f allele were

crossed with Nestin-Cre mice to generate mice expressing CA-JNK1 in NPCs (JNK1 cTg).

Wdr62 cKO;JNK1 cTg mice. By crossing Wdr62 cKO with JNK1 cTg mice, we were able

to get Wdr62 cKO, JNK1 cTg, and Wdr62 cKO;JNK1 cTg mice.

Mekk3 cKO. Mice carrying the conditional (floxed, Mekk3f/f) allele [46] were crossed with

Nestin-Cre mice to generate mice with a specific deletion in NPC (Mekk3 cKO). Jnk1 heterozy-

gous (Jnk1+/−) KO mice (stock# 003553) were obtained from the Jackson Laboratory.
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The day when a plug was observed in a female mouse was designated E0.5, and the day of

birth was termed postnatal day 0 (P0). Mouse genotypes were determined by PCR. For all

experiments, only littermate mice from the same breeding were used.

Histology and immunofluorescence staining

For cryosections, tissues were fixed in 4% PFA, cryoprotected in 30% sucrose, and frozen in

tissue freezing medium (TFM). Sections (thickness of 20–50 μm) were used for immunofluo-

rescence staining. Immunofluorescence staining was carried out essentially as described previ-

ously [44,67].

BrdU labeling

For single-pulse BrdU labeling, pregnant mice at defined pregnancy stages were injected intra-

peritoneally with 50 mg/g body weight of BrdU (Sigma-Aldrich) and were euthanized 12 to 24

hours after injection.

Cell culture, transfection, immunoprecipitation, and western blotting

HEK293 cell culture, transfection, immunoprecipitation, and western blotting were performed

as previously described [36]. Plasmids were transfected into HEK293 cells with VigoFect (VIG-

OROUS). For western blot of Figs 5F, 5G and 7B and S7 Fig, cells were treated with 20 μm

MG132 for 4 hours before lyses (MG132 added). Densitometric analysis was performed using

Image J software. The relative Integrated Density of western blot band was measured.

In utero electroporation

In utero electroporation was performed as previously described [67]. Pregnant Sprague Daw-

ley rats were provided by the animal center of IGDB. Rat Mekk3 shRNA vector containing the

following target sequences was used: shM1: 5’-GCCTTAGGATACTACTGTTA-3’; shM2: 5’-

GCAGCAACATGATTGTGCA-3’; and shM3, 5’-GATCACAAAGACTACAATGA-3’. The

human MEKK3 shRNA target sequence was 5’-GCAGAGTGACGTCAGAATC-3’. The rat

Mekk2 shRNA target sequence was as follows: shRNA1: 5’-GAGCGAATTGTTCAGTATTA-

3’; shRNA2: 5’-GAAGCAATGGCTGCCATCT-3’; and shRNA3: 5’-GCTGGATCCATTGTC

TTTA-3’. The rat Mekk4 shRNA target sequence was as follows: shRNA1: 5’-GAGGAAGCTG

GATCCAAATG-3’; shRNA2: 5’-GAGTATCATAAAGAAGTTG-3’; and shRNA3: 5’-GCCTT

TATTTCAGCTTTAC-3’. The rat Fbw7 shRNA target sequence was 5’-CCTTCTCTGGAGA

GAGAAA-3’.

Statistical analysis

Sections were imaged on an LSM 700 (Carl Zeiss) confocal microscope as described [40]. Cell

counts were analyzed with Imaris X64 or ImageJ. All data were analyzed using Excel and

Prism software (Graph Pad Software, La Jolla, CA). Tests used were unpaired t test or one-way

ANOVA paired with Tukey post-test.

Supporting information

S1 Data. Individual numerical values that underlie data displayed in Figs 1A–1E, 2F, 2H,

3A–3E, 4A–4E, 5A, 5H, 6A–6C and 7D, and S1B, S3B, S3C, S5B–S5D, S6B and S6D Figs.

(XLSX)
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S1 Fig. MEKK2 and MEKK4 KD do not show the same phenotype as MEKK3 KD. (A) Cor-

onal sections of rat cortices electroporated in utero with bicistronic constructs encoding both

EGFP and MEKK2, MEKK4 shRNAs or control shRNA (Ctrl) at E16.5 and inspected at E20.5.

(B) Quantification of cell distribution of EGFP+ cells. Data are means ± SEM; �P< 0.05. Ctrl,

n = 8; Mekk2 sh1, n = 5; Mekk2 sh2, n = 7; Mekk2 sh3, n = 10; Mekk4 sh1, n = 5; Mekk4 sh3,

n = 6. n: brain slices from more than 3 independent brains. Scale bar: 50 μm. (C) KD efficiency

of Mekk2/Mekk4 shRNAs. HA-MEKK2, MEKK4 cDNAs were cotransfected with shCtrl or

shRNAs into HEK293 cells; 48 h later, cell lysates were analyzed by immunoblotting with anti-

HA antibody, with GAPDH/Tubulin serving as a loading control and GFP as a transfection

efficiency control. Underlying data can be found in S1 Data. Ctrl, control; E, embryonic day;

EGFP, enhanced green fluorescent protein; HA, influenza hemagglutinin; KD, knockdown;

MEKK2, mitogen-activated protein kinase kinase kinase 2; MEKK4, mitogen-activated protein

kinase kinase kinase 4; SC, scramble; shRNA, short hairpin RNA.

(TIF)

S2 Fig. Images of E17.5 brain slices from WT and Mekk3 cKO mice stained for the activated

form of caspase 3 (green) and DAPI (blue). Scale bar: 50 μm. cKO, conditional knockout; E,

embryonic day; MEKK3, mitogen-activated protein kinase kinase kinase 3; WT, wild-type.

(TIF)

S3 Fig. MEKK3 interact with WDR62 and does not affect the mRNA levels of WDR62. (A)

Reciprocal immunoprecipitation of Fig 2E. (B) Relative WDR62 mRNA expression in MEKK3
KD cells. HEK293 cells were transfected with scramble control or human MEKK3 shRNA; 48

hours later, cells were collected for qPCR analysis. (C) Relative endogenous WDR62 mRNA

expression in human MEKK3 overexpression cells. HEK293 cells were transfected with vector

or HA-human MEKK3; 24 hours later, cells were collected for qPCR analysis. Underlying data

can be found in S1 Data. HA, influenza hemagglutinin; IP, immunoprecipitation; MEKK3,

mitogen-activated protein kinase kinase kinase 3; qPCR, quantitative PCR; shRNA, short hair-

pin RNA; WDR62, WD repeat domain 62.

(TIF)

S4 Fig. Generation of JNK1 conditional transgenic mice. (A) Schematic of the JNKK2-JNK1

fusion constructs. The construct consists of a 3xHA tag, the human JNKK2 cDNA, (Gly-Gly)

5 repeats and the human JNK1 cDNA. The JNKK2-JNK1 fusion construct was inserted into

the multiple cloning site of the pENTR1A vector (Life Technologies). (B) Targeting of the

genomic ROSA26 locus with the JNKK2-JNK1 vector. In the pEntry clone, the JNKK2-JNK1

construct is flanked by lambda phage integrase recognition sites (attL) and thus can be effi-

ciently inserted into the targeting vector carrying the corresponding heterotypic sites (attR).

The targeting construct consists of a 5’-ROSA26 homology arm, a splice acceptor (SA) site, a

PGK-neo-STOP cassette flanked by loxP-site (LSL), the JNKK2-JNK1 fusion construct, an

IRES-eGFP reporter gene, a 3’-ROSA26 homology arm, and a PGK-DTA selection cassette.

Screening PCR was performed using a forward primer indicated by arrow 1 and reverse

primer indicated by arrow 2 in the 5’ region of the targeting construct. After Cre-mediated

recombination, the LSL cassette is excised, and the JNKK2-JNK1 fusion construct is expressed

in the genomic ROSA26 locus. For genotyping PCR, primers indicated by arrows 3, 4 located

in the eGFP reporter gene were used. Arrowheads indicate loxP-sites. Underlying data can be

found in S1 Data. eGFP, enhanced green fluorescent protein; HA, influenza hemagglutinin;

IRES, internal ribosome entry site; JNK, c-Jun N-terminal kinase.

(TIF)
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S5 Fig. (A) Western blot analysis of JNK1 expression in the WT, JNK1 cTg, Wdr62 cKO, and

Wdr62cKO;JNK1 cTg brains at E14.5. GAPDH was used as a loading control. (B) Western blot

analysis of WDR62 expression in the E16.5 WT and JNK1 cTg mice brain. Right panels: quanti-

fication of WDR62 protein and mRNA expression. WT, n = 3; JNK1 cTg, n = 2. (C) Body and

brain weight of P3 Wdr62flox/flox;Nestin-cre (Wdr62 cKO) and WT mice. Three Wdr62 cKO and

WT littermates were analyzed. (D) Quantification of ventricle area as a percentage of whole tel-

encephalon area. WT, n = 10; Wdr62 cKO, n = 14; JNK1 cTg, n = 7; Wdr62 cKO;JNK1 cTg,

n = 6. n: brain numbers. All data are means ± SEM; ���P< 0.001, �P< 0.05, ns P> 0.05.

Underlying data can be found in S1 Data. cKO, conditional knockout; E, embryonic day; JNK1,

Jun N-terminal kinase 1; ns, not significant; WDR62, WD repeat domain 62; WT, wild-type.

(TIF)

S6 Fig. FBW7 regulates WDR62 stability at protein level. (A) E17.5 or E15.5 cortices from

Fbw7 cKO and WT littermates were analyzed by western blot for endogenous WDR62 with

GAPDH as control. (B) Left panel: quantification of WDR62 protein levels compared to WT

control in panel A. Middle and right panel: relative Fbw7 and Wdr62 mRNA expression in 3

Fbw7 cKO and 5 WT mice. (C) Coronal sections of rat cortices electroporated in utero with

bicistronic constructs encoding both EGFP and Wdr62 shRNA, Fbw7 shRNA or control

shRNA (Ctrl) at E16.5 and inspected at E20.5. Scale bar 50 μm. In E20.5 cortex: “ML” indicates

the mantle layer, including the cortical SVZ, IZ, and CP. (D) Relative quantity of cells in VZ

and ML in panel C. Scramble, n = 6; Wdr62 shRNA1 (Wdr62sh1), n = 7; Fbw7 shRNA1 (Fbw7
sh1), fbw7 sh1; wdr62 sh1, n = 8. All data are means ± SEM; ���P< 0.001, ��P< 0.01, �P<
0.05, ns P> 0.05. Underlying data can be found in S1 Data. CP, cortical plate; E, embryonic

day; FBW7, F-box and WD repeat domain-containing protein 7; IZ, intermediate zone; ML,

mantle layer; ns, not significant; SVZ, subventricular zone; VZ, ventricular zone; WDR62, WD

repeat domain 62; WT, wild-type.

(TIF)

S7 Fig. WDR62 T1053 is critical for FBW7-mediated degradation. WDR62 T1053A showed

weak interaction with FBW7 compared with WDR62 WT. HEK293 cells were transfected with

Flag-WDR62 and Flag-WDR62-T1053A either alone or in combination with HA-FBW7α; 16

hours later, cells were treated with MG132 for 4 hours. Cell lysates were immunoprecipitated

with HA antibody and probed with HA or WDR62 antibodies. FBW7, F-box and WD repeat

domain-containing protein 7; HA, influenza hemagglutinin; WDR62, IP, immunoprecipita-

tion; WD repeat domain 62.

(TIF)
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