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Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely
investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally
occurring and synthetic AMPs have shown promising results against a series of clinically
relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical
trials at some point, highlighting the importance of AMP optimization. In this context,
the computer-aided design of AMPs has put together crucial information on chemical
parameters and bioactivities in AMP sequences, thus providing modes of prediction
to evaluate the antibacterial potential of a candidate sequence before synthesis.
Quantitative structure-activity relationship (QSAR) computational models, for instance,
have greatly contributed to AMP sequence optimization aimed at improved biological
activities. In addition to machine-learning methods, the de novo design, linguistic model,
pattern insertion methods, and genetic algorithms, have shown the potential to boost
the automated design of AMPs. However, how successful have these approaches
been in generating effective antibacterial drug candidates? Bearing this in mind, this
review will focus on the main computational strategies that have generated AMPs
with promising activities against pathogenic bacteria, as well as anti-infective potential
in different animal models, including sepsis and cutaneous infections. Moreover, we
will point out recent studies on the computer-aided design of antibiofilm peptides. As
expected from automated design strategies, diverse candidate sequences with different
structural arrangements have been generated and deposited in databases. We will,
therefore, also discuss the structural diversity that has been engendered.
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INTRODUCTION

Peptides can be produced as part of the host defense system
during infections (Hancock and Scott, 2000). Antimicrobial
peptides (AMPs) belong to a diverse group of molecules produced
by cellular tissues in a wide variety of organisms (Brogden, 2005).
These peptides demonstrate potent antimicrobial activity and
can readily be mobilized to neutralize a wide range of microbes,
including viruses, bacteria, protozoa, and fungi (Shai, 2002).
Moreover, this class of antimicrobials has shown promising
endotoxin neutralization properties (Fleitas Martinez et al.,
2019), which favors positive outcomes in animal models of
sepsis. Finally, AMPs are known to have diverse modes of
action depending on the bacterial targets they interact with and,
therefore, are promising candidates for multi-target antibacterial
treatments. Although these characteristics appear as promising
features for drug development, some disadvantages have been
pinpointed for AMP-based therapies, including chemical and
physical instability (Zhao et al., 2016), proteolytic degradation
(Pachon-Ibanez et al., 2017), short half-life and rapid elimination
(Lombardi et al., 2015), slow tissue penetration (Koczulla et al.,
2003), toxicity toward healthy human cells, and cell specificity
(Oshiro et al., 2019). Based on that, an increasing number of
computational strategies are underway, aiming at overcoming
these obstacles by optimizing AMP sequences.

Advanced strategies of rational design allied to computational
methods have been used for the development of more economical
and powerful AMPs (Fjell et al., 2012). The rational design of new
drugs has become a major area in medicinal chemistry, aiming at
creating pharmaceutical products with greater specificity against
microorganisms, along with reduced adverse effects (Porto et al.,
2012). In this context, several computational tools have been
developed to design AMP variants. Among them, we can mention
empirical methods and machine learning, as well as stochastic
approaches, which aim at the optimization of peptides through
random processes (Porto et al., 2012). Machine learning models
are useful for the efficient screening and optimization of a
small number of sequences that could be further evaluated
experimentally. Among the machine learning strategies, a
particular focus has been given to the quantitative structure-
activity relationship (QSAR) model (Mitchell, 2014), which uses
physicochemical descriptors to predict the biological activity of
peptides from their amino acid sequences (Hilpert et al., 2008).

In addition, de novo computational methods generate
AMP sequences without a model sequence but using amino
acid frequency and position preferences that can guarantee
characteristics such as load, amphipathicity, and structure (Porto
et al., 2012). This method has allowed the generation of multiple
sequences with a great diversity of amino acid composition,
tridimensional structures, and mechanisms of action (A Hiss
et al., 2010). Based on the de novo model, an increasing number
of tools have been developed, including linguistic models.
According to Loose et al. (2006), AMPs can be designed through
a formal language, consisting of vocabulary (e.g., amino acid
residues) and rules (e.g., amino acid patterns). Therefore, by
using this “grammar” model, it is proposed that AMPs could
act more specifically by recognizing intracellular targets or acting

directly on bacterial membranes. More recently, this model was
further explored by associating the identification of amino acid
patterns in public databases, followed by their insertion into a
peptide sequence (AMP or not) aiming at generating optimized
AMPs (Porto et al., 2018a).

Apart from the computational methodologies cited above,
genetic algorithms appear as an alternative in the development
of new drugs. Evolutionary methods rely on genetic algorithms
to produce successive generations of mutations and deletions in
a target sequence to improve fitness and identify determinants
that confer antibacterial activity, for instance, through activity
prediction methods (Kliger, 2010; Fjell et al., 2011). Over
generations, the sequences are evaluated and those with lower
fitness values are removed from the candidate sequences, thus
generating more specific candidates for the desired function
(Fjell et al., 2011).

Although different computational methods have been used
to predict and generate optimized AMP sequences (Table 1),
a crucial question remains: are we generating effective drug
candidates? Here we have focused on the primary computational
methodologies applied for computationally designing AMPs
(Figure 1) and analyze how effective these new drug candidates
have been against bacteria, biofilms and animal infection models.
We also describe the structural diversity that has been generated
by the automated design of AMPs and how this feature influences
the antimicrobial properties of these molecules.

COMPUTATIONAL METHODS FOR
DESIGNING AMPs

Machine Learning (With a Particular
Focus on QSAR)
Machine learning is considered a smart and efficient method for
computer-made decisions based on unseen data, learning from
extensive and comprehensive training data (Jia et al., 2015). In
this context, different algorithms have been developed based on
machine learning methods, including support vector machine
(SVM), fuzzy K-nearest neighbor (FKNN), random forest (RF),
and neural network (NN) (LeCun et al., 2015).

Support vector machine is an algorithm for maximizing a
particular mathematical function concerning a given collection
of data (Noble, 2006). This algorithm has been used as a
prediction tool that considers peptide amino acid composition,
physicochemical properties, and structural features as parameters
to classify AMPs with high accuracy (e.g., iAMPpred – Table 1)
(Meher et al., 2017). Moreover, SVM has also been used to
map membrane activity in undiscovered peptide sequences
(Lee et al., 2016). When it comes to pattern recognition, the
K-nearest neighbor (KNN) method has been considered the most
straightforward algorithm, from which the FKNN method is
derived (Sim et al., 2005). Xiao et al. (2013) have developed a
two-level multi-label classifier, named iAMP-2L, to predict AMPs
and their activities (Table 1). An improved FKNN method was
applied for AMP classification, followed by regular multi-label
learning processing (Xiao et al., 2013). As a result, this method
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TABLE 1 | Summary of AMP databases and computational tools for designing and predicting AMP sequences.

AMP databases Description Link

Antimicrobial Peptide Database (APD) Comprehensive database for AMPs, including searching tools, calculation and
prediction, peptide design, 3D structures, and classification

http://aps.unmc.edu/AP/main.php

Collection of Anti-Microbial Peptides
(CAMPR3)

Created to expand and accelerate antimicrobial peptide family-based studies.
Includes AMPs prediction tools (SVM, ANN, DA, and RF), sequence alignment,
pattern creation, and HMMs-based search

http://www.camp.bicnirrh.res.in

Yet Another Database of Antimicrobial
Peptides (YADAMP)

The main difference between YADAMP and other web databases of AMPs is the
explicit presence of antimicrobial activity against the most common bacterial
strains. Includes segment search, structure information, peptide mapping, and
sequence similarity

http://www.yadamp.unisa.it

Biofilm-active AMPs database
(BaAMPs)

First database dedicated to AMPs specifically tested against microbial biofilms.
Includes peptide list, experiment list, sequence alignment, and physicochemical
descriptors calculator

http://www.baamps.it

AMP prediction and design

iAMPpred SVM for predicting AMPs and non-AMPs. Three different categories of features
has been used, including compositional, structural, and physicochemical features

http://cabgrid.res.in:8080/amppred/

iAMP-L2 A two-level multi-label classifier for identifying antimicrobial peptides and their
functional types

http://www.jci-bioinfo.cn/iAMP-2L

AMPep Sequence-based prediction of antimicrobial peptides using distribution patterns
of amino acid properties and RF

https://omictools.com/ampep-tool

Mutator A computational tool for predicting how single or double amino acid substitutions
could improve the therapeutic index of helical AMPs

http://split4.pmfst.hr/mutator/

AntiBP2 Predicts the antibacterial peptides in a protein sequence. Prediction can be done
by using SVM-based method using coposition of peptide sequences and overall
accuracy of this server is ∼92.14%

http://crdd.osdd.net/raghava/antibp2/

ClassAMP Uses RF and SVM to predict the propensity of a protein sequence to have
antibacterial, antifungal, or antiviral activity

http://www.bicnirrh.res.in/classamp/

AMPA Web tool for assessing the antimicrobial domains of proteins, with a focus on the
design on new antimicrobial drugs

http://tcoffee.crg.cat/apps/ampa/do

DBAASP Provides users with information on detailed structure (chemical, 3D) and activity
for those peptides, for which antimicrobial activity against particular target
species have been evaluated experimentally

https://dbaasp.org/home

Joker An algorithm to design antimicrobial peptides using their language https://github.com/williamfp7/Joker

AMP: antimicrobial peptide; SVM: support vector machine; RF: random forest; DA: discriminant analysis; ANN: artificial neural network; HMM: hidden Markov models.

not only allowed the identification of potential AMP sequences
but also classified these sequences according to five different
function types (Xiao et al., 2013). AMP prediction has also been
performed by RF methods, which are based on ensemble learning
algorithms and work by multiple decision trees built on training
data (Schierz, 2009).

In terms of AMP prediction, studies have proposed a new
tool called AmPEP (Table 1), as an attempt to develop a highly
accurate RF classifier for AMP prediction based on pattern
distribution and physicochemical properties (Bhadra et al.,
2018). Its performance was comparable with other predictive
tools and it showed higher values for particular parameters of
comparison, even with a reduced number of features. Finally, NN
comprises estimators of universal function that have been used
to identify patterns into sequences, and also to build structure-
function relationships. This model consists of many simple,
connected processors called neurons, each producing a sequence
of real-valued activations (Schmidhuber, 2015). In AMP design,
NN has been applied in evolutionary and genetic algorithms
(Schneider et al., 1998; Fjell et al., 2011), as well as random
sequence generation (Cherkasov et al., 2009) of AMP candidates
based on an initial model sequence (aiming at optimization for a
particular function) or de novo (no template sequence).

Apart from the approaches cited above, QSAR models
have been pinpointed as highly effective in predicting models
based on biological behavior (Lo et al., 2018). QSAR models
were developed to discover efficient and robust computational
procedures to locate molecules with known activities or
properties in databases and virtual libraries (Golbraikh
et al., 2017). A QSAR model is a simple mathematical
relationship derived from a set of training molecules with
known properties using regression or classification-based
approaches (Roy et al., 2015). This technique offers an in silico
tool for the development of predictive models toward various
activity and property endpoints of a series of chemicals
using response data and molecular structure information
(Walker et al., 2003). In this context, QSAR models can
be used to identify determinants that are important for
antimicrobial activities, and then use these determinants
to design new, more effective AMPs (Lee et al., 2017).
Moreover, although most QSAR methods are focused on
antibacterial activities, some works have considered the
antimicrobial potential of a drug candidate and its toxicity,
simultaneously, to obtain improved pharmacological profiles
(Cruz-Monteagudo et al., 2011). This approach has been applied,
for instance, to generating thrombin and trypsin inhibitors,
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FIGURE 1 | Continued
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FIGURE 1 | Computer-aided design of AMPs. In this review, five different methods for computationally designing AMPs are described, including QSAR, de novo,
linguistic, pattern insertion, and evolutionary/genetic algorithms. The computer-aided design of AMPs may start from de novo methods (no seed sequence) or based
on known peptides aiming at generating optimized analogs. Depending on the strategy, different parameters will guide the design, including molecular and activity
descriptors, tridimensional structures, grammar rules, pattern identification (motifs), and fitness functions. From this point, diverse candidate sequences are
generated and further submitted to structure prediction and screening for antibacterial and hemolytic properties. The lead candidates are then submitted to in-depth
functional and structural analyses, including antibacterial, antibiofilm, immunomodulatory, and in vivo assays. Ultimately, different AMP formulation strategies are
investigated, aiming at optimizing the evaluation of these peptide-based drugs in advanced clinical trials.

including fluoroquinolones (Cruz-Monteagudo et al., 2008),
3-amidinophenylalanine inhibitors of Nicolotti et al. (2009), and
AMPs (Cruz-Monteagudo et al., 2011).

For instance, QSAR models have been used to calculate
the antibacterial activity of mastoparan analogs derived from
wasp venom, based on descriptors derived from the simple
representations of peptides as a sequence of amino acids
(Table 2) (Toropova et al., 2015). More recently, Czyzewski
et al. (2016) reported a model based on the QSAR algorithm,
which appeared to predict peptoid (AMP mimics) antibacterial
activity accurately, based on the analysis of a set of structurally
diverse peptoids (Table 2) (Czyzewski et al., 2016). An increase in
AMP selective index has also been achieved by QSAR methods,
including a computational tool called Mutator (Table 1). It
suggests residue variations by improving peptide selectivity
through appropriate mutations, limited to one or two amino-acid
substitutions based on QSAR criteria (Table 2) (Rončević et al.,
2019). Interestingly, QSAR has also been used to identify motifs
in coiled-coil peptides aiming at facilitating the production of
silver nanoparticles forming peptides with antibacterial potential
(Table 2) (Bozic Abram et al., 2016). Anti-tuberculosis (anti-TB)
AMPs have been developed using QSAR methods. For instance,
Nurbo et al. (2007) described the synthesis of Mycobacterium
tuberculosis ribonucleotide reductase (RNR) peptide inhibitors.
These peptides were initially submitted to an alanine scan
and, based on their results, it was found that Trp5 and phe7
are crucial residues for anti-TB properties. Moreover, a QSAR
model was developed based on the heptapeptides synthesized,
revealing the positive influence of negatively charged residues at
positions 2, 3, and 6 on the peptides’ inhibitory potential toward
M. tuberculosis (Nurbo et al., 2007). Finally, as described above,
the multiobjective optimization of AMPs has gained attention
over the years and can be used, for instance, as an approach
for jointly handling potency and toxicity in computer-made
AMPs. Therefore, Cruz-Monteagudo et al. (2011) developed a
multicriteria QSAR model for handling the antibacterial and
hemolytic activities of cyclic β-hairpin cationic peptidomimetics
(Cβ-H). Along with this multicriteria method, which presented
∼80% accuracy in training and external validation sets, virtual
screenings for identifying selective antibacterial Cβ-HCPs were
carried out (Cruz-Monteagudo et al., 2011). Thus, this study
reveals the advantages of multicriteria methods as promising
chemoinformatics to generate selective AMPs with a higher
therapeutic index.

It is estimated that bacterial biofilms account for ∼80%
of microbial infections in humans (Magana et al., 2018).
Nevertheless, although many efforts have been made in
the past decade to counter biofilm infections, we still lack

effective commercial drugs that were designed to treat biofilms
(most treatments include the use of conventional antibiotics
designed to target planktonic bacteria). In the field of designed
AMPs, some candidates have shown promising antibiofilm
properties. However, the mechanisms by which AMPs inhibit
biofilm formation or eradicate pre-formed biofilms are still
under investigation. Moreover, as for conventional antibiotics,
antibiofilm AMPs are usually designed to target planktonic
bacteria and, sometimes, also present antibiofilm potential.
Therefore, we still lack knowledge on the determinants that rule
AMP antibiofilm activities.

In this context, Haney et al. (2018) performed the computer-
assisted (QSAR) discovery of peptides that specifically act on
bacterial biofilms. In that work, a peptide library was built based
on the immunomodulatory and antibiofilm peptide, IDR-1018
(Haney et al., 2018). A total of 96 single amino-acid-substituted
variants of IDR-1018 were submitted to high-throughput
screening for antibiofilm activities against methicillin-resistant
Staphylococcus aureus (MRSA) biofilms. Based on the in vitro
results, QSAR models were used to correlate the antibiofilm
potential of these variants with the descriptors derived from
their sequences. Novel variants were generated using a 3D
QSAR model to predict the probability of a peptide to present
antibiofilm activity from a virtual library of 100,000 peptides.
A sub-set of these peptides were then synthesized and their
antibiofilm properties evaluated, resulting in ∼85% prediction
accuracy. Among all peptides generated, IDR-3002 was eightfold
more potent against resistant bacterial biofilm than the parent
peptide IDR-1018, thus demonstrating the potential of using
this strategy to design biofilm-active peptides (Table 2) (Haney
et al., 2018). Although this study introduces a promising
strategy for the computer-aided design of improved antibiofilm
peptides, it is worth noting that the modeling strategy used
only classifies peptide candidates as “active” or “inactive,” but
it does not consider antibiofilm potency. In addition, the
extension of this selective antibiofilm property should also be
investigated against other bacterial strains to clarify whether
the designed peptides are strain selective or not. Thus, as a
strategy to overcome these obstacles, the authors anticipate
that it is possible to iteratively improve the QSAR models
for antibiofilm peptides, as an increasing number of sequences
have been deposited in databases, which in turn allows more
accurate predictions (e.g., BaAMPs: the database of biofilm-active
AMPs – Table 1).

De novo Computational Design
The concept of computer-aided de novo drug design was first
introduced more than 25 years ago (Danziger and Dean, 1989).
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TABLE 2 | Summary of the computer-aided designed AMPs here described in terms of antibacterial potential, target bacterial species, and structural profile.

Computer-
aided
design
method

Peptide name Treatment strategy Target bacteria Structural profile References

QSAR Mastoparan-analogs (MP to
MP6; PDDA to PDDA-12;
PDDB to PDDB-5; PMM to
PMM-14); peptoid 1;
dadapin-1 to -8; P4C2;
IDR-3002

Bacteriostatic; bactericide;
antibiofilm; anti-infective
(murine invasive S. aureus);
induction of silver
nanoparticles formation for
combating planktonic
bacteria

A. baumannii; E. cloacae;
E. coli; K. pneumoniae;
MRSA; M. tuberculosis P.
aeruginosa; P. maltophilia;
S. aureus

α-helix; β-hairpin-like;
random coil

Nurbo et al., 2007;
Toropova et al., 2015;
Bozic Abram et al., 2016;
Czyzewski et al., 2016;
Haney et al., 2018;
Rončević et al., 2019

De novo Peptide 1 to 5; LDKA;
DFTamP1; SP1 to SP15;
SPD1 and SPD15

Bacteriostatic Acinetobacter sp.;
B. subtilis; E. aerogenes;
E. coli; E. faecalis;
E. faecium; K. pneumoniae;
P. aeruginosa; S. aureus;
S. cohnii; S. epidermidis;
S. haemolyticus;
S. hominis; S. warnerii

α-helix; random coil Mishra and Wang, 2012;
Faccone et al., 2014;
Chen et al., 2019;
Vishnepolsky et al., 2019

Linguistic
model

D28, R8 and D51;
NN2_0018 and NN1_0050

Bacteriostatic; bactericide;
anti-infective (mouse
peritoneal model of infection
with carbapenem-resistant
A. baumannii)

A. baumannii;
B. alcalophilis; B. anthracis;
B. bronchiseptica;
B. cereus; C. freundii;
C. glutamicum; C. koserii;
C. pseudoTB;
E. aerogenes; E. coli;
E. faecalis; E. gergoviae;
H. influenza;
K. pneumoniae; K. oxytoca;
M. luteus; MRSA;
N. mucosa; P. aeruginosa;
P. mirabilis; P. vulgaris;
S. aureus; S. enterica;
S. boydii; S. flexnerii;
S. haemolyticus;
S. maltophilia;
S. typhimurium; V. cholera

α-helix; random coil Loose et al., 2006;
Nagarajan et al., 2018

Pattern
insertion
algorithm

EcDBS1R6; PaDBS1R6
and PaDBS1R1;
PaDBS1R6F10;
mastoparan-R1 and R4

Bacteriostatic; bactericide;
antibiofilm; skin infection
treatment (skin scarification
mouse model);
anti-bacteremia

A. baumannii; E. cloacae;
E. coli; E. faecalis;
K. pneumoniae; MRSA;
P. aeruginosa; S. aureus

α-helix; random coil; β-turn Cardoso et al., 2018a;
Cândido et al., 2019;
Fensterseifer et al., 2019;
Oshiro et al., 2019

Evolutionary
algorithm

GN-1 to GN14; Guavanin 1
to 12; GMG_01, GMG_02,
GMG_01_SCR, GMG_03,
CM18, CM12 and
GMG_05Z; temporin-Ali
analogs

Bacteriostatic; bactericide;
skin infection treatment (skin
scarification mouse model)

A. baumannii; E. coli;
E. faecium; K. pneumoniae;
P. aeruginosa; S. aureus;
S. pyogenes

α-helix; random coil Fjell et al., 2011; Maccari
et al., 2013; Porto et al.,
2018b; Yoshida et al.,
2018

In that study, an algorithm for knowledge acquisition about
hydrogen-bonding regions on protein surfaces was generated,
aiming at designing novel ligands that specifically bind to a target
site. Ever since, diverse de novo algorithms have been reported
and many feasible drug candidates have been generated, and vast
libraries (from 104 to 106 compounds) are usually screened in
biological assays (Dobson, 2004; Schneider and Fechner, 2005).
In general, de novo drug design methods are based on the
candidate drug assembly, its quality in terms of the desired
function, and, finally, the search space sampling based on the
given information (e.g., physicochemical principles, descriptors,
and chemical structure) (Schneider and Fechner, 2005).

Among the inputs required for de novo drug design, the
primary target constraints are of high relevance, as they
determine the structural-guided generation of novel candidates.
Therefore, receptor-based and ligand-based de novo designs
have often been used when structural information is available.
It allows the prediction of interaction sites between the
target molecule and the designed drugs, as well as providing
receptor-based and ligand-based scorings to select the best
candidates (Figure 1) (Miranker and Karplus, 1995; Pearlman
and Murcko, 1996; Pierce et al., 2004; Schneider and Fechner,
2005). In addition, secondary target constraints consist of those
other than binding affinity. They include structure sampling,
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random sampling, combinatorial search strategies (e.g., heuristic
algorithms), and evolutionary algorithms (Douguet et al., 2000;
Schneider and Fechner, 2005).

The computational de novo design of AMPs is usually
experimentally characterized only if structure-prediction
calculations that start from the designed sequence strongly
converge on the designed structure (Huang et al., 2016).
Therefore, AMP de novo design is a possible way to explore
the number of new sequences and small subsets. Furthermore,
the exploration of AMP de novo design with synthetic biology
concepts represents a promising scenario for the development of
foldamers and biomimetic antimicrobial polymers that mimic
AMPs for therapeutic purposes (Tew et al., 2002; Choi et al.,
2009; Woolfson et al., 2015).

Different strategies using de novo algorithms have been
demonstrated by Faccone et al. (2014), aiming at generating
effective drug candidates (Faccone et al., 2014). Those authors
have engineered AMPs based on the omiganan (MBI-226)
peptide using a combination of computer-assisted approaches.
They settled specific amino acid positions and identified
functionally relevant motifs in natural or designed peptides.
By applying these parameters, five cationic α-helical peptides
were designed, synthesized, and tested against Pseudomonas
aeruginosa, Escherichia coli, S. aureus, and three different strains
of Enterococcus faecalis, alongside 39 Gram-positive and 43
Gram-negative isolates with different resistance mechanisms.
It was observed that de novo designed peptides 1, 2, and 5
showed similar or enhanced antimicrobial activity compared with
omiganan against five of the tested strains. The authors concluded
that peptides 1, 2, and 5 showed the best antibacterial activity
against a broad spectrum of clinical isolates, thus encouraging
their use as template molecules for new drugs (Table 2).

Database filtering technology (DFT) has also been proposed as
a promising approach to retrieve the most probable parameters
from the AMP Database (APD – Table 1) (Wang et al., 2016)
for the de novo design of improved AMPs. Mishra and Wang
(2012) first introduced this concept. In that work, the authors
used peptide activity, peptide length, amino acid frequency,
charge, hydrophobicity, structure profile, and motifs as filters
for designing a novel peptide, named DFTamP1. This peptide
effectively inhibited an MRSA strain (MIC = 3.1 mM). Moreover,
MRSA cells treated with DFTamP1 at 2 × MIC (6.2 µM)
were completely killed after 60 min. The mechanism by which
DFTamP1 kills MRSA was also elucidated, revealing a surface-
associated mechanism that leads to cell leakage (Mishra and
Wang, 2012). DFTamP1 has high similarity with temporins
from amphibians, which usually present a proline residue at the
N-terminal region. Therefore, by replacing the Ser4 in DFTamP1
by a proline, the authors also observed a gain of function toward
Bacillus subtilis and E. coli. Taken together, all these findings
reveal the importance of this database-derived molecular design
concept (DFT) as a suitable strategy for generating peptide-
based antibiotics. For a more extensive review on database-
guided discovery and design of therapeutic peptides, please
see Wang (2013).

More recently, Chen et al. (2019) reported the molecular
dynamics (MD)-guided de novo design of a 14-amino acid

residues peptide, which is constituted of only four amino
acid types (LDKA), and derived from a polyleucine peptide
(GL5KL6G) (Chen et al., 2019). The LDKA peptide was tested
against E. coli, S. aureus, and P. aeruginosa, revealing MIC values
from 10 to 66 µM (Table 2). This antibacterial efficacy is directly
correlated with the membrane pore formation mechanism
displayed by LDKA, which forms large pores at a low peptide-
to-lipid ratio, thus opening a new door for the optimization of
short, pore-forming AMPs.

The development of a novel AMP prediction tool, called
Special Prediction (SP), has recently allowed the generation
of a new algorithm (DSP) to design AMPs through de novo
methods. DSP has been used to computationally design short
AMP candidates with high therapeutic indexes and promising
effects on Gram-negative bacteria. Based on that, Vishnepolsky
et al. (2019) reported that, among the 15 DSP designed AMPs,
14 had their antibacterial efficacy confirmed experimentally
against E. coli. In addition, these peptides demonstrated high
antimicrobial activity against P. aeruginosa and Acinetobacter
baumannii pathogens (Vishnepolsky et al., 2019). Considering
the obstacle imposed by AMP degradation when administrated
in animal models, D-enantiomer analogs were also generated
in that study and one synthetic D-peptide (SP15D) revealed
the highest antibacterial effects toward E. coli, with MIC values
ranging from 0.2 to 0.9 µM (0.39 to 1.56 µg.mL−1). In addition,
as expected for D-peptides, SP15D revealed improved resistance
to proteolytic degradation, along with a mechanism of action
similar to those reported for cell-penetrating peptides. It was
also highlighted that SP15D constitutes a select group of highly
active (lowest MIC value) short AMPs deposited in the Database
of Antimicrobial Activity and Structure of Peptides (DBAASP),
rendering this AMP a promising candidate for more advanced
trials (Table 2).

Linguistic Model
The linguistic model has attracted attention in the last decade,
as it considers amino acid sequences as a formal language
that could be described by a set of regular grammars (Loose
et al., 2006). Therefore, the linguistic model opens a new
perspective concerning the physicochemical-guided design of
AMPs, as it proposes that each amino acid represents a “word”
that should be placed in the right position for the “phrase”
(sequence) to make sense. The grammar rules that govern, for
instance, the amphipathic character of most AMPs are usually
the repeated usage of amino acid sequences (patterns), which are
commonly found in many naturally occurring AMPs, including
cecropin from insects (Van Hofsten et al., 1985) and brevinin
from amphibians (Simmaco et al., 1994). Thus, considering
the increasing number of AMP sequences deposited in public
databases, along with the availability of pattern recognition
computational tools, it is expected that AMP patterns (or, in
other words, set of regular grammars) could be retrieved from
large data sets and further incorporated in template sequences to
design improved AMPs (Figure 1).

The above-cited principles were first described by Loose et al.
(2006). In that work, the authors retrieved a set of 684 regular
grammars (patterns) from 526 well-known AMPs deposited in
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APD (Table 1) (Wang et al., 2016). From this point on, the
overlapping grammar rules were put together, thus generating
20-amino-acid residue sequences incorporating the antimicrobial
syntax. After clustering, a total of 42 sequences were selected
for antibacterial assays (Loose et al., 2006). Moreover, shuffled
sequences were also synthesized, comprising peptides with the
same amino acid composition as their parent peptides, but
arranged randomly and thus being “ungrammatical.” It was
hypothesized that, despite conserving the physicochemical
characteristics of their parent peptides, the shuffled variants
would not have antibacterial properties. Among the peptides
generated by this method, 18 were capable of inhibiting E. coli
and Bacillus cereus growth. The two most promising candidates,
D28 and D51, inhibited B. cereus at 16 µg.mL−1. Only
two out of the 42 shuffled sequences presented antibacterial
activity. D28, the best candidate, was also shown to inhibit
S. aureus and Bacillus anthracis at 16 µg.mL−1 (Table 2)
(Loose et al., 2006).

Considering the highest antibacterial activity of D28, this
peptide was submitted to a heuristic approach by inserting
mutations aiming at the modulation of physicochemical
properties (e.g., charge, hydrophobicity, and hydrophobic
moment) and removal of proline residues from the final
candidate sequences. A total of 44 candidates were generated,
among which the D28 variants, including an internal proline
mutation by lysine or glycine, presented the highest activities
toward S. aureus, E. coli, and B. cereus (Table 2) (Loose et al.,
2006). In conclusion, this method for designing novel AMPs
appears as a suitable methodology that does not require structure-
function data or time-consuming structural-based approaches
through complex peptide/target simulations.

Similarly, Nagarajan et al. (2018) reported the computational
design of novel AMPs through a long short-term memory
(LSTM) language model (Nagarajan et al., 2018). In that work,
the YADAMP (yet another database of AMPs) database (Table 1)
was used to retrieve AMP patterns and train the LSTM model.
A total of 30,832 peptides were generated by the LSTM model,
among which 17,390 remained after removing redundant and
>30 residues sequences. Moreover, after filtering for cationic,
amphipathic peptides, 6415 sequences were obtained, from which
the 10 best (lowest predicted MIC) were selected for chemical
synthesis (Nagarajan et al., 2018). These peptides were initially
evaluated against E. coli, among which four presented MIC
values < 10 µM. The most effective peptides, named NN2_0018
and NN1_0050, were active against a series of multidrug-
resistant clinical isolates from 4 to 128 µg.mL−1, including
E. coli, A. baumannii, Klebsiella pneumoniae, P. aeruginosa, and
S. aureus (Table 2). These peptides also inhibited the growth of
MRSA and carbapenem-resistant strains. When evaluated in vivo
using a mouse peritoneal model of infection with carbapenem-
resistant A. baumannii, the peptide NN2_0018 was proved to
significantly reduce the bacterial load (100 times) compared
with mice treated with meropenem. Finally, both NN2_0018
and NN2_0050 interacted and disrupted bacterial membranes.
Moreover, NN2_0018 also caused secondary systemic effects
on bacteria, as this peptide interfered with gene-regulation
(Nagarajan et al., 2018). Taken together, these findings revealed

the effectiveness of applying the linguistic model in AMP design,
also highlighting the importance of combining computational
strategies to achieve more effective drug candidates.

Automated Amino Acid Patterns Inserted
Into Sequences
The tridimensional structure of peptides/proteins provides useful
information about the molecular basis of their biological function
(Chen and Bahar, 2004). Therefore, peptide/protein functions
are associated with a particular sequence or structural motifs,
and the identification of functional patterns and their role (Chen
and Bahar, 2004). In this context, once a functional or structural
pattern is identified from a model sequence, it can be inserted into
a target sequence, aiming at generating novel biological functions
(Figure 1). Among the insertion methods, the sliding window
considers the aggregation propensity of amino acid sequence
segments of various lengths (Trainor et al., 2017).

Based on these principles and considering the linguistic
models described above, Porto et al. (2018a) hypothesized that,
if an AMP is constituted of a combination of patterns, then the
addition of an antimicrobial pattern to a peptide sequence (AMP
or not) would generate or improve AMPs (Porto et al., 2018a).
Based on that, a novel rational design algorithm was developed,
named Joker (Table 1). This algorithm performs modifications
on peptide sequences based on the insertion of antimicrobial
patterns in a non-cumulative way, using a sliding window system
(Porto et al., 2018a). Regarding Joker’s accuracy, the authors
observed that among 84 designed AMPs, 55 were active against
bacteria, representing a rate of 65% of accuracy.

Recently, Joker was used to design nine variants through
the insertion of the α-helical pattern (KK[ILV]x(3)[AILV])
into a fragment from the mercury transport protein MerP
(MKKLFAALALAAVVAPVW) from E. coli (Porto et al., 2018a).
This pattern was retrieved from 248 α-helical AMPs deposited
in the APD (Wang et al., 2016). Among the variants generated,
the fifth peptide sequence, named EcDBS1R5 (E. coli database
sequence – EcDBS), was studied by Cardoso et al. (2018a). This
peptide showed potent antibacterial activity against susceptible
and resistant bacterial strains, with MIC values from 2–16 µM
for Gram-negative strains and from 8–32 µM for Gram-positive
strains (Table 2) (Cardoso et al., 2018a). This peptide also
displayed antibiofilm properties, as EcDBS1R5 was capable of
dispersing two-day-old P. aeruginosa biofilms (at a concentration
of 16 µM), also reducing the viability of biofilm cells, but
not completely eradicating the preformed biofilm. In addition,
this peptide showed no cytotoxicity toward non-cancerous and
cancerous cell lines. Nevertheless, EcDBS1R5 displayed anti-
infective activity in vivo, decreasing P. aeruginosa colony counts
by two-logs at 2 days post-infection in a scarification skin
infection mouse model (Table 2) (Cardoso et al., 2018a).

Another template sequence identified by Joker corresponds
to a ribosomal fragment (MARNKPLGKKLRLAAAFK) from
the archaeon Pyrobaculum aerophilum. From this sequence (by
inserting the α-helical pattern described above), the variants
PaDBS1R1 and PaDBS1R6 were generated. PaDBS1R1 displayed
potent antibacterial activity, with low micromolar MIC values
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ranging from 1.5 to 12.5 µM against Gram-negative and Gram-
positive bacteria (Table 2) (Irazazabal et al., 2019). Moreover,
the PaDBS1R6 peptide, which was also tested against Gram-
negative and Gram-positive bacteria of clinical interest, proved to
be selective for Gram-negative strains (Table 2). PaDBS1R6 was
also active against P. aeruginosa preformed biofilms, reducing
its volume at 16 µM. The in vivo effectiveness of these peptides
was further evaluated using a scarification skin infection mouse
model. A single dose (64 µM) of PaDBS1R6 was capable of
reducing the initial bacterial load (∼108 CFU.mL−1) by up to
three orders of magnitude after 2 days of treatment (Table 2).
However, after four days of infection, the bacterial load increased
for both peptide-treated and control animals, which might be
related to degradation events in vivo (Fensterseifer et al., 2019).

Based on the antimicrobial potential exhibited by the peptide
PaDBS1R6 (Fensterseifer et al., 2019), and aiming at reducing this
peptide’s size, Cândido et al. (2019) performed sliding window
analysis, thus generating ten fragments derived from PaDBS1R6.
As a result, the sliding window fragment PaDBS1R6F10 was the
most active peptide at inhibiting bacterial growth, displaying
activity toward E. coli (16–32 µM) and E. faecalis (4–8 µM)
strains (Table 2). In contrast, S. aureus and P. aeruginosa were
inhibited only at the highest concentration tested (32 µM).
PaDBS1R6F10 was also proved to kill P. aeruginosa biofilm-
constituting cells at 16 µM. Nonetheless, this peptide is not
capable of completely eradicating P. aeruginosa biofilms. This
peptide, which showed no cytotoxic activity against mammalian
cells, was tested in vivo in the same mouse model described
above (skin infection). PaDBS1R6F10 decreased the bacterial load
gradually, reaching a reduction of ∼103 CFU.mL−1 after 4 days
of treatment. Interestingly, this derivate exhibit improved in vivo
activity when compared to the parental peptide PaDBS1R6,
which did not maintain its anti-infective efficacy in vivo on the
fourth day (Fensterseifer et al., 2019). According to the authors,
this might suggest that the in vivo activity of these peptides
(PaDBS1R6 and PaDBS1R6F10) is time-dependent and possibly
involves peptide degradation events. Therefore, it is possible
that the PaDBS1R6R10 peptide, as a short fragment (10-amino
acid residues), has a higher resistance to enzymatic degradation
in vivo (fewer cleavage sites) when compared to the 19-amino
acid residues parental peptide PaDBS1R6.

Cytotoxicity remains a fundamental feature in peptide design
(Torres et al., 2019). Bearing this in mind, Oshiro et al. (2019)
recently used a peptide sequence (mastoparan-L) isolated from
the wasp venom Vespula lewisii (Hirai et al., 1979) as input
for the Joker algorithm aimed at reducing the hemolytic and
cytotoxic effects of this peptide, as well as improving/extending
its antibacterial properties (Table 2). In that work, five analog
sequences were obtained by inserting the α-helical pattern
(KK[ILV][AL]x[RKD][ILV]xxKI). Among them, the variants
R1 and R4 showed improved antibacterial activities and cell
selectivity when compared to the parental peptide (mastoparan-
L). R1 and R4 were capable of inhibiting the growth of Gram-
negative and Gram-positive bacterial strains with MICs ranging
from 2 to 8 µM; however, contrary to the parent peptide, these
variants were non-toxic on mammalian cells. In addition, R1 and
R4 were capable of eradicating P. aeruginosa preformed biofilm

at 16 µM. These two variants also demonstrated in vivo anti-
infective activity in a P. aeruginosa skin infection mouse model.
After a single dose of 64 µM, both the parent peptide and variants
reduced the initial bacterial burden (∼100-fold reduction) 2 days
post-infection (Table 2). However, on day 4, the effectiveness of
the parental peptide and R4 decreased, whereas the variant R1
reduced the bacterial count 1000 times.

Evolutionary/Genetic Algorithms
Evolutionary/genetic algorithms constitute an approach that
has been used to classify virtually any new AMP sequences
through fitness functions based on activity descriptors and
information collected from APDs (Figure 1) (Torres and De
La Fuente-Nunez, 2019). In AMP design, the simultaneous
optimization of two or more characteristics may be required
(e.g., sequence length or a particular amino acid composition)
and, therefore, multiobjective evolutional algorithms can be
employed to provide an optimal solution (Maccari et al.,
2015). Therefore, AMP design through this method results
from molecular evolution, which in part is driven by random
and parsimonious changes of amino acid sequences and by
subsequent natural selection for the stringent functionality of
folded AMP molecules (Motomura et al., 2012). Moreover,
this method is based on optimization processes combined
with machine learning methods to provide more efficient
antimicrobial predictions when the next generation of candidate
sequences is analyzed. Thus, despite the redundancy of sequences
generated by genetic algorithms, this technique is capable
of identifying novel artificially generated AMPs with distinct
composition and function (Torres and De La Fuente-Nunez,
2019). For instance, evolutionary and genetic algorithms have
been used with molecular docking simulations as a fitness
function to calculate peptide-receptor interactions followed by
AMP optimization through mutations and crossovers (Belda
et al., 2005). Thus, a fitness function, which is often ruled by
a machine-learning method when sufficient training data are
available, provides guidance for AMP design toward regions in
sequence space aiming at a higher predicted biological activity
(e.g., antibacterial) (Fjell et al., 2012). Within this sequence
space, AMP sequences are submitted to modifications to achieve
improvements in a “fitness landscape,” which can be explained
as a visual evaluation of how promising the modified sequences
are, based on the parameter settings (e.g., biochemical activity;
structure-activity landscape) (Fjell et al., 2012).

An increasing number of works have used evolutionary
and genetic algorithms in combination with NNs, molecular
docking, and dynamics as fitness functions for designing AMPs.
Fjell et al. (2011), for instance, used a heuristic evolutionary
programming method of genetic algorithms to optimize short
AMPs (Table 2) (Fjell et al., 2011). In that work, the authors
presented an extended version of their previous work (Fjell
et al., 2009), in which a software system using ANN and QSAR
was developed to predict the activity of 9-amino-acid residue
peptides. By using genetic algorithms (Fjell et al., 2011), the
authors achieved a 19-fold improvement in AMP identification
compared with their previous findings. As a result, ∼0.5% of the
peptides generated by genetic algorithms were classified as highly
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active based on ANN predictions (fitness scores from 0 to 30).
The preliminary luminescence assay with P. aeruginosa PAO1
strain H1001 (containing a luciferase gene cassette luxCDABE)
allowed the selection of 14 candidate peptides, which were
further tested against P. aeruginosa PAO1 strain H103, S. aureus
ATCC25923, MRSA, vancomycin-resistant Enterococcus faecium,
extended-spectrum β-lactamases (ESBL) E. coli and a multidrug-
resistant P. aeruginosa clinical isolate (Table 2). The peptides
were separated into two groups, named GN-1 to -7 and GN-8
to -14. The results demonstrated that some peptides, including
GN-2, -4, -5, and -6, showed higher antimicrobial activity against
all bacterial strains tested, with MIC values ranging from 2 to
32 µg.mL−1 (Fjell et al., 2011). Although this method allowed
an improved capacity of identifying novel AMPs, the authors
concluded that the in vitro activity of the designed AMPs is
strongly dependent on the initial peptides’ starting population,
despite the achieved fitness score.

More recently, Porto et al. (2018b) reported the use of
a genetic algorithm to design AMPs derived from the guava
glycine-rich peptide (Pg-AMP1) (Table 2). First, four Pg-AMP1
fragments were used as the initial population and the ratio
between hydrophobic moment and α-helix propensity was used
as the fitness function (Porto et al., 2018b). A total of 15 peptides,
named guavanin 1 to 15, were selected due to their higher fitness
values. During screening steps for antimicrobial activity, the
variant guavanin 2 was the most potent and, therefore, selected
for in-depth analysis. It is worth noting that the determined
MICs (initial screening) do not directly correlate with the
fitness score for the peptides generated, as also highlighted
by Fjell et al. (2011). Guavanin 2 was tested against Gram-
positive and -negative bacteria, yeast, and biofilms. The best
results were obtained against Gram-negative bacteria, including
E. coli and A. baumannii. In contrast, the same efficacy was
not observed against Gram-positive bacteria or yeast. Moreover,
among all biofilms tested, only the C. albicans biofilms were
reduced when treated with guavanin 2. Finally, the in vivo
activity of guavanin 2 was evaluated against P. aeruginosa
(skin scarification mouse model – described above). The results
showed that guavanin 2 administration (6.25–100 µg.mL−1)
triggered a 3-log reduction in P. aeruginosa counts (Table 2)
(Porto et al., 2018b).

The combination of different computational approaches for
designing AMPs has also shown promising results. For instance,
studies have proposed the design of AMPs by evolutionary
multiobjective optimization (Maccari et al., 2013). This method is
based on the chemophysical profile of peptides, whose descriptors
are coded by QSAR to generate structural and functional
statistical models. These models are then used as fitness functions
for evolutionary algorithms for designing AMPs. Based on these
methods, seven peptide sequences, named GMG_01, GMG_02,
GMG_01_SCR, GMG_03, CM18, CM12, GMG_05Z, have been
described (Table 2). These peptides (10–18 amino acids) were
tested against S. aureus and P. aeruginosa, and the results
demonstrated promising antibacterial activities, with MIC values
ranging from 0.125 to 16 µM, which is comparable with the
most effective AMPs described in the literature. Therefore, the
combination of these computational methods conferred high

flexibility to AMP design, allowing the generation and selection
of highly active drug candidates.

Evolutionary and machine learning algorithms have also been
used in combination to design temporin-like AMPs (Table 2).
Yoshida et al. (2018) proposed a different design method
consisting of three optimization rounds using machine learning
and evolutionary algorithms in conjunction with in vitro assays
(Yoshida et al., 2018). Therefore, the in vitro antimicrobial assays
were used as fitness functions for designing peptide variants.
The natural AMP temporin was used as input sequence and,
after three generations of optimization, 256 peptides were tested
against E. coli, among which 44 peptides presented IC50 values
(half maximal inhibitory concentration) lower than 4.1 µM
(Yoshida et al., 2018). These results revealed that the optimized
AMPs are 160-fold more effective than the parent peptide at
inhibiting E. coli growth. In addition, assays with resistant
bacterial strains showed IC50 of 1.5–2.0 µM. Differently from
the other methods described above, this approach demonstrates
how to design potent AMPs without relying on a pre-
existing physicochemical database and, therefore, allowing the
application of a fitness function based on experimental data
(Yoshida et al., 2018).

STRUCTURE PROFILE IN
COMPUTER-MADE AMPs

Antimicrobial peptides feature diverse structural conformations
to display antimicrobial activities (Cardoso et al., 2018c).
Previous works have reported the clustering of AMPs according
to backbone torsion angles, revealing that this class of
antimicrobial presents many different folds that could be used
to classify them (Fjell et al., 2012). Currently (September 2019),
a total of 3128 AMPs from six different kingdoms have been
deposited in the APD (Wang et al., 2016). Among the AMPs with
structural information, 422 AMPs adopt α-helix conformations,
85 adopt beta structures, 109 present combined helix and
beta packed, four present helix and beta unpacked, and 19
show neither helix or beta structures. Moreover, out of the
3128 sequences deposited, only 422 AMPs have tridimensional
structures, with 369 structures determined by nuclear magnetic
resonance (NMR), and 53 structures by X-ray diffraction (Wang
et al., 2016). This means that of every ∼seven sequences
deposited, only one has its tridimensional structure determined
by experimental techniques.

As described above, the majority of AMPs deposited in public
databases adopt α-helix structures, usually in membrane-like
environments. Helicity has commonly been associated with the
effectiveness of many AMPs reported to date, as it has been
shown, in some cases, to improve AMP specificity (Huang
et al., 2014; Khara et al., 2015). Therefore, diverse computational
approaches for designing AMPs consider the helical content as a
crucial determinant for generating improved AMPs. Based upon
the data summarized here, QSAR-designed AMPs, including
dadapin peptides (Rončević et al., 2019), undergo a coil-to-
helix transition (Table 2) from hydrophilic to hydrophobic
or membrane-like conditions [e.g., 2,2,2-trifluoroethanol (TFE),
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sodium dodecyl sulfate (SDS), and dodecylphosphocholine
(DPC) micelles, as well as liposomes]. Moreover, the de novo
design of peptides with greater helicity has resulted in broad-
spectrum antibacterial activities compared with AMPs with low
helical content (Table 2) (Faccone et al., 2014). Furthermore,
structure-guided de novo design for short, pore-forming AMPs
has shown that these peptides required α-helix arrangements
to penetrate bacterial membranes successfully, leading to
membrane disruption and, finally, cell death (Chen et al., 2019).
Similar findings were reported for a guava derived AMP, named
guavanin 2, designed based on a genetic algorithm (Table 2)
(Porto et al., 2018b). This peptide was shown to adopt α-helix
in membrane conditions, which was further correlated with
the ability of this peptide in causing membrane disruption and
triggering hyperpolarization (Porto et al., 2018b).

Indeed, the organization of AMPs in helical structures has
resulted, in most cases, in biologically active molecules toward
bacteria. However, we cannot discard the increasing numbers of
reports that highlight AMP flexibility as a promising scaffold for
multifunctional properties in the context of bacterial and biofilm
infections (Pukala et al., 2004; Cardoso et al., 2018a). For instance,
AMPs designed by automated antimicrobial pattern insertion,
including the above-mentioned EcDBS1R5 and mastoparan-
R1/R4, have shown that flexible (Table 2), helical structures
may trigger enhanced antibacterial, antibiofilm, and anti-
infective properties (Cardoso et al., 2018a; Oshiro et al., 2019).
EcDBS1R5 secondary structure was investigated in different
mimetic conditions and its tridimensional structure determined
in 30% TFE. As a result, a short central α-helical segment with
flexible termini was reported and correlated with the antibacterial
properties observed for this peptide (Cardoso et al., 2018a).
In recent work with mastoparan peptides, mastoparan-L was
used as a template sequence for the generation of mastoparan-
R1 and R4 (Oshiro et al., 2019). When evaluated structurally,
NMR and temperature coefficient experiments revealed that the
levels of structural stability of the peptides follow the order:
mastoparan-L > R4 > R1. Interestingly, the most flexible
peptide, mastoparan-R1, presented not only antibacterial and
antibiofilm activities but was also the most active peptide in vivo
(Oshiro et al., 2019).

Apart from α-helical AMPs (regardless of their levels of
flexibility), some computationally designed peptides present
short sequences with specific amino acid repetitions, including
tryptophan and arginine, which do not favor α-helix formation.
The immunomodulatory and antibiofilm peptide IDR-1018
(VRLIVAVRIWRR-NH2), for instance, has been used as a starting
sequence for QSAR methods aiming at generating peptide
candidates for antibiofilm therapies. The secondary structure of
IDR-1018 has been investigated in different conditions, revealing
high structural plasticity (Wieczorek et al., 2010). Moreover,
NMR studies were carried out and a central turn of α-helix in the
presence of DPC was reported for IDR-1018. MD simulations,
in which IDR-1018 structure varied from short α-helix to
random coil and beta conformations, further confirmed the
structural plasticity of this peptide. Therefore, considering the
sequence similarity between IDR-1018 and AMPs generated
by QSAR models (Haney et al., 2018) and genetic algorithms

(Fjell et al., 2011), it may be expected that these peptides should
present similar structural behavior.

The findings summarized in this section indicate that,
although helical structures have long been used as an important
feature for designing AMPs, computer-aided methods can
generate AMP candidates with different structural profiles, thus
providing novel structural scaffolds that may lead to different
biological activities in the future.

CONCLUSION – ARE WE GENERATING
EFFECTIVE DRUG CANDIDATES?

As described in the previous topics, diverse computational tools
have been developed and applied alone or in combination
to design novel peptide-based drug candidates. So far,
these methods have contributed to an increasing number
of AMP sequences deposited in databases, thus providing
useful information for future AMP design studies. Moreover,
when allied with high throughput screening methods for
antibacterial and hemolytic activities, including colorimetric
assays (Kolusheva et al., 2000) and SPOT-synthesis of peptide
arrays on cellulose membranes (Figure 1) (Hilpert et al.,
2007), the chances of selecting promising AMPs are higher,
which has also been confirmed by in vivo assays using animal
models of infection.

The SPOT synthesis of peptide arrays, for instance, has been
successfully used as a methodology for a rapid investigation
of single amino acid substitution libraries at every position in
a target peptide. From this point, studies have reported high
throughput screening for antibacterial, antibiofilm, hemolytic,
and immunomodulatory properties (Haney et al., 2015). All of
this information can be further used for substitution matrices to
guide the development of a new generation of optimized peptide-
based drugs. In addition, SPOT-synthetized peptides have also
been evaluated in luminescence assays, in which an engineered
luminescent bacterial strain (e.g., P. aeruginosa H1001) is
submitted to different concentrations of the peptide candidates,
followed by luminescence measurement (Hilpert et al., 2009).
Interestingly, apart from the high throughput screening for
biological properties, AMP candidate sequences have also been
screened for their ability to recognize bacterial membranes and
based on their mechanism of action (Xie et al., 2006; Von
Gundlach et al., 2016). For instance, Xie et al. (2006) developed
a ribosome display system to establish peptide/ribosome/mRNA
complexes that were further evaluated on immobilized model
membranes, aiming at selecting specific sequences that recognize
bacterial membranes. Finally, studies have shown the usefulness
of small-angle X-ray scattering (SAXS) as a high throughput
method to classify AMPs’ mechanisms of action. It has been
reported that SAXS provides fast and reliable information on
the ultrastructural changes that a particular antimicrobial agent
(e.g., AMPs) causes on pathogenic bacteria (Von Gundlach
et al., 2016). Therefore, SAXS can be used not only to classify
AMP modes of action but also to compare them with those
from conventional antibiotics, which in turn may facilitate the
development of multi-target AMP candidates.
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Although computer-aided design and high throughput
screening of AMPs have significantly evolved over the years,
a critical question remains: are we generating effective drug
candidates? This can be an intriguing and paradoxical question.
If we think about the enrichment of peptide sequence
databases that could be used as scaffolds/templates for future
peptide optimization, we have indeed greatly contributed to
the field of peptide-based antibiotics. In contrast, however,
many studies focus only on AMP generation by means of
computers followed by their in-depth characterization, but
without a subsequent effort to translate these candidates
to clinical trials. As a consequence, the current scenario
reveals the discrepancy between the numbers of AMP
sequences identified/generated and fully characterized for
function/structure and the real outcomes in the clinical trials,
which also includes computationally designed AMPs.

Among the challenges involved in developing AMPs for
clinical applications we can mention: (i) the divergence between
in vitro and in vivo antibacterial assays in terms of biological
complexity, thus compromising accurate prediction of anti-
infectious potential in AMPs at clinical level (Bjorn et al.,
2012; Maiti et al., 2014); (ii) AMP susceptibility to enzymatic
degradation, thus compromising the bioavailability of these
antimicrobials, which represents an obstacle for oral/intravenous
administration (Vlieghe et al., 2010; Cardoso et al., 2018b); and
(iii) cost of synthesis compared with other small molecule drugs
(Bray, 2003).

Even considering these obstacles, a few AMPs (non-
computationally designed) have reached advanced trials and
have been introduced in the market. Among them, polymyxin
antibiotics are the most well-characterized AMPs for clinical
use (Landman et al., 2008). In addition, pexiganan (an analog
from the frog-derived magainin) and iseganan (derived from
protegrin 1) are in phase III trials for infected diabetic foot
ulcers and oral mucositis, respectively [please check the clinical
trial identifiers (CTIs): NCT00563394 and NCT00563433 for
pexiganan; and NCT00022373 for iseganan]. Moreover, an AMP
derived from bovine indolicidin has achieved phase II/III trial
for catheter infections and rosacea (CTI: NCT00231153 and
NCT01784133). In phase II trials, PXL01 (derived from human
lactoferricin) has been used for the prevention of post-surgical
adhesion formation in hand surgery (CTI: NCT01022242);
and PAC-113 (derived from the human saliva histatin 3) has
been used to treat oral candidiasis in HIV seropositive patients
(CTI: NCT00659971). Finally, phase I/II trials include lytixar
for uncomplicated Gram-positive skin infections, impetigo,

and nasal colonization with S. aureus (CTI: NCT01223222,
NCT01803035, and NCT01158235); and hLF1-11 for bacteremia
and fungal infections in immunocompromised hematopoietic
stem cell transplant recipients (CTI: NCT00509938). For
a more extensive review of these peptide-based drugs,
see Mahlapuu et al. (2016).

In summary, although the data here summarized for
computationally designed AMPs present a significant advance
in terms of sequence optimization, structure diversity, in vivo
activity, and improved therapeutic indexes, these peptides have
not yet achieved more advanced trials. On the other hand, it is
worth noting the huge advance in peptide development using
computer methods and how this strategy has enriched public
databases with crucial information for future peptide-based drug
design. Indeed, all the information provided by these methods,
including QSAR methods, de novo design, linguistic models,
pattern insertion, and evolutionary algorithm, is of enormous
value for future studies using these AMPs as model scaffolds to
achieve higher effectiveness toward bacteria in vivo, improved
bioavailability, and cell specificity. Moreover, considering the
rapid development of computational tools over the years, it
is expected that highly accurate methods will help researchers
to improve scoring functions for designing and predicting
AMP sequences at low cost. Taken together, all these features
will certainly assist an increasing number of computationally
designed AMPs to evolve from database sequences to real,
effective drug candidates that are more likely to reach the market
in upcoming years.
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